
On the Worst-Case Initial Configuration for Conservative Connectivity Preservation

Daichi Kaino

Department of Computer Science and Engineering
Nagoya Institute of Technology

Aichi, Japan
Email:cke17539@stn.nitech.ac.jp

Taisuke Izumi

Department of Computer Science and Engineering
Nagoya Institute of Technology

Aichi, Japan
Email: t-izumi@nitech.ac.jp

Abstract—We consider the system of robots with limited-
visibility, where each robot can see only the robots within
the unit visibility range (a.k.a. the unit distance range). In
this model, we focus on the inherent cost we have to pay for
connectivity preservation in the conservative way (i.e., in any
execution, no edge of the visibility graph is deleted). We present
a bad configuration with the visibility graph of diameter D
for which any conservative algorithm requires Ω(D2) rounds
to make all robots movable, where D is the diameter of the
initial visibility graph. This result implies that we inherently
need edge-deletion mechanisms to solve many connectivity-
preserving problems (as considered in [1], [2], [5]) within o(D2)
rounds.

Keywords-distributed algorithm; mobile robot; limited visi-
bility; lower bound;

I. INTRODUCTION

Algorithmic studies about autonomous mobile robots is
recently emerging in the distributed computing community.
In most of those studies, a robot is modeled as a point in
a Euclidean plane, and its abilities are quite limited: It is
usually assumed that robots are oblivious (i.e. no memory
is used to record past situations), anonymous (i.e. no ID
is available to distinguish two robots), and uniform (i.e.
all robots run the same identical algorithm). In addition,
it is also assumed that each robot has no direct means
of communication. The communication between two robots
is done in an implicit way by having each robot observe
its environment, which includes the positions of the other
robots.

More challenging settings of algorithmic robotics is the
limited visibility model [1], [2], [5], where each robot can
see only the robots within the unit visibility range (a.k.a.
the unit distance range). The limited visibility is a practical
assumption but makes the design of algorithms quite difficult
because it prevents each robot from obtaining the global in-
formation about all other robots. Furthermore, it also brings
another design issue, called connectivity preservation [4]:
Oblivious robots cannot use the previous history of their
execution. Hence, once some robot r1 disappears from the
visibility range of another robot r2, r2 can behave as if r1
does not exist in the system and vice versa. Since the co-
operation between r1 and r2 becomes impossible, it follows

that completing any task starting from those situations is
also impossible. This phenomenon can be formally described
by using a visibility graph, which is the graph induced
by the robots (as nodes) and their visibility relationship
(as edges). The requirement we have to guarantee in the
limited visibility model is that any task or sub-task in an
algorithm must be achieved in the manner that preserves the
connectivity of the visibility graph.

A standard approach to achieve the connectivity preserva-
tion is that we always disallow the movement of the robots
which can bring the deletion of edges in the visibility graph.
In this paper we call algorithms adopting this approach con-
servative. Since the deletion of an edge does not necessarily
bring the disconnection of the visibility graph, conservative
algorithms are overly safe in some sense. On the other hand,
surprisingly, every known algorithm for the limited visibility
model belongs to the class of conservative algorithms.

The main focus of this paper is to reveal the inher-
ent cost we have to pay for the conservative connectivity
preservation. As we stated, the conservativeness property
restricts the movement of robots causing the edge deletion
of visibility graphs. That kind of movement is characterized
by the notion of blocked locations [3]. In any conservative
algorithm, the robot on a blocked location cannot change
its position. A simple example of blocked locations is as
follows: A robot r0 is placed at the origin of the global
coordinate system, and r1, r2, r3 are placed on (−1, 0),
(1, 0), (0, 0.1) respectively. In this case, a small movement
by r0 (e.g., the movement to (0.1, 0)) causes no disconnec-
tion of the visibility graph. However, that movement of r0
causes the deletion of edges (r0, r1) and (r0, r2), and thus
generally r0 is possible to move but it is not possible in
conservative algorithms. Any conservative algorithm must
stop the movement of r0 until r1 or r2 gets close to
r0. Thus, at least one extra round is incurred to resolve
blocked locations of r0. This can be seen as an extra cost of
the conservative approach. From this observation, a natural
question raises up: How much time is necessary to make
all robots non-blocked in conservative algorithms? A trivial
lower bound for this question is to place n robots at the
coordinates (0, 0), (1, 0), · · · , (n − 1, 0). This configuration

obviously requires Ω(n) rounds for making all robots non-
blocked. However, the visibility graph of this configuration
has diameter n − 1. It is not so surprising because we can
embed a “long chain” of blocked locations if the visibility
graph has a large diameter. More precisely, we can trivially
have the configuration satisfying that (1) its visibility graph
has diameter D and (2) Ω(D) rounds are required to make
all robots non-blocked. On the other hand, the best known
upper bound is O(D2) rounds for configurations with the
visibility graphs of diameter D, which is shown in our prior
work[3]. The problem of filling the complexity gap between
Ω(D) and O(D2) has remained open. The contribution of
this paper is to close this gap: We show a bad configuration
with the visibility graph of diameter D for which any
conservative algorithm requires Ω(D2) rounds to make all
robots non-blocked. This result implies that we inherently
need edge-deletion mechanisms to solve many connectivity-
preserving problems (as considered in [1], [2], [5]) within
o(D2) rounds.

II. MODEL

The system consists of n robots, denoted by r0, r1, r2, · · ·,
rn−1. Robots are anonymous, oblivious and uniform. That is,
each robot has no identifier distinguishing itself and others,
cannot explicitly remember the history of its execution, and
works following a common algorithm independent of the
value of n. In addition, no device for direct communication
is equipped. The cooperation of robots is done in an implicit
manner: Each robot has a sensor device to observe the
environment (i.e., the positions of other robots). One robot
is modeled as a point located on a two-dimensional space.
Observing environment, each robot can see the positions
of other robots transcripted in its local coordinate system.
We assume limited visibility: Each robot can see only the
robots located within unit distance. Each robot executes
the deployed algorithm in computational cycles (or briefly
cycles). At the beginning of a cycle, a robot observes the
current environment (i.e., the positions of other robots)
and determines the destination point based on the deployed
algorithm. Then, the robot moves toward the computed des-
tination. It is guaranteed that each robot necessarily reaches
the computed destination at the end of the cycle. As the
timing model, we assume fully-synchronous model. In fully
synchronous worlds,any execution follows a discrete time
1, 2, 3 · · ·. At the beginning of each time unit, every robot is
activated and performs one cycle. Note that this assumption
is stronger than the standard ones such as ATOM[6], but
it leads more general results because we consider lower
bounds. That is, our argument for the worst cases holds even
for full-synchronous systems, and thus it clearly holds for
other weaker models.

Throughout this paper, we use the following notations
and terminology: To specify the location of each robot
consistently, we use the global coordinate system. Notice

that the global coordinate system is introduced only for
ease the explanation, and thus robots are not aware of it.
The origin of the global coordinate system is denotes by
o.For any two coordinates a and b, ab denotes the segment
whose endpoints are a and b, and |ab| denotes its length. A
configuration is the multiset consisting of all robot locations.
We define C(t) as the configuration at t.

A. Visibility Graph

A visibility graph G(t) is the graph where nodes represent
robots and an edge between two robots implies the visibility
between two robots(See fig1). More formally, the visibility
graph at t consists of n nodes {v0, v1, v2, · · · vn−1}. Nodes
vi and vj are connected if and only if ri and rj are visible
to each other.

Figure 1. Visibility graph

B. Conservative Connectivity Preservation

The algorithms we consider in this paper belongs
to a class called conservative connectivity preservation.
Formally, an algorithm A is conservatively connectivity-
preserving if in any execution of A edges of the visibility
graph are never deleted, That is, let G(t) = (V,E(t))
be the visibility graph at t, any execution of A satisfies
E(t) ⊆ E(t+ 1).

C. Blocked location

We explain the notion of blocked locations. Intuitively,
a blocked location is the place such that the robot on
that location cannot move without deletion of edges in the
visibility graph.

Definition 1: Let pc be a location, C be the circle cen-
tered at pc with diameter one, and B = {p0,p1,p2, · · ·pj}
be the set of all locations on the boundary of C. The location
pc is blocked if no arc of C with a center angle less than π
can contain all locations in B.
Examples illustrating the notion of blocked locations are
shown in Fig. 2, Fig.3.

Intuitively, for a robot ri to be movable while preserv-
ing edges of the visibility graph, its destination must be
within distance one from the robots that ri sees before the

pc

p0

p1

p2

p3

Figure 2. Blocked location

pcp0

p1 p2

p3

Figure 3. Non-
blocked location

movement. For a robot at a blocked location there is no such
destination. Assume the contrary, let ri be blocked and move
to some other point p(̸= ri). Then, we take the line l which
is orthogonal to the vector p − ri and passes through ri.
This line cuts the circle C into two arcs with center angle
π. From the definition of blocked points, both arcs have at
least one robot. However, the arc in the opposite side of p
(about l) is out of ri’s visibility after the movement to p
(see Fig. 4. Thus, if a robot rj is on a blocked location, it
cannot move anywhere without deletion of edges.

�

��

�

disconnected

�

Figure 4. The deletion of edges in visibility graphs

The observation above implies the following lemma:
Lemma 1: In any execution of conservative connectivity-

preserving algorithms, no robot on a blocked configuration
can not move.

III. LOWER BOUND

In this section, we show that Ω(D2) rounds are necessary
to make all robots non-blocked. More precisely,given an
arbitrary value D we construct an initial configuration for
which any conservative connectivity-preservation algorithm
takes Ω(D2) rounds to make all robots non-blocked.

A. The Worst-Case Construction

We refer the initial configuration constructed in this
section as CBAD(D). For any given D > 0. the configu-
ration CBAD(D) consists of (2 + D)2D

2

robots (and thus
D = O(

√
log n) must be satisfied).

We define πk to be the circle of radius
√
k whose center

is at the origin o of the global coordinate system. For k =
0 πk represents the origin o. The construction is done by
recursively placing robots on πk to block all the robots in
πk−1. Let Rk be the set of points on πk where a robot will
be placed.

We first show a fundamental lemma for the construction
of Rk (k ≥ 0).

Lemma 2: We define p to be any points on the πk,and lp
to be the tangent line of πk at p.Then letting lp ∩ πk+1 =
{q1,q2}, |q1 − p| = |q2 − p| = 1 is satisfied.

Proof: Because point p is placed on πk, |p| =
√
k.

Similarly,|q1| = |q2| =
√
k + 1. Also hold points q1 and

q2 are placed on line lp and thus op is orthogonal to
lp. We can apply the Pythagorean theorem to three points
o,p,q1(orq2)(See Fig5). Thus |q1 − p| = |q2 − p| = 1
holds.

x

y

O

��(blocking point)

��(blocking point)

P

����

��

� + 1
√�

� + 1

�

�

o

Figure 5. The proof of Lemma 2 and blocking points

The two points lp ∩ πk+1 defined in this lemma is called
the blocking points of p. This lemma naturally induces the
construction of CBAD(D), which is defined as follows:

• Place one robot at the origin of the global coordinate
system (i.e., on π0). In addition, place two robots at the
coordinate (1, 0) and (0,−1). The points in R1 consists
of these two robots.

• For any p ∈ πk (2 ≤ k ≤ D2) where a robot is located,
place two robots on its two blocking points.

• To bound the diameter within D, for each segment
between p ∈ Rk (2 ≤ k ≤ D2) and the origin, place
⌊
√
k⌋ robots with unit interval(See Fig:6).

x

y

O

�

�

��

��

Figure 6. The third step of constructing CBAD (D)

Figure 7 shows the construction for D2 = 3. By the third
step of the construction above, it is obvious that the visibility
graph of CBAD(D) has diameter at most D. Thus remaining
issue is to show that this configuration requires D2 rounds
to make all robots non-blocked. We show the example of
CBAD.

x

y

O x

y

O

��

��

��

����

��

��

��

��

����

��

����
��

�

�

Figure 7. The illustration of CBAD when k=3

Lemma 3: Any robots on RD2−k are blocked at round k.
Proof: We prove the lemma by induction on k. (Basis):

If k = 0 and 1, the lemma trivially holds. (Inductive step):
Suppose as the induction hypothesis that all robots in RD2−k

are blocked at round k. In initial placement, any points

p ∈ RD2−(k+1) are placed at each blocking points. From
including step,robots on the these points blocked until round
k, so they don’t yet move at beginning time of round k+1.
Therefor, robots on points p ∈ RD2−(k+1) are blocked at
round k + 1.

Consequently, we have the main lemma below:
Theorem 1: For any D, the exists a configuration

CBAD(D) with the visibility graph of diameter D such that
in any execution of conservative algorithms starting from
CBAD(D) requires Ω(D2) rounds to make all the robots
non-blocked.
This result implies that for many connectivity-preserving
problems, no algorithm can achieve the running time sub-
quadratic of D at the worst case unless it incurs edge
deletions of visibility graphs, which can be seen as an
inherent cost by conservative algorithms.

IV. CONCLUSION

In this paper, we presented a bad configuration with the
visibility graph of diameter D for which any conserva-
tive algorithm requires Ω(D2) rounds to make all robots
movable, where D is the diameter of the initial visibility
graph. Since we need (2 + D)2D

2

robots, to construct the
bad configuration, our result holds only for the case of
D = O(

√
log n). An open problem is to present the similar

bad configuration for larger D (i.e. D = ω(
√
log n)).

REFERENCES

[1] Hideki Ando and Yoshinobu Oasa and Ichiro Suzuki and
Masafumi Yamashita, Distributed memoryless point conver-
gence algorithm for mobile robots with limited visibility, IEEE
Transactions on Robotics and Automation,volume 15(5), pages
818-828, 1999.

[2] Paola Flocchini and Giuseppe Prencipe and Nicola Santoro
and Peter Widmayer, Gathering of asynchronous robots with
limited visibility, Theoretical Computer Science, 337(1-3),
pages 147-168, 2005.

[3] Taisuke Izumi and Maria GradinariuPoptop-Butucaru and Se-
bastien Tixeuil, Connectivity Preserving Scattering of Mobile
Robots with Limited Visibility, Proc. of Intl. Symposium
on Stabilization, In Safety and Security of Distributed Sys-
tems,volume 6336, pages 319-331, 2010.

[4] M. Ji and M. Egerstedt, Distributed Coordination Control of
Multi-Agent Systems while Preserving Connectedness, IEEE
Transactions on Robotics, volume 23(4), 2007.

[5] Souissi, Samia and Défago, Xavier and Yamashita, Masafumi,
Using eventually consistent compasses to gather memory-less
mobile robots with limited visibility, ACM Transactions on
Autonomous and Adaptive Systems, volume 4(1), pages 1-27,
2009.

[6] Ichiro Suzuki and Masafumi Yamashita,Distributed Anony-
mous Mobile Robots: Formation of Geometric Patterns,SIAM
Journal of Computing,volume 28(4),pages 1347-1363,1999.

