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Abstract

In this paper, we consider the partial gathering problem of mobile agents in asynchronous unidirectional
ring networks and asynchronous tree networks. The partial gathering problem is a new generalization of the
total gathering problem which requires that all the agents meet at the same node. The partial gathering
problem requires, for given input g, that each agent should move to a node and terminate so that at least g
agents should meet at the same node. The requirement for the partial gathering problem is weaker than that
for the (well-investigated) total gathering problem, and thus, we have interests in clarifying the difference on
the move complexity between them. We assume that n is the number of nodes and k is the number of agents.
For ring networks, we propose three algorithms to solve the partial gathering problem. The first algorithm is
deterministic but requires unique ID of each agent. This algorithm achieves partial gathering in O(gn) total
moves. The second algorithm is randomized and requires no unique ID of each agent (i.e., anonymous). This
algorithm achieves the partial gathering in expected O(gn) total moves. The third algorithm is deterministic
and works for anonymous agents. In this case, we show that there exist initial configurations in which no
algorithm can solve the problem for this setting, and agents can achieve the partial gathering in O(kn)
total moves for other initial configurations. For tree networks, we consider three model variants to solve
the partial gathering problem. First, we show that there exist no algorithms to solve the partial gathering
problem in the weak multiplicity detection and non-token model. Next, we propose two algorithms to solve
the partial gathering problem. First, we consider the strong multiplicity detection and non-token model. In
this model, we show that agents require Ω(kn) total moves to solve the partial gathering problem and we
propose an algorithm to achieve the partial gathering in O(kn) total moves. Second, we consider the weak
multiplicity detection and removable-token model. In this model, we propose an algorithm to achieve the
partial gathering in O(gn) total moves. It is known that the total gathering problem requires Ω(kn) total
moves. Hence, our results show that it is possible that the g-partial gathering problem can be solved with
fewer total moves compared to the total gathering problem.

keyword: distributed system, mobile agent, gathering problem, partial gathering

1 Introduction

1.1 Background and our contribution

A distributed system is a system that consists of a set of computers (nodes) and communication links. In recent
years, distributed systems have become large and design of distributed systems has become complicated. As
a way to design efficient distributed systems, (mobile) agents have attracted a lot of attention [1, 2, 3, 4, 5].
Agents simplify design of distributed systems because they can traverse the system and process tasks on each
node.

The gathering problem is a fundamental problem for cooperation of agents [1, 6, 7, 8, 9]. The gathering
problem requires all agents to meet at a single node in finite time. The gathering problem is useful because, by
meeting at a single node, all agents can share information or synchronize behaviors among them.

In this paper, we consider a variant of the gathering problem, called the partial gathering problem. The
partial gathering problem does not always require all agents to gather at a single node, but requires agents to
gather partially at several nodes. More precisely, we consider the problem which requires, for given input g,
that each agent should move to a node and terminate so that at least g agents should meet at the same node.
We define this problem as the g-partial gathering problem. Clearly, if k/2 < g ≤ k holds, the g-partial gathering
problem is equal to the ordinary gathering problem. If 1 ≤ g ≤ k/2 holds, the requirement for the g-partial
gathering problem is weaker than that for the ordinary gathering problem, and thus it seems possible to solve
the g-partial gathering problem with fewer total moves. In addition, the g-partial gathering problem is still
useful because agents can share information and process tasks cooperatively among at least g agents.
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Table 1: Results for the g-partial gathering problem in asynchronous unidirectional rings
Model Algorithm 1 Algorithm 2 Algorithm 3

Unique ID Available Not available Not available

Deterministic/Randomized Deterministic Randomized Deterministic

Knowledge of k Not available Available Available

The total moves O(gn) O(gn) O(kn)

Note
There exist

unsolvable configurations

Table 2: Results for the g-partial gathrering problem in asynchronous trees
Model 1 Model 2 Model 3

Multiplicity detection Weak Strong Weak

Removable-token Not available Not available Available

Solvable / Unsolvable Unsolvable solvable Unsolvable

The total moves - O(kn) O(gn)

In this paper, we consider the g-partial gathering problem for asynchronous unidirectional ring networks
and asynchronous tree networks. We assume that n is the number of nodes and k is the number of agents. The
contributions of this paper are summarized in Tables 1 and 2. For asynchronous unidirectional ring networks, we
propose three algorithms to solve the g-partial gathering problem. First, we propose a deterministic algorithm
to solve the g-partial gathering problem for the case that agents have distinct IDs. This algorithm requires
O(gn) total moves. Second, we propose a randomized algorithm to solve the g-partial gathering problem for
the case that agents have no IDs but agents know the number k of agents. This algorithm requires expected
O(gn) total moves. Third, we consider a deterministic algorithm to solve the g-partial gathering problem for
the case that agents have no IDs but agents know the number k of agents. In this case, we show that there exist
initial configurations in which the g-partial gathering problem is unsolvable. Next, we propose a deterministic
algorithm to solve the g-partial gathering problem for any solvable initial configurations. This algorithm requires
O(kn) total moves. Note that the total gathering problem requires Ω(kn) total moves regardless of deterministic
or randomized settings. Hence, the first and second algorithms imply that the g-partial gathering problem can
be solved in fewer total moves compared to the total gathering problem for the both cases. In addition, we show
that the total moves is Ω(gn) for the g-partial gathering problem if g ≥ 2. This means the first and second
algorithms are asymptotically optimal in terms of the total moves.

For asynchronous tree networks, we consider two multiplicity detection models and two token models. First,
we consider the case of the weak multiplicity detection and non-token model, where in the weak multiplicity
detection model each agent can detect whether another agent exists at the current node or not but cannot count
the exact number of agents. In this case, we show that there exist no algorithms to solve the g-partial gathering
problem in this model. Next, we consider the case of the strong multiplicity detection and non-token model,
where in the strong multiplicity detection model each agent can count the number of agents at the current
node. In this case, we show that agents require Ω(kn) total moves to solve the g-partial gathering problem. In
addition, we propose a deterministic algorithm to solve the g-partial gathering problem in O(kn) total moves,
that is, this algorithm is asymptotically optimal in terms of the total moves. Finally, we consider the case of
the weak multiplicity detection and removable-token model. In this case, we propose a deterministic algorithm
to solve the g-partial gathering problem in O(gn) total moves. This result shows that the total moves can be
reduced by using tokens. Since agents require Ω(gn) total moves to solve the g-partial gathering problem also
in tree networks, this algorithm is also asymptotically optimal in terms of the total moves.

1.2 Related works

Many fundamental problems for cooperation of mobile agents have been studied in literature. For example, the
searching problem [2, 10, 5], the gossip problem [3], the election problem [11], the map construction problem
[4], and the total gathering problem [1, 6, 7, 8, 9] have been studied.

In particular, the total gathering problem has received a lot of attention and has been extensively studied
in many topologies, which include lines [12, 13], trees [1, 3, 14, 7, 8, 9], tori [1, 15], arbitrary graphs [16, 17, 12]
and rings [1, 18, 3, 6, 12]. The total gathering problem for rings and trees has been extensively studied because
these networks are utilized in a lot of applications. To solve the total gathering problem, it is necessary to select
exactly one gathering node, i.e., a node where all agents meet. There are many ways to select the gathering
node. For example, in [1, 19, 20, 21, 15, 18], agents leave marks (tokens) on their initial nodes and select the
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gathering node based on every distance of neighboring tokens. In [2, 10], agents have distinct IDs and select the
gathering node based on the IDs. In [6], agents can use random numbers and select the gathering node based
on IDs generated randomly. In [1, 3, 11], agents execute the leader agent election and the elected leader decides
the gathering node. In [14, 7, 8, 9, 16], agents explore graphs and decide which node they meet at.

2 Preliminaries

2.1 Network and Agent Model

2.1.1 Unidirectional Ring Network

A unidirectional ring network R is a tuple R = (V,L), where V is a set of nodes and L is a set of communication
links. We denote by n (= |V |) the number of nodes. Then, ring R is defined as follows.

• V = {v0, v1, . . . , vn−1}

• L = {(vi, v(i+1) mod n) | 0 ≤ i ≤ n − 1}

We define the direction from vi to vi+1 as a forward direction, and the direction from vi+1 to vi as a backward
direction. In addition, we define the i-th forward (resp.,) backward agent of the agent ah′ as the agent that
exist in the ah’s forward (resp., backward) direction and there are i − 1 agents between ah and ah′ .

In this paper, we assume nodes are anonymous, i.e., each node has no ID. In a unidirectional ring, every
node vi ∈ V has a whiteboard and agents on node vi can read from and write to the whiteboard of vi. We
define W as a set of all states of a whiteboard.

Let A = {a1, a2, . . . , ak} be a set of agents. We consider three model variants. In the first model, we consider
agents that are distinct (i.e., agents have distinct IDs) and execute a deterministic algorithm. We model an
agent as a finite automaton (S, δ, sinitial, sfinal). The first element S is the set of the agent ah’s all states,
which includes initial state sinitial and final state sfinal. After an agent changes its state to sfinal, the agent
terminates the algorithm. The second element δ is the state transition function. Since we treat deterministic
algorithms, δ is described as δ: S × W → S × W × M , where M = {1, 0} represents whether the agent moves
forward or not in the next movement. The value 1 represents movement to the next node and 0 represents stay
at the current node. Since rings are unidirectional, each agent only moves to its forward node. We assume that
agents move instantaneously, that is, agents always exist at nodes (do not exist at links). Moreover, we assume
that each agent cannot detect whether other agents exist at the current node or not. Notice that S, δ, sinitial

and sfinal can be dependent on the agent’s ID.
In the second model, we consider agents that are anonymous (i.e., agents have no IDs) and execute a

randomized algorithm. We model an agent similarly to the first model except for state transition function δ.
Since we treat randomized algorithms, δ is described as δ: S × W × R → S × W × M , where R represents a
set of random values. In addition, we assume that each agent knows the number of agents. Notice that all the
agents are modeled by the same state machine.

In the third model, we consider agents that are anonymous and execute a deterministic algorithm. We also
model an agent similarly to the first model. We assume that each agent knows the number of agents. Note that
all the agents are modeled by the same machine.

In unidirectional ring network model, we assume that agents move instantaneously, that is, agents always
exist at nodes (do not exist at links). Moreover, we assume that each agent cannot detect whether other agents
exist at the current node or not.

2.1.2 Tree Network

A tree network T is a tuple T = (V,L), where V is a set of nodes and L is a set of communication links. We
denote by n (= |V |) the number of nodes. Let dv be the degree of v. We assume that each link l incident to vj

is uniquely labeled from the set {0, 1, . . . , dvj − 1}. We call this label port number. Since each communication
link connects to two nodes, it has two port numbers. However, port numbering is local, that is, there is no
coherence between two port numbers of each communication link. The path P (v0, vk) = (v0, v1, . . . , vk) with
length k is a sequence of nodes from v0 to vk such that {vi, vi+1} ∈ L (0 ≤ i < k) and vi 6= vj if i 6= j. Note
that, for any u, v ∈ V , P (u, v) is unique in a tree. The distance from u to v, denoted by dist(u, v), is the length
of the path from u to v. The eccentricity r(u) of node u is the maximum distance from u to an arbitrary node,
i.e., r(u) = maxv∈V dist(u, v). The radius R of the network is the minimum eccentricity in the network. A node
with eccentricity R is called a center. We use the following theorem about a center later [22].

Theorem 2.1 There exist one or two center nodes in a tree. If there exist two center nodes, they are neighbors.

Next we define symmetry of trees, which is important to consider solvability in Section 4.1
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Figure 1: Non-symmetric and symmetric tree

Definition 2.1 A tree T is symmetric iff there exists a function g : V → V such that all the following conditions
hold (See Figure. 1):

• For any v ∈ V, v 6= g(v) holds.

• For any u, v ∈ V, u is adjacent to v iff g(u) is adjacent to g(v).

• For any {u, v} ∈ E and {g(u), g(v)},a port number labeled at u is equal to a port number labeled g(u).

When tree T is symmetric, we say nodes u and v in T are symmetric if u = g(v) holds.

It is well known (cf. ex.[23]) that the following lemma holds because agents cannot distinguish u and v if u
and v are symmetric.

lemma 2.1 Assume that nodes u and v are symmetric in tree T . If agents a1 and a2 start an algorithm from
u and v respectively, there exists an execution in which they act in a symmetric fashion.

Let A = {a1, a2, . . . , ak} be a set of agents. We assume that each agent does not know the number n of
nodes and the number k of agents. We consider the strong multiplicity detection model and the weak multiplicity
detection model in tree networks. In the strong multiplicity detection model, each agent can count the number of
agents at the current node. In the weak multiplicity detection model, each agent can recognize whether another
agent stays at the same node or not, but cannot count the number of agents on its current node. However,
in both models, each agent cannot detect the states of agents at the current node. Moreover, we consider the
non-token model and the removable-token model. In the non-token model, agents cannot mark the nodes or the
edges in any way. In the removable-token model, each agent initially has a token and can leave it on a node,
and agents can remove such tokens.

We assume that agents are anonymous (i.e., agents have no IDs) and execute a deterministic algorithm.
We model an agent as a finite automaton (S, δ, sinitial, sfinal). The first element S is the set of all states of
agents, which includes initial state sinitial and final state sfinal. When an agent changes its state to sfinal, the
agent terminates the algorithm. The second element δ is the state transition function. In the weak multiplicity
detection and non-token model, δ is described as δ : S × MT × EXA → S × MT . In the definition, set
MT = {⊥, 0, 1, . . . , ∆−1} represents the agent’s movement, where ∆ is the maximum degree of the tree. In the
left side of δ, the value of MT represents the port number of the current node that the agent observes in visiting
the current node (The value is ⊥ in the first activation). In the right side of δ, the value of MT represents the
port number through which the agent leaves the current node to visit the next node. If the value is ⊥, the agent
does not move and stays at the current node. in addition, EXA = {0, 1} represents whether another agent stays
at the current node or not. The value 0 represents that no other agents stay at the current node, and the value
1 represents that another agent stays at the current node.

In the strong multiplicity detection and non-token model, δ is described as δ : S × MT × N → S × MT . In
the definition, N represents the number of other agents at the current node. In the weak multiplicity detection
and removable-token model, δ is described as δ : S × MT × EXA × EXT → S × EXT × MT . In the definition,
in the left side of δ, EXT = {0, 1} represents whether a token exists at the current node or not. The value 0
of EXT represents that there does not exist a token at the current node, and the value 1 of EXT represents
that there exists a token at the current node. In the right side of δ, EXT = {0, 1} represents whether an agent
remove a token at the current node or not. If the value of EXT in the left side is 1 and the value of EXT in
the right side is 0, it means that an agent removes a token at the current node. Otherwise, it means that an
agent does not remove a token at the current node. Note that, in each model we assume that each agent is not
imposed any restriction on the memory.

In the tree network model, we assume that agents do not move instantaneously, that is, agents may exist
in links. Moreover, agents move through a link in a FIFO manner, that is, when an agent ai leaves vj after ah
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leaves vj through the same communication link as ah, then ai reaches vi’s neighboring node vi′ after ah reaches
vi′ . In addition, if ah reaches vj before ai reaches vj through the same link as ah, ah takes a step before ai

takes a step, where we explain the mean of a step later.

2.2 System configuration

If the network is a ring, (global) configuration c is defined as a product of states of agents, states of nodes
(whiteboards), and locations of agents. In initial configuration c0, we assume that no pair of agents stay at the
same node. We assume that each node vj has boolean variable vj .initial that indicates existence of agents in
the initial configuration. If there exists an agent on node vj in the initial configuration, the value of vj .initial
is true. Otherwise, the value of vj .initial is false.

If the network is a tree, in the non-token models configuration c is defined as a product of states of agents
and locations of agents. In the removable-token model, configuration c is defined as a product of states of agents,
states of nodes (tokens), and locations of agents. Moreover, in the initial configuration c0, we assume that the
node vj has a token if there exists an agent at vj , and vj does not have a token if there exists no agents at vj .
In both network models, we assume that no pair of agents stay at the same node in the initial configuration c0.

Let Ai be an arbitrary non-empty set of agents. When configuration ci changes to ci+1 by a step of every
agent in Ai, we denote the transition by ci

Ai−→ ci+1. If the network is a ring, in ci, each aj ∈ Ai reads values
written on its node’s whiteboard, executes local computation, writes values to the node’s whiteboard, and moves
to the next node or stays at the current node. If the network is a tree, each aj ∈ Ai reaches some node (if aj

exists in some link), executes local computation, leaves the node or stays at the node as one common atomic
step in each model. Concretely, in the weak multiplicity detection and non-token model, each aj ∈ Ai reaches
some node (if aj exists in some link), detects whether there exists another agent at the current node or not,
executes local computation, decides the port number, and moves to the node through the port number or stays
at the current node. In the strong multiplicity detection and non-token model, each aj ∈ Ai reaches some node
(if aj exists in some link), counts the number of agents at the current node, executes local computation, decides
the port number, and moves to the node through the port number or stays at the current node. In the weak
multiplicity detection and the removable-token model, each aj ∈ Ai reaches some node (if aj exists in some
link), detects whether there exists another agent at the current node or not, detects whether there exists a token
at the current node or not, executes local computation, decides whether the aj removes the token or not (if
any), decides the port number, and moves to the node through the port number or stays at the current node.
When aj completes this series of events, we say that aj takes one step. If the network is a ring and multiple
agents at the same node are included in Ai, the agents take steps in an arbitrary order. When Ai = A holds
for any i, all agents take steps. This model is called the synchronous model. Otherwise, the model is called the
asynchronous model.

If sequence of configurations E = c0, c1, . . . satisfies ci
Ai−→ ci+1 (i ≥ 0), E is called an execution starting

from c0. Execution E is infinite, or ends in final configuration cfinal where every agent’s state is sfinal.

2.3 Partial gathering problem

The requirement of the partial gathering problem is that, for a given input g, each agent should move to a node
and terminate so that at least g agents should meet at the node. Formally, we define the g-partial gathering
problem as follows.

Definition 2.2 Execution E solves the g-partial gathering problem when the following conditions hold:

• Execution E is finite.

• In the final configuration, for any node vj such that there exist some agents on vj, there exist at least g
agents on vj.

In addition, we have the following lower bound in the ring networks.

Theorem 2.2 The total moves required to solve the g-partial gathering problem in the ring networks is Ω(gn)
if g ≥ 2.

Proof. We consider an initial configuration such that all agents are scattered evenly. We assume n = ck
holds for some positive integer c. Let V ′ be the set of nodes where agents exist in the final configuration, and
let x = |V ′|. Since at least g agents meet at vj for any vj ∈ V ′, we have k ≥ gx.
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For each vj ∈ V ′, we define Aj as the set of agents that meet at vj and Tj as the total moves of agents in
Aj . Then, among agents in Aj , the i-th smallest number of moves to get to vj is at least (i − 1)n/k. So, we
have

Tj ≥
g∑

i=1

(i − 1) · n

k
+ (|Aj | − g) · gn

k

=
n

k
· g(g − 1)

2
+ (|Aj | − g) · gn

k

Therefore, the total moves is at least

T =
∑

vj∈V ′

Tj

≥ x · n

k
· g(g − 1)

2
+ (k − gx) · gn

k

= gn − gnx

2k
(g + 1).

Since k ≥ gx holds, we have
T ≥ n

2
(g − 1).

Thus, the total moves is at least Ω(gn).
Note that, we can also show the theorem for the case the network is tree by assuming that the network is

line.

3 Partial Gathering in Ring Networks

We propose three algorithms to solve g-partial gathering problem. The first algorithm is deterministic and
assumes unique ID of each agent. The second algorithm is randomized and assumes anonymous agents. The
last algorithm is deterministic and assumes anonymous agents.

3.1 A Deterministic Algorithm for Distinct Agents

In this section, we propose a deterministic algorithm to solve the g-partial gathering problem for distinct agents
(i.e., agents have distinct IDs). The basic idea to solve the g-partial gathering problem is that agents select a
leader and then the leader instructs other agents which node they meet at. However, since Ω(n log k) total moves
is required to elect one leader [3], this approach cannot lead to the g-partial gathering in asymptotically optimal
total moves (i.e., O(gn)). To overcome this lower bound, we select multiple agents as leaders by executing leader
agent election partially. By this behavior, our algorithm solves the g-partial gathering problem in O(gn) total
moves.

The algorithm consists of two parts. In the first part, agents execute leader agent election partially and elect
some leader agents. In the second part, the leader agents instruct the other agents which node they meet at,
and the other agents move to the node by the instruction.

3.1.1 The first part: leader election

The aim of the first part is to elect leaders that satisfy the following properties: 1) At least one agent is elected
as a leader, 2) at most bk/gc agents are elected as leaders, and 3) there exist at least g − 1 non-leader agents
between two leader agents. To attain this goal, we use a traditional leader election algorithm [24]. However, the
algorithm in [24] is executed by nodes and the goal is to elect exactly one leader. So we modify the algorithm to
be executed by agents, and then agents elect at most bk/gc leader agents by executing the algorithm partially.

During the execution of leader election, the states of agents are divided into the following three types:

• active: The agent is performing the leader agent election as a candidate of leaders.

• inactive: The agent has dropped out from the candidate of leaders.

• leader: The agent has been elected as a leader.

First, we explain the idea of leader election by assuming that the ring is synchronous and bidirectional. The
algorithm consists of several phases. In each phase, each active agent compares its own ID with IDs of its forward
and backward neighboring active agents. More concretely, each active agent writes its ID on the whiteboard
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Figure 2: An example for a g-partial gathering problem(k = 9, g = 3)

of its current node, and then moves forward and backward to observe IDs of the forward and backward active
agents. If its own ID is the smallest among the three agents, the agent remains active (as a candidate of leaders)
in the next phase. Otherwise, the agent drops out from the candidate of leaders and becomes inactive. Note
that, in each phase, neighboring active agents never remain as candidates of leaders. So, at least half active
agents become inactive and the number of inactive agents between two active agents at least doubles in each
phase. And from [24], executing j phases, there exists at least 2j − 1 inactive agents between two active agents.
Thus, after executing dlog ge phases, the following properties are satisfied: 1) At least one agent remains as a
candidate of leaders, 2) at most bk/gc agents remain as candidates of leaders, and 3) the number of inactive
agents between two active agents is at least g − 1. Therefore, all remaining active agents become leaders. Note
that, during the execution of the algorithm, the number of active agents may become one. In this case, the
active agent immediately becomes a leader.

In the following, we implement the above algorithm in asynchronous unidirectional rings. First, we apply
a traditional approach [24] to implement the above algorithm in a unidirectional ring. Let us consider the
behavior of active agent ah. In unidirectional rings, ah cannot move backward and so cannot observe the ID
of its backward active agent. Instead, ah moves forward until it observes IDs of two active agents. Then, ah

observes IDs of three successive active agents. We assume ah observes id1, id2, id3 in this order. Note that id1

is the ID of ah. Here this situation is similar to that the active agent with ID id2 observes id1 as its backward
active agent and id3 as its forward active agent in bidirectional rings. For this reason, ah behaves as if it would
be an active agent with ID id2 in bidirectional rings. That is, if id2 is the smallest among the three IDs, ah

remains active as a candidate of leaders. Otherwise, ah drops out from the candidate of leaders and becomes
inactive. After the phase, ah assigns id2 to its ID if it remains active as a candidate. For example, consider
the initial configuration in Fig. 2 (a). In the figures, the number near each agent is the ID of the agent and the
box of each node represents the whiteboard. First, each agent writes its own ID to the whiteboard on its initial
node. Next, each agent moves forward until it observes two IDs, and then the configuration is changed to the
one in Fig. 2 (b). In this configuration, each agent compares three IDs. The agent with ID 1 observes IDs (1,
8, 3), and so it drops out from the candidate because the middle ID 8 is not the smallest. The agents with IDs
3, 2, and 5 also drop out from the candidates. The agent with ID 7 observes IDs (7, 1, 8), and so it remains
active as a candidate because the middle ID 1 is the smallest. Then, it updates its ID to 1. The agents with
IDs 8, 4, and 6 also remain active as candidates and similarly update their IDs.

Next, we explain the way to treat asynchronous agents. To recognize the current phase, each agent manages
a phase number. Initially, the phase number is zero, and it is incremented when each phase is completed. Each
agent compares IDs with agents that have the same phase number. To realize this, when each agent writes its
ID to the whiteboard, it also writes its phase number. That is, at the beginning of each phase, active agent ah

writes a tuple (phase, idh) to the whiteboard on its current node, where phase is the current phase number and
idh is the ID of ah. After that, agent ah moves until it observes two IDs with the same phase number as that of
ah. Note that, some agent ah may pass another agent ai. In this case, ah waits until ai catches up with ah. We
explain the ditails later. Then, ah decides whether it remains active as a candidate or becomes inactive. If ah

remains active, it updates its own ID. Agents repeat these behaviors until they complete the dlog ge-th phase.
Pseudocode. The pseudocode to elect leader agents is given in Algorithm 1. All agents start the algorithm

with active states. The pseudocode describes the behavior of active agent ah, and vj represents the node where
agent ah currently stays. If agent ah changes its state to an inactive state or a leader state, ah immediately
moves to the next part and executes the algorithm for an inactive state or a leader state in section 3.1.2. Agent
ah uses variables ah.id1, ah.id2, and ah.id3 to store IDs of three successive active agents. Note that ah stores
its ID on ah.id1 and initially assigns its initial ID ah.id to ah.id1. Variable ah.phase stores the phase number of
ah. Each node vj has variable (vj .phase, vj .id), where an active agent writes its phase number and its ID. For
any vj , variable (vj .phase, vj .id) is (0, 0) initially. In addition, each node vj has boolean variable vj .inactive.
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Algorithm 1 The behavior of active agent ah ( vj is the current node of ah.)
Variables in Agent ah

int ah.phase;
int ah.id1,ah.id2,ah.id3;
Variables in Node vj

int vj .phase;
int vj .id;
boolean vj .inactive = false;
Main Routine of Agent ah

1: ah.phase = 1 and ah.id1 = ah.id
2: (vj .phase, vj .id) = (ah.phase, ah.id1)
3: BasicAction()
4: ah.id2 = vj .id
5: BasicAction()
6: ah.id3 = vj .id
7: if ah.id2 ≥ min(ah.id1, ah.id3) then
8: vj .inactive = true and become inactive
9: else

10: if ah.phase = dlog ge then
11: change its state to a leader state
12: else
13: ah.phase = ah.phase + 1
14: ah.id1 = ah.id2

15: end if
16: return to step 2
17: end if

This variable represents whether there exists an inactive agent on vj or not. That is, agents update the variable
to keep the following invariant: If there exists an inactive agent on vj , vj .inactive = ture holds, and otherwise
vj .inactive = false holds. Initially vj .inactive = false holds for any vj . In Algorithm 1, ah uses procedure
BasicAction(), by which agent ah moves to node vj′ satisfying vj′ .phase = ah.phase. During the movement,
ah may pass some agent ai. In this case, BasicAction() guarantees that ah waits until ai catches up with ah.

We give the pseudocode of BasicAction() in Algorithm 2. In BasicAction(), the main behavior of ah is to
move to node vj′ satisfying vj′ .phase = ah.phase. To realize this, ah skips nodes where no agent initially exists
(i.e., vj .initial = false) or an inactive agent whose phase number is not equal to ah’s phase number currently
exists (i.e., vj .inactive = true and ah.phase 6= vj .phase), and continues to move until it reaches a node where
some active agent starts the same phase (lines 2 to 4). During the execution of the algorithm, it is possible that
ah becomes the only one candidate of leaders. In this case, ah immediately becomes a leader (lines 9 to 11).

Since agents move asynchronously, agent ah may pass some active agents. To wait for such agents, agent ah

makes some additional behavior (lines 5 to 8). First, like the transition from the configuration of Fig. 3(a) to that
of Fig. 3(b), consider the case that ah passes ab with a smaller phase number. Let x = ah.phase and y = ab.phase
(y < x). In this case, ah detects the passing when it reaches a node vc such that ah.phase > vc.phase. Hence,
ah can wait for ab at vc. Since ab increments vc.phase or becomes inactive at vc, ah waits at vc until either
vc.phase = x or vc.inactive = true holds (line 6). After ab updates the value of either vc.phase or vc.inactive,
ah resumes its behavior.

Next, consider the case that ah passes ab with the same phase number. In the following, we show that
agents can treat this case without any additional procedure. Note that, because ah increments its phase
number after it collects two other IDs, this case happens only when ab is a forward active agent of ah. Let
x = ah.phase = ab.phase. Let ah, ab, ac, and ad are successive agents that start phase x. Let vh, vb, vc, and
vd are nodes where ah, ab, ac, and ad start phase x, respectively. Note that ah (resp., ab) decides whether it
becomes inactive or not at vc (resp., vd). We consider further two cases depending on the decision of ah at vc.
First, like the transition from the configuration of Fig. 4(a) to that of Fig. 4(b), consider the case ah becomes
inactive at vc. In this case, since ah does not update vc.id, ab gets ac.id at vc and moves to vd and then decides
its behavior at vd. Next, like the transition from the configuration of Fig. 5(a) to that of Fig. 5(b), consider the
case ah remains active at vc. In this case, ah increments its phase (i.e., ah.phase = x+1) and updates vc.phase
and vc.id. Note that, since ah remains active, ah.id2 = ab.id is the smallest among the three IDs. Hence, vc.id
is updated to ab.id by ah. Then, ah continues to move until it reaches vd. If ah reaches vd before ab reaches
vd, both vd.phase < ah.phase and vd.inactive = false hold at vd. Hence, ah waits until ab reaches vd. On the
other hand, when ab reaches vc, it sees vc.id = ab.id because ah has updated vc.id. Since ab.id1 = ab.id2 holds,
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Figure 3: The first example of an agent that passes other agents

Algorithm 2 Procedure BasicAction() for ah

1: move to the forward node
2: while (vj .initial = false) ∨ (vj .inactive = true ∧ ah.phase 6= vj .phase) do
3: move to the forward node
4: end while
5: if ah.phase > vj .phase then
6: wait until vj .phase = ah.phase or vj .inactive = true
7: return to step 2
8: end if
9: if (vj .phase, vj .id) = (ah.phase, ah.id1) then

10: change its state to a leader state
11: end if
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Figure 4: The second example of an agent that passes other agents

ab becomes inactive when it reaches vd. After that, ah resumes the movement.
We have the following lemma about Algorithm 1 similarly to [24].

lemma 3.1 Algorithm 1 eventually terminates, and the configuration satisfies the following properties.

• There exists at least one leader agent.

• There exist at most bk/gc leader agents.

• There exist at least g − 1 inactive agents between two leader agents.

Proof. At first, we show that Algorithm 1 eventually terminates. After executing dlog ge phases, agents that
have dropped out from the candidates of leaders are inactive states, and agents that remain active changes their
states to leader states. Moreover, by the time executing dlog ge phases, if there exists exactly one active agent
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Figure 5: The third example of an agent that passes other agents

and the other agents are inactive, the active agent changes its state to a leader state. Therefore, Algorithm 1
eventually terminates. In the following, we show the above three properties.

First, we show that there exists at least one leader agent. From Algorithm 1, in each phase, if ah.id2 is
strictly smaller than other two IDs, ah.id1 and ah.id2, ah remains active. Otherwise, ah becomes inactive. Since
each agent uses unique ID, all active agents in some phase never become inactive. Hence, if there exist at least
two active agents in some phase i, at least one agent remains acive after executing the phase i. Moreover, from
lines 9 to 11 of Algorithm 2, if there exists exactly one candidate of leaders and the other agents remain inactive,
the candidate becomes a leader. Therefore, there exists at least one leader agent.

Second, we show that there exist at most bk/gc leader agents. In each phase, if an agent ah remains as a
candidate of leaders, then its forward and backward active agents drop out from candidates of leaders. Hence,
in each phase, at least half active agents become inactive. Thus, after executing i phases, there exist at most
k/2i active agents. Therefore, after executing dlog ge phases, there exist at most bk/gc leader agents.

Finally, we show that there exist at least g − 1 inactive agents between two leader agents. At first, we show
that after executing j phases, there exist at least 2j − 1 inactive agents between two active agents. We show it
by induction. For the case j = 1, there exists at least 21 − 1 = 1 inactive agents between two active agents as
mentioned before. For the case j = k, we assume that there exist at least 2k − 1 inactive agents between two
active agents. After executing k + 1 phases, since at least one of neighboring active agents becomes inactive,
the number of inactive agents between two active agents is at least (2k − 1) + 1 + (2k − 1) = 2k+1 − 1. Hence,
we can show that after executing j phases, there exist at least 2j − 1 inactive agents between two active agents.
Therefore, after executing dlog ge phases, there exist at least g − 1 inactive agents between two leader agents.

In addition, we have the following lemma similarly to [24].

lemma 3.2 The total moves to execute Algorithm 1 is O(n log g).

Proof. In each phase, each active agent moves until it observes two IDs of active agents. This total moves
are O(n) because each communication link is passed by two agents. Since agents execute this phase dlog ge
times, we have the lemma.

3.1.2 The second part: leaders’ instruction and non-leaders’ movement

In this section, we explain the second part, i.e., an algorithm to achieve the g-partial gathering by using leaders
elected in the first part. Let leader nodes (resp., inactive nodes) be the nodes where agents become leaders
(resp., inactive agents) in the first part. The idea of the algorithm is as follows: First each leader agent ah

writes 0 to the whiteboard on the current node. Then, ah repeatedly moves and, whenever ah visits an inactive
node, ah writes 0 if the number that ah has visited inactive nodes plus one is not a multiple of g and ah writes 1
otherwise. These numbers are used to instruct inactive agents where they should move to achieve the g-partial
gathering. Note that, the number 0 means that agents do not meet at the node and the number 1 means that
at least g agents meet at the node. Agent ah continues this operation until it visits the node where 0 is already
written to the whiteboard. Note that this node is a leader node. For example, consider the configuration in
Fig. 6 (a). In this configuration, agents a1 and a2 are leader agents. First, a1 and a2 write 0 to their current
whiteboards like Fig. 6 (b), and then they move and write numbers to whiteboards until they visit the node
where 0 is written on the whiteboard. Then, the system reaches the configuration in Fig. 6 (c).
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Figure 6: The realization of partial gathering(g = 3)

Algorithm 3 Initial values needed in the second part ( vj is the current node of agent ah.)
Variable in Agent ah

int ah.count = 0;
Variable in Node vj

int vj .isGather =⊥;

Then, each non-leader agent (i.e., inactive agent) moves based on the leader’s instruction, i.e., the number
written to the whiteboard. More concretely, each inactive agent moves to the first node where 1 is written to
the whiteboard. For example, after the configuration in Fig. 6 (c), each non-leader agent moves to the node
where 1 is written to the whiteboard and the system reaches the configuration in Fig. 6 (d). After all, agents
can solve the g-partial gathering problem.

Pseudocode. In the following, we show the pseudocode of the algorithm. In this part, states of agents are
divided into the following three state

• leader: The agent instructs inactive agents where they should move.

• inactive: The agent waits for the leader’s instruction.

• moving: The agent moves to its gathering node.

In this part, agents continue to use vj .initial and vj .inactive. Remind that vj .initial = true if and only if there
exists an agent at vj initially. Algorithm 1 assures vj .inactive = true if and only if there exists an inactive
agent at vj . Note that, since each agent becomes inactive or a leader at a node such that there exists an agent
initially, agents can ignore and skip every node vj′ such that vj′ .initial = false.

At first, the variables needed to achieve the g-partial gathering are described in Algorithm 3. Variables
ah.count and vj .isGather are used so that leader agents instruct inactive agents which nodes they meet at. We
explain these variables later. The initial value of ah.count is 0 and the initial value of vj .isGather is ⊥.

The pseudocode of leader agents is described in Algorithm 4. Variable ah.count is used to count the number
of inactive nodes ah visits (The counting is done modulo g). Variable vj .isGahter is used for leader agents to
instruct inactive agents. That is, when a leader agent ah visits an inactive node vj , ah writes 1 to vj .isGather
if ah.count = 0, and ah writes 0 to vj .isGather otherwise. Note that the number 1 means that at least g agents
meet at the node and the number 0 means that agents do not meet at the node eventually. In asynchronous
rings, leader agent ah may pass agents that still execute Algorithm 1. To avoid this, ah waits until the agents
catch up with ah. More precisely, when leader agent ah visits the node vj such that vj .initial = true, it detects
that it passes such agents if vj .inactive = false and vj .isGather =⊥ hold. This is because vj .inactive = true
should hold if some agent becomes inactive at vj , and vj .isGather 6=⊥ holds if some agent becomes leader at
vj . In this case, ah waits there until either vj .inactive = true or vj .isGather 6=⊥ holds (lines 7 to 9). When
the leader agent updates vj .isGather, an inactive agent on node vj changes to a moving state (line 16). After
a leader agent reaches the next leader node, it changes to a moving agent to move to the node where at least
g agents meet (line 21). The behavior of inactive agents is given in the pseudocode of inactive agents (See
Algorithm 5).
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Algorithm 4 The behavior of leader agent ah ( vj is the current node of ah.)
1: vj .isGather = 0 and ah.count = ah.count + 1
2: move to the forward node
3: while vj .isGather =⊥ do
4: while vj .initial = false do
5: move to the forward node
6: end while
7: if (vj .inactive = false) ∧ (vj .isGather =⊥) then
8: wait until vj .inactive = true or vj .isGather 6=⊥
9: end if

10: if vj .inactive = true then
11: if ah.count = 0 then
12: vj .isGather = 1
13: else
14: vj .isGather = 0
15: end if
16: // an inactive agent at vj changes to a moving state
17: ah.count = (ah.count + 1) mod g
18: move to the forward node
19: end if
20: end while
21: change to a moving state

Algorithm 5 The behavior of inactive agent ah ( vj is the current node of ah.)
1: wait until vj .isGather 6=⊥
2: change to a moving state

Algorithm 6 The behavior of moving agent ah (vj is the current node of ah.)
1: while vj .isGather 6= 1 do
2: move to the forward node
3: if (vj .initial = true) ∧ (vj .isGather =⊥) then
4: wait until vj .isGather 6=⊥
5: end if
6: end while

The pseudocode of moving agents is described in Algorithm 6. Moving agent ah continues to move until
it visits node vj such that vj .isGather = 1. After all agents visit such nodes, agents can solve the g-partial
gathering problem. In asynchronous rings, a moving agent may pass leader agents. To avoid this, the moving
agent waits until the leader agent catches up with it. More precisely, if moving agent ah visits node vj such that
vj .initial = true and vj .isGather =⊥, ah detects that it passed a leader agent. To wait for the leader agent,
ah waits there until the value of vj .isGather is updated.

We have the following lemma about the algorithms in section 3.1.2.

lemma 3.3 After the leader agent election, agents solve the g-partial gathering problem in O(gn) total moves.

Proof. At first, we show the correctness of the proposed algorithm. From Algorithm 6, each moving agent
moves to the nearest node vj such that vj .isGather = 1. By lemma 3.1, There exist at least g−1 moving agents
between vj and vj′ such that vj .isGather = 1 and vj′ .isGather = 1. Hence, agents can solve the g-partial
gathering problem. In the following, we consider the total moves required to execute the algorithm.

First let us consider the total moves required for each leader agent to move to its next leader node. This
total number of leaders’ moves is obviously n. Next, let us consider the total moves required for each inactive
(or moving) agent to move to node vj such that vj .isGather = 1 (For example, the total moves from Fig 6 (c)
to Fig 6 (d)). Remind that there are at least g − 1 inactive agents between two leader agents and each leader
agent ah writes g − 1 times 0 consecutively and one time 1 to the whiteboard respectively. Hence, there are
at most 2g − 1 moving agents between vj and vj′ such that vj .isGather = 1 and vj′ .isGather = 1. Thus, the
number of this total moves is at most O(gn) because each link is passed by agents at most 2g times. Therefore,
we have the lemma.

From Lemmas 3.2 and 3.3, we have the following theorem.
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Figure 7: An example that some agent observes the same random IDs

Theorem 3.1 When agents have distinct IDs, our deterministic algorithm solves the g-partial gathering prob-
lem in O(gn) total moves.

3.2 A Randomized Algorithm for Anonymous Agents

In this section, we propose a randomized algorithm to solve the g-partial gathering problem for the case of
anonymous agents under the assumption that each agent knows the total number k of agent. The idea of the
algorithm is the same as that in Section 3.1. In the first part, agents execute the leader election partially and
elect multiple leader agents. In the second part, the leader agents instruct the other agents where they move.
In the previous section each agent has distinct ID, but in this section each agent is anonymous. In this section,
agents solve the g-partial gathering problem by using random IDs instead of distinct IDs. We also show that
agents solve the g-partial gathering problem in O(gn) expected total moves.

3.2.1 The first part: leader election

In this subsection, we explain a randomized algorithm to elect multiple leaders by using random IDs. The
state of each agent is either active, inactive, leader, or semi-leader. Active, inactive, and leader agents behave
similarly to Section 3.1.1, and we explain a semi-leader state later.

In the beginning of each phase, each active agent selects a random bits of O(log k) length as its own ID in
the phase. After this, each agent executes the same way as Section 3.1.1, that is, each active agent moves until it
observes two random IDs of active agents and compare three random IDs. If there exist no agents that observe
the same random IDs, then, agents can execute the leader agent election similarly to Section 3.1.1. In this case,
the total moves to execute the leader agent election are O(n log g). In the following, we explain the treatment
for the case neighboring active agents have the same random IDs. Note that in this section, we assume that an
agent becomes a leader at the node vj , the agent set a leader-flag at vj . We explain the treatment about a
leader-flag later.

Let ah.id1, ah.id2, and ah.id3 be random IDs that an active agent ah observes in some phase. If ah.id1 =
ah.id3 6= ah.id2 holds, then ah behaves similarly to Section 3.1.1, that is, if ah.id2 < ah.id1 = ah.id3 holds, then
ah remains active and ah becomes inactive otherwise. For example, let us configuration like Fig. 7 (a). Each
active agent moves until it observes two random IDs like Fig. 7 (b). Then, agent a1 observes three random IDs
(2,1,2) and remains active because a1.id2 < a1.id1 = a1.id3 satisfies. On the other hand, agent a2 observes
three random IDs (3,4,3) and becomes inactive because a2.id2 > a2.id1 = a2.id3 holds. The other agents do not
observe the same random IDs and behave similarly to Section 3.1.1, that is, if their middle IDs are the smallest,
they remain active and execute the next phase. If their middle IDs are not the smallest, they become inactive.

Next, we consider the case that ah.id1 < ah.id2 = ah.id3 or ah.id1 = ah.id2 = ah, id3 hold. In this case, ah

changes its own state to a semi-leader state. A semi-leader is an agent that has the possibility to become a leader
if there exist no leader agents in the ring. The idea of behavior of each semi-leader agent is as follows: First
each semi-leader moves around the ring, setting a flag at each node where there exists an agent in the initial
configuration. After moving around the ring, if there exist some leader agents in the ring, each semi-leader
becomes inactive. Otherwise, multiple leaders are elected among semi-leaders and the other agents become
inactive. More concretely, when an active agent becomes a semi-leader, the semi-leader ah sets a semi-leader-
flag on its current whiteboard. This flag is used to share the same information among semi-leaders. In the
following, we define a semi-leader node (resp., a non-semi-leader node) as the node that is set (resp., not set)
a semi-leader-flag. After setting a semi-leader-flag, ah moves around in the ring. While moving, when ah visits
a non-semi-Leder node vj where there exists an agent in the initial configuration, that is, a non-semi-leader
node vj such that vj .initial = true holds, ah sets the tour-flag on its current whiteboard. This flag is used
so that each agent of any state can detect there exists a semi-leader in the ring. Moreover, when ah visits a
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Figure 8: The behavior of semi-leaders

semi-leader node, ah memorizes a pair of a random ID written to the current whiteboard and the number of
tour-flag between two neighboring semi-leader nodes to an array ah.semi-leadersInfo. This pair is used to
decide if a semi-leader ah becomes a leader or inactive after moving around the ring. We define pairh

i as a pair
that ah memorized for the i-th time.

After moving around the ring, ah decides if it becomes a leader or inactive. While moving around the ring,
if ah observes a leader-flag, this means that there exist some leader agents in the ring, In this case, ah becomes
inactive. Otherwise, ah decides if it becomes a leader or inactive by the value of ah.semi-leadersInfo. Let
ah.semi-leadersInfo = (pairh

1 , pairh
2 , . . . , pairh

t ), where t implies the number of semi-leaders. Then, we define
infomin as the lexicographically minimum array among {ah.semi-leadersInfo|ah is a semi-leader }. For array
info = (pair1, pair, . . . , pairt), we define shift(info, x) = (pairx, pair1+x, . . . , pairt, pair1 , . . . , pairx−1). If
info = shift(info, x) holds for some x such that 0 < x < t, we say info is periodic. If info is periodic,
we define the period of info as period = min{x > 0|info = shift(info, x)}. If ah.semi-leadersInfo is not
periodic, there exists exactly one semi-leader ah′ that ah′ .semi-leadersInfo = infomin. Then, ah becomes a
leader and the other semi-leaders become inactive. For example, consider the configuration in Fig. 8(a). For
simplicity, we omit nodes with no semi-leaders. Each number in the whiteboard represents a random ID, and
each number near the link represents the numbers of tour-flags between two leader-flag. The semi-Leadedr
a1 moves around the ring and obtains a1.semi-leadersInfo = ((3, 1), (3, 2), (4, 1), (4, 2), (5, 1), (5, 2)). Since
a1.semi-leadersInfo = infomin holds, a1 becomes a leader. On the other hand, each semi-leader ai (i 6= 1)
becomes inactive because ai.semi-leadersInfo 6= infomin holds.

If ah.semi-leadersInfo is periodic, there exist several semi-leaders ah that ah.semi-leadersInfo = infomin

holds, and we define Asemi as the set of such agents. In this case, each semi-leader ai that semi-leadersInfoi 6=
infomin holds becomes inactive, and each semi-leader ah ∈ Asemi decides if ah becomes a leader or not by the
number of agents in Asemi. If |Asemi| ≤ bk/gc holds, ah becomes a leader (the other agents become inactive).
If |Asemi| > bk/gc holds, then ah selects a random ID again, writes the value to the current whiteboard, moves
around the ring. Then, ah obtains new value of ah.semi-leadersInfo. Each semi-leader ah continues such
a behavior until thre exist at most bk/gc semi-leader agents ah that ah.semi-leadersInfo = infomin holds.
For example, let us consider the condiguration like Fig. 8(b). In this figure, k = 15 holds. Agents a1, a3,
and a5 obtain semi-leadersInfo = ((3, 1), (3, 2), (3, 1), (3, 2), (3, 1), (3, 2)). On the other hand, a2, a4, and a6

obtain semi-leadersInfo = ((3, 2), (3, 1), (3, 2), (3, 1), (3, 2), (3, 1)). In this case, a2, a4, and a6 do not satisfy
the condition and drop out from candidates. Then, |Asemi| = 3 holds and there exist four other agents between
a1, a3, and a5. If g = 5, then |Asemi| ≤ bk/gc = 3 holds, and a1, a3, and a5 become leaders. If g = 6, then
a1, a3, and a5 select a random ID again, write the value to the current whiteboard, and move around the ring
respectively. After this, we assume that configuration is transmitted to Fig. 8(c) Then, a1 becomes a leader
since its random ID is the smallest, On the other hand, a3 and a5 become inactive.

Pseudocode. The pseudocode of active agents is described in Algorithm 7. An active agent ah stores its phase
number in variable ah.phase. Agent ah uses the procedure random(l) to get its own random ID. This procedure
returns the random bits of l length. Agent ah uses variables ah.id1, ah.id2, and ah.id3 to store random IDs of
three successive active agents. Note that ah stores its own random ID on ah.id1. Each node vj has variable
vj .phase and vj .id, where an active agent writes its phase number and its random ID. For any vj , initial values
of these valiable are 0. In addition, vj has boolean variable tour-flag and leader-flag. The inital values of
these variable are false. Moreover, ah use a valiable ah.tLeaderObserve, which represents whether ah observes
a tour-flag or not. If ah observes a tour-flag, it means that there exists a semi-leader in the ring. The initial
value of ah.tLeaderObserve is false.

In each phase, each active agent decides its own random ID of 3 log k bits length through random(l), and ah

moves until it observes two random IDs by BasicAction() in Algorithm 2, and If each active agent ah neither
observes a tour-flag nor observes random IDs that ah.id1 < ah.id2 = ah.id3 or ah.id1 = ah.id2 = ah.id3 hold,
this pseudocode works similarly to Algorithm 3.1.1, and when an agent becomes a leader, the agent set a leader-
flag at vj . If an active agent ah observes a tour-flag, then ah moves until it observes two random IDs of active
agents and becomes inactive. If an active agent ah observes three random IDs that ah.id1 > ah.id2 = ah.id3 or
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Algorithm 7 The behavior of active agent ah ( vj is the current node of ah)
Variables in Agent ah

int ah.phase;
int ah.id1,ah.id2,ah.id3;
boolean ah.semiObserve = false
Variables in Node vj

int vj .phase;
int vj .id;
boolean vj .inactive = false;
boolean tour-flag = false;
boolean leader-flag = false;
Main Routine of Agent ah

1: ah.phase = 1
2: ah.id1 = random(3 log k)
3: vj .phase = ah.phase
4: vj .id = ah.id1

5: BasicAction()
6: if vj .tour = true then
7: ah.semiObserve = true
8: end if
9: ah.id2 = vj .id

10: BasicAction()
11: if vj .tour = true then
12: ah.semiObserve = true
13: end if
14: ah.id3 = vj .id
15: if ah.semiObserve = true then
16: change its state to an inactive state
17: end if
18: if (ah.id1 > ah.id2 = ah.id3) ∨ (ah.id1 = ah.id2 = ah.id3) then
19: change its state to a semi-leader
20: end if
21: if ah.id2 ≥ min(ah.id1, ah.id3) then
22: vj .inactive = true and become inactive
23: else
24: if ah.phase = dlog ge then
25: leader-flag = true
26: change its state to a leader state
27: else
28: ah.phase = ah.phase + 1
29: end if
30: return to step 2
31: end if

ah.id1 = ah.id2 = ah.id3, then ah changes its own state to a semi-leader state.
Algorithm 8 represents variable required for the behavior of semi-leader agents. The behavior of semi-

leaders until they move around the ring is dedcribed in Algorithm 9, and The behavior of tmeleaderes after they
move around the ring is described in Algorithm 10. Each semi-leader agent ah uses variable ah.agentCount to
detect if ah moves around the ring or not. ah uses variable Ntour to count the number of tour-flag between
two neighboring semi-leaders. ah stores its phase number in the semi-leader state to variable ah.semiPhase,
and vj stores the phase number to variable vj .semiPhase. These variables are used for the case that there
exist a lot of semi-leaders ah such that ah.semi-leadersInfo = infomin holds. In addition, ah use variable
ah.leaderObserve to detect if there exists a leader agent in the ring or not. The initial value of ah.leaderObserve
is false. Moreover, each node vj has variable leader-flag, semi-leader-frag, and tour-flag. Before each semi-
leader ah begins moving in the ring, if tour-flag is set at vj , ah becomes inactive. This is because, otherwise,
each semi-leader cannot share the same semi-leadersInfo.

After each semi-leader moves around the ring, let Asemi be a set of semi-leaders ah that ah.semi-leadersInfo =
infomin holds. If |Asemi| > bk/gc holds, then there exist less than g − 1 agent between two agents in Asemi.
In this case, each semi-leader ah ∈ Asemi updates its phase and random ID again, and moves around the ring.
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Algorithm 8 Values required for the behavior of semi-leader agent ah (vj is the current node of ah)
Variables in Agent ah

int ah.semiPhase;
int ah.agentCount;
int ah.Ntour;
int ah.x;
array ah.semi-leadersInfo[ ];
array infomin[ ];
boolean ah.leaderObserve = false
Variables in Node vj

int vj , semiPhase;
int vj .id;
boolean leader-flag;
boolean semi-leader-flag;
boolean tour-flag;

Then, ah obtains new value of ah.semi-leadersInfo. Each semi-leader ah continues such a behavior until thre
exist at most bk/gc semi-leader agents ah that ah.semi-leadersInfo = infomin holds.

We have the following lemma about Algorithm 7.

Algorithm 9 The first half behavior of semi-leader agent ah (vj is the current node of ah)
1: if tour-frag = true then
2: change its state to an inactive state
3: end if
4: semi-leader-flag = true
5: ah.semiPhase = 1
6: vj .semiPhase = ah.semiPhase
7: ah.x = 0
8: while ah.agentCount 6= k do
9: move to the forward node

10: while vj .initial = false do
11: move to the forward node
12: end while
13: ah.agentCount = ah.agentCount + 1
14: if leader-frag = true then
15: ah.leaderObserve = true
16: end if
17: if semi-leader-flag = true then
18: if ah.semiPhase 6= vj .semiPhase then
19: wait until ah.semiPhase = vj .semiPhase
20: end if
21: ah.semi-leadersInfo[ah.x] = (vj .id, ah.Ntour)
22: ah.Ntour = 0
23: ah.x = ah.x + 1
24: end if
25: if vj .tour = false then
26: vj .tour = ture
27: end if
28: ah.Ntour = ah.Ntour + 1
29: end while

lemma 3.4 Algorithm 7 eventually terminates, and the configuration satisfies the following properties.

• There exists at least one leader agent.

• There exist at most bk/gc leader agents.

• There exist at least g − 1 inactive agents between two leader agents.
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Algorithm 10 The behavior of semi-leader agent ah (vj is the current node of ah)
1: if ah.leaderObserve = true then
2: change its state to an inactive state
3: end if
4: let infomin be a lexicographically minimum sequence among

{shift(ah.semi-leaderInfo[ ],x)|0 ≤ x ≤ ah.x − 1}.
5: if ah.semi-leadersInfo 6= infomin then
6: change its state to an ianctive state
7: end if
8: let Asemi be the number of semi-leader agents ah that ah.semi-leadersInfoh = infomin holds
9: if |Asemi| ≤ bk/gc then

10: change its state to a leader state
11: else
12: ah.semiPhase = ah.semiPhase + 1
13: ah.agentCount = 0
14: vj .ID = random(3 log k)
15: return to step 6
16: end if

Proof. The above properties are the same to Lemma 1. Thus, if there exist no agents that become semi-
leaders during the algorithm, each agent behaves similarly to Section 3.1.1 and above properties are satisfied.
In the following, we consider the case that at least one agent becomes a semi-leader .

First, we show that there exists at least one leader agent and there exist at most bk/gc leader agents.
From line 1 to 3 in Algorithm 10, if there exists a leader agent in the ring, each semi-leader becomes inactive.
Otherwise, from line 5 to 16, multiple leaders are elected among Asemi. If |Asemi| > bk/gc holds, then each
semi-leader ah ∈ Asemi continues Algorithm 10 until |Asemi| ≤ bk/gc holds. Since there exists at least one
agent in Asemi and it does not happen that all agents in Asemi become inactive, there exist one to bk/gc leader
agents.

Next, we show that there exist at least g − 1 inactive agents between two leaders. As mentioned above,
there are at most bk/gc leader agents. If there are at least two leaders, the numbers of inactive agents between
two leaders are the same because ah.semi-leadersInfo is periodic. When there are at most bk/gc leaders, the
number between two leaders is at least (k − bk/gc) ÷ (bk/gc) ≥ g − 1. Thus, there exist at least g − 1 inactive
agents between two leaders.

Therefore, we have the lemma.

lemma 3.5 The expected total moves to execute Algorithm 7 are O(n log g).

Proof. If there do not exist neighboring active agents that have the same random IDs, Algorithms 7 works
similarly to Section 3.1.1, and the total moves are O(n log k). In the following, we consider the case that
neighboring active agents have the same random IDs.

Let l be the length of a random ID. Then, the probability that two active neighboring active agents have the
same random ID is ( 1

2 )l. Thus, when there exist ki acitve agents in the i-th phase, the probability that there exist
neighboring active agents that have the same random IDs is at most ki × ( 1

2 )l. Since at least half active agents
drop from candidates in each phase, after executing dlog ge phases, the probability that there exist neighboring
active agents that have the same random IDs is at most k × ( 1

2 )l + k
2 × ( 1

2 )l + · · ·+ k
2dlog ge−1 × ( 1

2 )l < 2k × ( 1
2 )l.

Since l = 3 log k holds, the probability is at most 2
k2 < 1

k . Moreover in this case, at most k agents become
semi-leaders and move around the ring. Then, each semi-leader ah obtains ah.semi-leadersInfo. If there exist
at most bk/gc semi-leader agents ah that ah.semi-leadersInfo = infomin, then agents finish the leader agent
election and the total moves are at most O(kn). On the other hand, the probability that there exist more
than bk/gc semi-leader agents ah that ah.semi-leadersInfo = infomin is at most 1

k × ( 1
2 )(bk/gc+1)×l. In this

case, each semi-leader ah updates its phase and random ID again, moves around the ring, and obtains new
value of ah.semi-leadersInfo. Each semi-leader ah continues such a behavior until thre exist at most bk/gc
semi-leader agents ah that ah.semi-leadersInfo = infomin holds. We assume that t = (bk/gc + 1) × l and
semi-leaders finish the leader agent election after they move around the ring for the s-th times. The probability
that semi-leaders move around the ring s times is at most 1

k × ( 1
2 )st and clearly 1

k × ( 1
2 )st < 1

ks holds. Moreover
in this case, the total moves are at most O(skn).

Therefore, we have the lemma.
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3.2.2 The second part: leaders’ instruction and non-leaders’ movement

After executing the leader agent election in Section 3.2.1, the conditions shown by Lemma 3.4 is satisfied, that
is, 1) At least one agent is elected as a leader, 2) at most bk/gc agents are elected as leaders, and 3) there exist
at least g − 1 inactive agents between two leader agents. Thus, we can execute the algorithms in Section 3.1.2
after the algorithms in Section 3.2.1. Therefore, agents can solve the g-partial gathering problem.

From Lemmas 3.4 and 3.3, we have the following theorem.

Theorem 3.2 When agents have no IDs, our randomized algorithm solves the g-partial gathering problem in
expected O(gn) total moves.

3.3 Deterministic Algorithm for Anonymous Agents

In this section, we consider a deterministic algorithm to solve the g-partial gathering problem for anonymous
agents. At first, we show that there exist unsolvable initial configurations in this model. Later, we propose a
deterministic algorithm that solves the g-partial gathering problem in O(kn) total moves for any solvable initial
configuration.

3.3.1 Existence of Unsolvable Initial Configurations

To explain unsolvable initial configurations, we define distance sequence of a configuration. For configura-
tion c, we define distance sequence of agent ah as Dh(c) = (dh

0 (c), . . . , dh
k−1(c)), where dh

i (c) is the dis-
tance between the i-th forward agent of ah and the (i + 1)-th forward agent of ah in c. Then, we define
distance sequence of configuration c as the lexicographically minimum sequence among {Dh(c)|ah ∈ A}.
We denote distance sequence of configuration c by D(c). For sequence D = (d0, d1, . . . , dk−1), we define
shift(D,x) = (dx, d1+x, . . . , dk−1, d0, d1, . . . , dx−1). If D = shift(D,x) holds for some x such that 0 < x < k,
we say D is periodic. If D is periodic, we define the period of D as period = min{x > 0|D = shift(D,x)}.

Theorem 3.3 Let c0 be an initial configuration. If D(c0) is periodic and period is less than g, the g-partial
gathering is not solvable.

Proof. Let m = k/period. Let Aj (0 ≤ j ≤ period − 1) be a set of agents ah such that Dh(c0) =
shift(D(c0), j) holds. Then, when all agents move in the synchronous manner, all agents in Aj continue to do
the same behavior and thus they cannot break the periodicity of the initial configuration. Since the number of
agents in Aj is m and no two agents in Aj stay at the same node, there exist m nodes where agents stay in the
final configuration. However, since k/m = period < g holds, it is impossible that at least g agents meet at the
m nodes. Therefore, the g-partial gathering problem is not solvable.

3.3.2 Proposed Algorithm

In this section, for solvable initial configurations, we propose a deterministic algorithm to solve the g-partial
gathering problem in O(kn) total moves. Let D = D(c0) be the distance sequence of initial configuration c0

and period = min{x > 0|D = shift(D,x)}. From Theorem 3.3, the g-partial gathering problem is not solvable
if period < g. On the other hand, our proposed algorithm solves the g-partial gathering problem if period ≥ g
holds. In this section, we assume that each agent knows the number of agents k.

The idea of the algorithm is as follows: First each agent ah moves around the ring and obtains the distance
sequence Dh(c0). After that, ah computes D and period. If period < g holds, ah terminates the algorithm
because the g-partial gathering problem is not solvable. Otherwise, agent ah identifies nodes such that agents in
{a`|D = D`(c0)} initially exist. Then, ah moves to the nearest node among them. Clearly period(≥ g) agents
meet at the node, and the algorithm solves the g-partial gathering problem.

Pseudocode. The pseudocode is described in Algorithm 11. The pseudocode describes the behavior of agent
ah, and vj represents the node where agent ah currently stays. Agent ah uses a variable ah.total to count the
number of agent nodes (i.e., nodes vj with vj .initial = true). If ah.total = k holds, agent ah knows it moves
around a ring. While agent ah moves around a ring once, it obtains its distance sequence by variable ah.D.
After that ah computes the distance sequence Dmin = D(c0) and period. Then, it determines whether the
g-partial gathering is solvable or not. If it is solvable, ah moves to the node to meet other agents.

We have the following theorem about Algorithm 11.

Theorem 3.4 If the initial configuration is solvable, our algorithm solves the g-partial gathering problem in
O(kn) total moves.
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Algorithm 11 The behavior of active agent ah (vj is the current node of ah.)
Variables in Agent ah

int ah.total;
int ah.dis;
int ah.x;
array ah.D[ ];
array Dmin[ ];
Main Routine of Agent ah

1: while ah.total 6= k do
2: move to the forward node
3: while vj .initial = false do
4: move to the forward node
5: ah.dis = ah.dis + 1
6: end while
7: ah.D[ah.total] = ah.dis
8: ah.total = ah.total + 1
9: ah.dis = 0

10: end while
11: let Dmin be a lexicographically minimum sequence among {shift(ah.D, x)|0 ≤ x ≤ k − 1}.
12: period = min{x > 0|shift(Dmin, x) = Dmin}
13: if (g > period) then
14: terminate the algorithm
15: // the g-partial gathering problem is not solvable
16: end if
17: ah.x = min{x ≤ 0|shift(ah.D, x) = Dmin}
18: move to the forward node

∑ah.x′−1
i=0 ah.D[i] times

Proof. At first, we show the correctness of the algorithm. Each agent ah moves around the ring, and
computes the distance sequence Dmin and its period. If period < g holds, the g-partial gathering problem is
not solvable from Theorem 3.3 and ah terminates the algorithm. In the following, we consider the case that
period ≥ g holds. From line 18 in Algorithm 11, each agent moves to the forward node

∑ah.x−1
i=0 ah.D[i] times.

By this behavior, each agent ah moves to the nearest node such that agent a` with a`.D = D(c0) initially exists.
Since period(≥ g) agents move to the node, the algorithm solves the g-partial gathering problem.

Next, we analyze the total moves required to solve the g-partial gathering problem. In Algorithm 11, all
agents move around the ring. This requires O(kn) total number of moves. After this, each agent moves at most
n times to meet other agents. This requires O(kn) total moves. Therefore, agents solve the g-partial gathering
problem in O(kn) total moves.

4 Partial Gathring in Tree Networks

We consider three model variants. The first is the weak multiplicity and non-token model. The second is the
strong multiplicity and non-token model. The third is the weak multiplicity and removable-token model.

4.1 Weak Multiplicity Detection and Non-Token Model

In this section, we consider the g-partial gathering problem for the weak multiplicity detection and non-token
model. We have the following theorem.

Theorem 4.1 In the weak multiplicity detection and non-token model, there exist no universal algorithms to
solve the g-parital gathering problem if g ≥ 5 holds.

Proof. We show the theorem for the case that g is an odd number (we can also show the theorem for the
case that g is an even number). We assume that the tree network is symmetric. In addition, we assume that
3g − 1 agents are placed symmetrically in the initial configuration c0, that is, if there exists an agent at a node
v, there also exists an agent at the node v′, where v and v′ are symmetric. Later, we assume that each pair of
nodes v1 and v1′ , v2 and v2′ ,. . . is symmetric. Note that, since 2g ≤ k ≤ 3g − 1 holds, agents are allowed to
meet at one or two nodes. In the proof, we consider a waiting state of agents as follows. When an agent a is in
the waiting state at node v, a never leaves v before the configuration for a changes. Concretely, there are two
cases. The first case is that when a visits the node v and enters a waiting state at v, there exist no other agents
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at v. In this case, a does not leave v before another agent visits v and stay there. The second case is that when
a visits v and enters a waiting state at v, there exists another waiting agent b at v. In this case, a does not leave
v before b leaves v. In any algorithm, it is necessary that each agent enters a waiting state. In there exists some
agent a that does not enter a waiting state, a moves in the tree network forever or terminates the algorithm at
some node. If there exists an agent that does not enter a waiting state and terminates the algorithm at some
node v, there also exists an agent that does not enter a waiting state and terminates the algorithm at the node
v′, where v and v′ are symmetric. In addition, at least g agents must meet at v and v′ respectively. However, if
the location of agents in the initial configuration is not symmetric, it may happen that less than g agents meet
at v or v′ and agents do not the satisfy the condition of the g-partial gathering problem.

We consider the execution Et that each agent moves symmetrically and when some agent a enters in a
waiting state at a node v, a does not leave v even if another agent enters a waiting state at v. Each agent
continues such a behavior until all agents enter in a waiting states, and we define ct as the configuration that
all agents’ states are waiting states from c0. In ct, since agents are initially placed symmetrically and move
symmetrically, if there exist l waiting agents at the node vj , there also exist l waiting at the node vj′ . Let
v1, v2, . . . , vt (v1′ , v2′ , . . . vt′) be nodes where at least one agent exists in ct. In addition, let Nl be the number of
waiting agents at vl in ct. Note that, N1 + N2 + · · ·+ Nt = k/2 holds and we assume that N1 ≥ N2 ≥ · · · ≥ Nt

holds. Moreover, we assume that agents aj
1, a

j
2, . . . , a

j
Nj

enter waiting states at vj in this order. Then, we have
the following two lemmas.

lemma 4.1 At some node vj with exactly one waiting agent aj
1, aj

1 never leaves vj before another agent enters
a waiting state at vj.

Proof. When aj
1 enters a waiting state at vj , there exist no other waiting agents at vj . Thus, the configuration

for aj
1 does not change unless another agent enters a waiting state at vj .

lemma 4.2 At some node vj with at least three waiting agents, at least two agents never leave vj by the end of
the algorithm.

Proof. We assume that agents aj
1, a

j
2, a

j
3 enter waiting states at vj in this order. Since aj

1 is the first agent
that enters a waiting state at vj , when aj

2 enters a waiting state at vj , the configuration for aj
1 changes, and

aj
1 can leave vj . However, since we consider the weak multiplicity detection model, even if aj

1 leaves vj , the
configurations for aj

2 and aj
3 do not change. Thus, agents aj

2 and aj
3 never leave vj .

There are eight patterns to assign values to N1, N2, . . . , Nt (N1′ , N2′ , . . . , Nt′). In the following, we show
that agents cannot solve the g-partial gathering problem in any pattern.

〈pattern 1: for the case that N2 ≥ 3 holds〉
In this case, there exist at least three waiting agents at v1, v2, v1′ and v2′ respectively. Hence, from Lemma 4.2,
there exist at least four nodes with agents that never leave the current nodes. However, since k = 3g − 1 holds,
agents are allowed to meet at one or two nodes. This implies that agents cannot solve the g-partial gathering
problem.

〈pattern 2: for the case that N1 = N2 = · · · = Nt = 1 holds〉
In this case, there exist no nodes with more than one agent. Hence from Lemma 4.1, the configuration of each
agent does not change and each agent never leaves the current node. This implies that agents cannot solve the
g-partial gathering problem.

Before considering the pattern 3, we introduce the notion of elimination. Let c′0 be the initial configuration
that there do not exist agents aj

i (i 6= 1), and the other elements (the topology and the location of agents) are
the same to c0. Then, we say that agents aj

i are eliminated from c0. Note that, since k = 3g − 1 and 2g ≤ k
holds, at most g − 1 agents can be eliminated. Moreover, we consider the execution E′

t similarly to Et, that is,
each agents moves symmetrically and when an agent a enters a waiting state at the node v, a never leaves v
until all agents enter waiting states. We define c′t as the configuration that all agents’ states are waiting states
form c′0. Then, we have the following lemma.

lemma 4.3 The location of agents in c′t is equal to the location of agents in ct except for agents aj
i .

Proof. The proof consists of two parts. The first part is before one aj
i enters a waiting state and the second

part is after aj
i enters a waiting state.

Before aj
i enters a waiting state, aj

i moves in the tree network. Hence, it does not happen that the other
agents observe aj

i because agents detect the existence of another agent only at nodes. Therefore, even if aj
i is

eliminated, the other agents behave similarly to Et.
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Figure 9: An example of the pattern 3

When aj
i enters a waiting state at vj , there already exist a waiting agent aj

1. Since we consider the weak
multiplicity detection model, when another agent aj

k (k > i) visits the node vj , the configuration for aj
k at vj

with agents aj
1 and aj

i is equal to the configuration at vj with an agent aj
1. Thus, even if aj

i is eliminated in c′0,
aj

k also enters a waiting state at vj in c′t.
Therefore, we have the lemma.
we use these lemmas to show the unsolvability of the remaining patterns.

〈pattern 3: for the case that N1 ≥ 3 and N2 = 2 hold〉
In this case, there exist waiting agents a1

1, a
1
2, and a1

3 (a1′

1 , a1′

2 , and a1′

3 ) at v1 (v1′), and a1
2 and a1

3 (a1′

2 and a1′

3 )
never leave v1 (v1′) by Lemma 4.2. Since k = 3g − 1 holds and agents are allowed to meet at one or two node,
all agents must meet at v1 or v1′ .

Now let us consider the configuration c′0 that agents a2
2 and a2′

2 are eliminated. Then from Lemma 4.3, there
exists an execution E′

t from c′0 to c′t, where there exists exactly one waiting agent a2
1 (a2′

1 ) at v2 (v2′) in c′t. An
example is represented in Fig. 9 (a). In the figure, we assume that agents a2

2 and a2′

2 of the dotted lines are
eliminated. In addition, the gray agents a1

2, a
1
3, a

1′

2 , a1′

2 mean that they never leave the current nodes by the end
of the algorithm. From Lemma 4.1, agents need to make the configuration c′u that another agent a (a′) enters a
waiting state at v2 (v2′), and call such an execution E′

u. In the figure, we assume that agents a1
1 and a1′

1 move
symmetrically and enter waiting states at v3 and v3′ respectively (Fig. 9 (b)), and after this, agents a3

1 and a3′

1

move symmetrically (Fig. 9 (c)) and enter waiting states at v2 and v2′ respectively (Fig. 9 (d)).
Now, let us consider the configuration ct. In ct, their exist two waiting agents a2

1 and a2
2 (a2′

1 and a2′

2 ) at
v2 (v2′). In addition, since a2

1 (a2′

1 ) is the first agent that enters a waiting state at v2 (v2′), a2
1 (a2′

1 ) can leave
v2 (v2′). However since agents move asynchronously, there exists an execution similarly to E′

u, that is, agents
a2
1 (a2′

2 ) does not leave v2 (v2′) until another agent a (a′) enters a waiting state at v2 (v2′). Then, there exist
three waiting agents a2

1, a
2
2 and a (a2′

1 , a2′

2 and a′) at v2 (v2′) like Fig. 9. From Lemma 4.2, agents a2
2 and a (a2′

2

and a′) never leave v2 (v2′). This means that there exist at least four nodes with agents that never leave at the
current nodes and agents cannot solve the g-partial gathering problem.

From the pattern 4 to pattern 6, we consider cases that exist at least three waiting agents at v1 and v1′ , and
there exists at most one waiting agent at the other nodes.

〈pattern 4: for the case that 3 ≤ N1 ≤ (g + 1)/2, and N2 = 1 hold〉
In this case, there exist several waiting agents at v1 and v1′ , and there exist at most one waiting agents at the
other nodes. Let us the consider the configuration c′0 that agents a1

2, . . . , a
1
N1

, a1′

2 , . . . , a1′

N1′
are eliminated. Note

that, the number of eliminated agents a1
2, . . . , a

1
N1

, a1′

2 , . . . , a1′

N1′
is 2N1 − 2 ≤ g − 1 since N1 ≤ (g + 1)/2 holds.

Then from Lemma 4.3, there exist an execution E′
t from c′0 to c′t, where at most one waiting agent at each node

in c′t. This configuration is similarly to the pattern 2 and agents cannot solve the g-partial gathering problem.

〈pattern 5: for the case that (g + 3)/2 ≤ N1 ≤ g, and N2 = 1 hold〉
In this case, let us the consider the initial configuration c′0 that agents a1

2, . . . , a
1
N1

are eliminated like Fig. 10
(a). Note that, the number of eliminated agents a1

2 . . . , a1
N1

are N1 − 1 ≤ g − 1 since N1 ≤ g holds. Then from
lemma 4.3, there exist an execution E′

t from c′0 to c′t, where there exist N1′ waiting agents at v1′ and there exist
at most one waiting agent at the other nodes in c′t. In this configuration, firstly agent a1′

1 needs to leave v1′

and enter a waiting state at another node vj′ . In addition, agents need to make the configuration c′u that some
agent a′ enters a waiting state at vj , and we define E′

u as an execution from c′t to c′u. In the figure, we assume
that an agent a1′

1 moves and enters a waiting state at v3′ (Fig. 10 (b)), and after this, an agent a3′

1 moves and
enters a waiting state at v3 (Fig. 10 (c)).
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Figure 10: An example of the pattern 5

Now let us consider c0 like Fig. 10 (d) and we assume that a1
1 and a1′

1 behave symmetrically until they enter
waiting states at vj and vj′ respectively. Then, the configurations for aj

1 and aj′

1 change and they can leave vj

and vj′ respectively. However, there exist an execution similarly to E′
u, that is, agent aj

1 does not leave the node
vj , agent aj′

1 leaves vj′ , and some agent a′ enters a waiting state at vj Then, there exist three waiting agent
aj
1, a

1
1, and a′ at vj . From Lemma 4.2, agents a1

1 and a′ never leave vj . In the figure, agents a1
1 and a1′

1 move
and enter waiting states at v3 and v3′ respectively (Fig. 10 (e)), and after this, an agent a3′

1 moves and enters
a waiting state at v3 (Fig. 10 (f)). Then in Fig. 10 (g), agents a3

1, a
1
1, and a3′

1 are in the waiting states. Note
that, agents a1

2, a
1
3 (a1′

2 , a1′

3 ) also never leave v1 (v1′). This means there exist at least three nodes with agent
that never leave the current nodes and agents cannot solve the g-partial gathering problem.

〈pattern 6: for the case that 3 ≤ N1 ≤ g − 1, and N2 = 1 hold〉
In this case, there exist an execution Et that agents moves symmetrically from c0 to ct and (3g − 1)/2 agents
meet at v1 and v1′ respectively.

Now let us consider the initial configuration c′0 that agents a1
3, . . . , a

1
3+(g−1)/2 are eliminated. Then, there

exist an execution similarly to Et, that is, agents moves symmetrically and each agent meets at v1 or v1′ .
However, (g + 1)/2 agents a1

3, . . . , a3+(g−1)/2 are eliminated, the number of agents that meet at a1 is (3g −
1)/2 − (g + 1)/2 = g − 1. This does not satisfy the condition of the g-partial gathering problem.

In the pattern 7 and 8, we consider the case that there exist at most two waiting agents at each node.

〈pattern 7: for the case that N1 = N2 = 2 and N3 = 1 holds〉
In this case, there are two agents at v1, v2, v1′ , and v2′ , and there exist at most one agent at the other nodes.
Now, let us consider the initial configuration c′0 that agents a1

2, a
2
2, a

1′

2 , and a2′

2 are eliminated. Then from
Lemma 4.3, there exist an execution E′

t from c′0 to c′t, where there exist at most one waiting agent at each node
in c′t. This configuration is similarly to the pattern 2 and agents cannot solve the g-partial gathering problem.

〈pattern 8: for the case that N1 = N2 = N3 = 2 holds〉
In this case, we consider the initial configuration c′0 that agents a2

1 and a2′

1 , are eliminated. Then from Lemma
4.3, there exist an execution E′

t from c′0 to c′t, where there exists exactly one waiting agent a2
1 (a2′

1 ) at v2 (v2′) in
c′t like Fig. 11 (a). In addition from Lemma 4.1, agents need to make the configuration c′u from c′t, where some
agent enters a waiting state at v2 (v2′) in c′u. We assume that a1

1 and a1
1 leave v1 and v1′ , behave symmetrically,

and some agents a and a′ enter waiting states at v3 and v3′ respectively. We call such an execution E′′
u . In the

figure, we assume that a1
1 and a1′

1 directly enter waiting states respectively (Fig. 11 (b)).
Now let us consider ct like Fig.11 (e). In ct, there also exists an execution similarly to E′

u, that is, agent
a2
1 (a2′

1 ) does not leave v2 (v2′), agent a1
1 (a1′

1 ) leaves v1 (v1′), and some agent a (a′) enters a waiting state at
v2 (v2′) in finite time. Then, there exist three waiting agent a2

1, a
2
2, and a (a2′

1 , a2′

2 , and a′). From Lemma 4.2,
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Figure 11: An example of the pattern 8

agents a2
2 and a (a2′

2 and a′) never leave v2 (v2′), and we call this configuration cu. In the figure, we assume that
agents a1

1 and a1′

1 enter waiting states respectively (Fig. 11 (f)). Then, agents a2
2, a

1
1, a

2′

2 , and a1′

1 never leave
current nodes.

Next, let us consider another initial configuration c′′0 that agents a3
2 and a3′

2 are eliminated. Then from
Lemma 4.3, there exists an configuration E′′

t from c′′0 to c′′t , where there exists exactly one waiting agent a3
1

(a3′

1 ) at v3 (v3′) in c′′t like Fig. 11 (c). In addition from Lemma 4.1, agents need to make the configuration c′′u
from c′′t , where some agent enters a waiting state at v3 and v3′ in c′′u. We assume that a2

1 and a2′

1 leave v2 and
v2′ , behave symmetrically, and some agents b and b′ enter waiting states at v3 and v3′ respectively. We call
such an execution E′′

u In the figure, we assume that agents a2
1 and a2′

1 directly enter waiting state at v3 and v3′

respectively (Fig. 11 (d)).
Now let us consider cu. In cu, there also exists an execution similarly to E′′

u , that is, agent a2
1 (a2′

1 ) leaves
v2 (v2′) and agent b (b′) enters a waiting state at v3 (v3′) in finite time. Then, there exist three waiting agent
a3
1, a

3
2, and b (a3′

1 , a3′

2 , and b′). From Lemma 4.2, agents a3
2 and b (a3′

2 and b′) never leave v3 (v3′). In the
figure, we assume that agents a2

1 and a2′

1 move symmetrically (Fig. 11 (g)), and enter waiting state at v3 and
v3′ respectively (Fig. 11 (h)). Thus, there exist four nodes with agents that never leave the current node. This
implies that agents cannot solve the g-partial gathering problem.

Therefore, we have the theorem.

4.2 Strong Multiplicity Detection and Non-Token Model

In this section, we consider a deterministic algorithm to solve the g-partial gathering problem for the strong
multiplicity detection and non-token model. First, we have the following theorem.

Theorem 4.2 In the strong multiplicity detection and non-token model, agents require Ω(kn) total moves to
solve the g-partial gathering problem even if agents know k.

Proof. To show the theorem by contradiction, we assume that there exists an algorithm A to solve the
g-partial gathering problem in o(kn) total moves. In the proof, we say agent a is in a waiting state at node v
iff a never leaves v before another agent visits v. First, we claim that some agent needs to enter a waiting state
at some node. If there exists no such agent, every agent can leave a node before another agent visits the node.
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This implies, since agents move asynchronously, agents never meet other agents. Consequently, such a behavior
cannot solve the g-partial gathering problem. Hence, there exists an agent that enters a waiting state at some
node.

Next, let us consider the initial configuration c0 such that k agents are placed in tree T with n nodes.
We claim that some agent enters a waiting state in o(n) moves without meeting other agents. Consider the
execution that repeats a phase in which 1) every agent not in a waiting state makes a movement, 2) visits a
node, and 3) before another agent comes, it leaves the node unless it enters a waiting state. Clearly each agent
does not meet other agents unless it enters a waiting state. Let ai be the agent that firstly enters a waiting state
in this execution. If ai moves Ω(n) times before it enters a waiting state, all other agents move Ω(n) times. This
implies the total moves is Ω(kn), which contradicts to the assumption of A. Hence, ai enters a waiting state in
o(n) moves without meeting other agents. This implies there exists a node vx such that ai does not visit before
it enters a waiting state. In addition, we assume that ai is placed at the node vw in the initial configuration c0.

Next, we construct tree T ′ with kn′ + 1 nodes as follows: Let T 1, . . . , T k be k trees with the same topology
as T and vj

x (1 ≤ j ≤ k) be the node in T j corresponding to vx in T . Tree T ′ is constructed by connecting a
node v′ to vj

x for every j (Fig. 12). Let vj
w (1 ≤ j ≤ k) be the node in T j corresponding to vw in T . Consider the

configuration c′0 such that k agents are placed at v1
w, v2

w, . . . , vk
w respectively. Since agents do not have knowledge

of n, each agent does the same behavior as ai in T (note that they do not visit vj
x). Hence, each agent placed

in T j (1 ≤ j ≤ k) enters a waiting state without moving out of T j . Thus, each agent enters a waiting state at
different nodes and does not resume the behavior. Therefore, algorithm A cannot solve the g-partial gathering
problem in T ′. This is a contradiction.

Next, we propose a deterministic algorithm to solve the g-partial gathering problem in O(kn) total moves
for the strong multiplicity detection and non-token model for the case g ≤ k/2. Remind that, in the strong
multiplicity detection model, each agent can count the number of agents at the current node. After starting
the algorithm, each agent performs a basic walk [7]. In the basic walk, each agent ah leaves the initial node
through the port 0. Later, when ah visits a node vj through the port p, ah leaves vj through the port (p + 1)
mod dvj . In the basic walk, each agent traverses the tree in the DFS-traversal. Hence, when each agent visits
nodes 2(n − 1) times, it visits the all nodes in the tree and returns to the initial node. Note that, we assume
that agents do not know the number n of nodes. However, if an agent records the topology of the tree every
time it visits nodes, it can know the time when it returns to the initial node.

The idea of the algorithm is as follows: First, each agent performs the basic walk until it obtains the whole
topology of the tree. Next, each agent computes a center node of the tree and moves there to meet other agents.
If the tree has exactly one center node, then each agent moves to the center node and terminates the algorithm.
If the tree has two center nodes, then each agent moves to one of the center nodes so that at least g agents
meet at each center node. Concretely, agent ah first moves to the closer center node vj . If there exist at most g
agents at vj , including ah, then ah terminates the algorithm at vj . Otherwise, ah moves to another center node
vj′ and terminates the algorithm.

The pseudocode is described in Algorithm 12. We have the following theorem.

Theorem 4.3 In the strong multiplicity detection and non-token model，agents solve the g-partial gathering
problem in O(kn) total moves.

Proof. At first, we show the correctness of the algorithm. From Algorithm 12, if the tree has one center
node, agents go to the center node and agents solve the g-partial gathering problem obviously. Otherwise, each
agent ah first moves to one of center nodes. If there exist at least g agents at the center node, ah moves to
another center node. Since k ≥ 2g holds, agents can solve the g-partial gathering problem.

Next, we analyze the total moves to solve the g-partial gathering problem. At first, agents perform the basic
walk and record the topology of the tree. This requires at most 2(n− 1) total moves for each agent. Next, each
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Algorithm 12 The behavior of active agent ah (vj is the current node of ah.)
Main Routine of Agent ah

1: perform the the basic walk until it obtains the whole topology of the tree
2: if there exists exactly one center node then
3: go to the center node via the shortest path and terminate the algorithm
4: else
5: go to the closest center node via the shortest path
6: if there exist at most g agents then
7: terminate the algorithm
8: else
9: move to another center node

10: terminate the algorithm
11: end if
12: end if

agent moves to one of the center nodes, and terminates the algorithm. This requires at most n
2 + 1 moves for

each agent. Hence, each agent requires O(n) total moves to solve the g-partial gathering problem. Therefore,
agents require O(kn) total moves.

4.3 Weak Multiplicity Detection and Removable-Token Model

In this section, we propose a deterministic algorithm to solve the g-partial gathering problem for the weak
multiplicity detection and removable-token model. We show that our algorithm solves the g-partial gathering
problem in O(gn) total moves. Remind that, in the removable-token model, each agent has a token. In the
initial configuration, each agent leaves a token at the initial node. We define a token node (resp., a non-token
node) as a node that has a token (resp., does not have a token). In addition, when an agent visits a token node,
the agent can remove the token.

The idea of the algorithm is similar to Section 3.1, but in Section 3.1, the network is a unidirectional ring. In
this section, we make agents perform the basic walk and regard a tree network as a unidirectional ring network.
Concretely, if agent ah starts the basic walk at node v0 and continues it until ah visits nodes 2(n−1) times, then
each communication link is passed twice and ah returns to v0. Thus, when ah visits nodes v1, v2, . . . , v2(n−1) in
this order, then we consider that ah moves in the unidirectional ring network with 2(n − 1) nodes. Later, we
call this ring the virtual ring. In the virtual ring, we define the direction from vi to vi+1 as a forward direction,
and the direction from vi+1 to vi as a backward direction. Moreover, when ah visits a node vj through a port
p from a node vj−1 in the virtual ring, agents also use p as the port number at (vj−1, vj). For example, let
us consider a tree in Fig. 13(a). Agent ah performs the basic walk and visits nodes a, b, c, b, d, b in this order.
Then, the virtual ring of Fig. 13(a) is represented in Fig. 13(b). Each number in Fig. 13(b) represents the port
number through which ah visits each node in the virtual ring. Next, we define a token node in a virtual ring as
follows. First, the initial token node in the tree network is also the token node in the virtual ring. In addition,
when agent ah visits a token node vj in the tree, we define that ah visits a token node in the virtual ring if it
visits vj through the port (dvj − 1). In Fig. 13(a), if nodes a and b are token nodes, then in Fig. 13(b), nodes a
and b′′ are token nodes. By this definition, a token node in the tree network is mapped to one token node in
the virtual ring. Thus, by performing the basic walk, we can assume that each agent moves in the same virtual
ring. Moreover, in the virtual ring, each agent also moves in a FIFO manner, that is, when an agent ah leaves
some node vj before another agent ai leaves vj , ah takes a step before ai does it.

The algorithm consists of two parts. In the first part, agents execute the leader agent election partway and
elect some leader agents. In the second part, leader agents instruct the other agents which node they meet at,
and the other agents move to the node by the instruction. In the following section, we explain the algorithm
by using a virtual ring.

4.3.1 The first part: leader election

In the leader agent election, the states of agents are divided into the following three types:

• active: The agent is performing the leader agent election as a candidate of leaders.

• inactive: The agent has dropped out from the candidate of leaders.

• leader: The agent has been elected as a leader.
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Figure 13: An example of the basic walk

The aim of the first part is similar to Section 3.1.1, that is, to elect some leaders and satisfy the following
three properties: 1) At least one agent is elected as a leader, 2) at most bk/gc agents are elected as leaders, and
3) in the virtual ring, there exist at least g − 1 inactive agents between two leader agents.

In Section 3.1.1, each agent is distinct and each node has whiteboard. However, in this paper, we assume
that each agent is anonymous and some nodes have tokens. First, we explain the treatment about IDs. For
explanation, let active nodes be nodes where active agents start execution of each phase. In this section, agents
use virtual IDs in the virtual ring. Concretely, when agent ah moves from an active node vj to vj ’s forward
active node vj′ , ah observes port sequence p1, p2, . . . pl, where pm is the port number through which ah visits
the node by the m-th movement after leaving vj . In this case, ah uses this port sequence p1, p2, . . . pl as its
virtual ID. For example, in Fig. 13(b), when ah moves from a to b′′, ah observes the port numbers 0, 0, 1, 0, 2 in
this order. Hence, ah uses 00102 as a virtual ID from a to b′′. Similarly, ah uses 0 as a virtual ID from b′′ to
a. Note that, multiple agents may have the same virtual IDs, and we explain the behavior in this case later.
Next, we explain the treatment about whiteboards. In Section 3.1.1, each node has a whiteboard, while in this
paper, each node is allowed to have an only token. Fortunately, we can easily overcome this problem by using
virtual IDs. Concretely, each active agent ah moves until ah visits three active nodes. Then, ah observes its
own virtual ID, the virtual ID of ah’s forward active agent ai, and the virtual ID of ai’s forward active agent
aj . Thus, ah can obtain three virtual IDs id1, id2, id3 without using whiteboards. Therefore, agents can use the
above approach [24], that is, ah behaves as if it would be an active agent with ID id2 in bidirectional rings. In
the rest of this paragraph, we explain how agents detect active nodes. In the beginning of the algorithm, each
agent starts the algorithm at a token node and all token nodes are active nodes. After each agent ah visits three
active nodes, ah decides whether ah remains active or drops out from the candidate of leaders at the active
(token) node. If ah remains active, then ah starts the next phase and leaves the active node. Thus, in some
phase, when some active agent ah visits a token node vj with no agent, ah knows that ah visits an active node
and the other nodes are not active nodes in the phase.

After observing three virtual IDs id1, id2, id3, each active agent ah compares virtual IDs and decides whether
ah remains active (as a candidate of leaders) in the next phase or not. Different from Section 3.1.1, multiple
agents may have the same IDs. To treat this case, if id2 < min(id1, id3) or id2 = id3 < id1 holds, then ah

remains active as a candidate of leaders. Otherwise, ah becomes inactive and drops out from the candidate
of leaders. For example, let us consider the initial configuration like Fig. 14(a). In the figure, black nodes are
token nodes and the numbers near communication links are port numbers. The virtual ring of Fig. 14(a) is
represented in Fig. 14(b). For simplicity, we omit non-token nodes in Fig. 14(b). The numbers in Fig. 14(b) are
virtual IDs. Each agent ah continues to move until ah visits three active nodes. By the movement, a1 observes
three virtual IDs (01,01,01), a2 observes three virtual IDs (01, 01, 1000101010), a3 observes three virtual IDs
(01, 1000101010, 01), and a4 observes three virtual IDs (1000101010,01,01) respectively. Thus, a4 remains as
a candidate of leaders, and a1, a2, and a3 drop out from the candidates of leaders. Note that, like Fig. 14, if
an agent observes the same virtual IDs three times, it drops out from the candidate of leaders. This implies,
if all active agents have the same virtual IDs, all agents become inactive. However, we can show that, when
there exist at least three active agents, it does not happen that all active agents observe the same virtual IDs.
Moreover, if there are only one or two active agents in some phase, then the agents notice the fact during the
phase. In this case, the agents immediately become leaders. By executing dlog ge phases, agents complete the
leader agent election.

Pseudocode. The pseudocode to elect leaders is given in Algorithm 13. All agents start the algorithm with
active states. The pseudocode describes the behavior of active agent ah, and vj represents the node where agent
ah currently stays. If agent ah becomes an inactive state or a leader state, ah immediately moves to the next
part and executes the algorithm for an inactive state or a leader state in section 4.3.2. Agent ah uses variables
id1, id2, and id3 to store three virtual IDs. Variable phase stores the phase number of ah. In Algorithm 13,
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Figure 14: An example that agents observe the same port sequence

Algorithm 13 The behavior of active agent ah (vj is the current node of ah.)
Variables in Agent ah

int phase = 0;
int id1, id2, id3;
Main Routine of Agent ah

1: phase = phase + 1
2: id1 = NextActive()
3: id2 = NextActive()
4: id3 = NextActive()
5: if there exist at most two active agents in the tree then
6: change its state to a leader state
7: end if
8: if (id2 < min(id1, id3))∨(id2 = id3 < id1) then
9: if (phase = dlog ge) then

10: change its state to a leader state
11: else
12: return to line 1
13: end if
14: else
15: change its state to an inactive state
16: end if

each active agent ah moves until ah observes three virtual IDs and decides whether ah remains active as a
candidate of leaders or not on the basis of virtual IDs. Note that, since each agent moves in a FIFO manner, it
does not happen that some active agent passes another active agent in the virtual ring, and each active agent
correctly observes three neighboring virtual IDs in the phase. In Algorithm 13, ah uses procedure NextActive(),
by which ah moves to the next active node and returns the port sequence as a virtual ID. The pseudocode of
NextActive() is described in Algorithm 14. Agent ah uses variable port to store a virtual ID while moving, and
ah uses variable move to store the number of nodes it visits. Note that, if there exist only one or two active
agents in some phase, then the agent moves around the virtual ring before getting three virtual IDs. In this
case, the active agent knows that there exist at most two active agents in the phase and they become leaders.
To do this, agents record the topology every time they visit nodes, but we omit the description of this behavior
in Algorithm 13 and Algorithm 14.

First, we show the following lemma to show that at least one agent remains active or becomes a leader in
each phase.

lemma 4.4 When there exist at least three active agents, at least one agent has a virtual ID different from
another agent.

Proof. To show the lemma, we use the theorem from [5]. Let t[1..q] be a port sequence that an agent observes
in visiting q nodes by performing the basic walk. In our algorithm, t[1..q] represents a virtual ID that the agent
uses from a active node to the next active node. Moreover, we define (t[1..q])k as the concatenation of k copies
of t[1..q]. In addition, the length of an n-node tree T is the length of its Euler tour, that is, 2(n− 1). Then, we
use the following theorem.

Theorem 4.4 Let T be a tree of length at least q ≥ 1. Assume that t[1..q] is not periodic and t[1..kq] = (t[1..q])k

for some k ≥ 3. Then one of the following three cases must hold [5].
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Algorithm 14 int NextActive() (vj is the current node of ah.)
Main Routine of Agent ah

array port[ ];
int move;
Main Routine of Agent ah

1: move = 0
2: leave vj through the port 0

// arrive at the forward node
3: let p be the port number through which ah visits vj

4: port[move] = p
5: move = move + 1
6: while (there does not exist a token) ∨

(p 6= dvj − 1) ∨ (there exists another agent ) do
7: leave vj through the port (p + 1) mod dvj

// arrive at the forward node
8: let p be the port number through which ah visits vj

9: port[move] = p
10: move = move + 1
11: end while
12: return port[ ]

1. The length of T is q.

2. The length of T is 2q.

3. The length of T is greater than kq.

We show the lemma by contradiction, that is, assume that there exist k′ ≥ 3 active agents in some phase and all
k′ active agents have the same virtual IDs. Let x be the virtual ID. Let us consider some agent that starts the
basic walk at a node r and continues until it returns to r. Then, t[1..k′|x|] = (t[1..|x|])k′

holds and the length
of the tree is k′|x|. However, from Theorem 4.4, the length of the tree is never k′|x|. This is a contradiction.

Next, we have the following lemmas about Algorithm 13.

lemma 4.5 Algorithm 13 eventually terminates, and satisfies the following three properties.

• There exists at least one leader agent.

• There exist at most bk/gc leader agents.

• In the virtual ring, there exist at least g − 1 inactive agents between two leader agents.

Proof. We show the lemma in the virtual ring. Obviously, Algorithm 13 eventually terminates. In the
following, we show the above three properties.

At first, we show that there exists at least one leader agent. From lines 5-7 of Algorithm 13, when there
exist only one or two active agents in some phase, the agents become leaders. When there are at least three
active agents in some phase, if ah.id2 < min(ah.id1, ah.id3) or ah.id2 = ah.id3 < ah.id1 holds, agent ah remains
as a candidate of leaders, and otherwise ah drops out from the candidate of leaders. Thus, unless all agents
observe the same virtual IDs, at least one agent remains active as a candidate of leaders. From Lemma 4.4, it
does not happen that all agents observe the same virtual IDs. Therefore, there exists at least one leader agent.

Next, we show that there exist at most bk/gc leader agents. In each phase, if ah.id2 < min (ah.id1, ah.id3)
or ah.id2 = ah.id3 < ah.id1 holds, ah remains as a candidate of leaders. If the agent ah satisfies ah.id2 <
min(ah.id1, ah.id3), then the ah’s backward and forward active agents drop out from the candidates of leaders.
In the following, let us consider the case that agent ah satisfies ah.id2 = ah.id3 < ah.id1. Let ah′ be a
ah’s backward active agent and ah′′ be a ah’s forward active agent. Agent ah′ observes three virtual IDs
ah′ .id1, ah′ .id2, ah′ .id3, and both ah′ .id2 = ah.id1 and ah′ .id3 = ah.id2 hold. Hence, ah′ .id2 > ah′ .id3 holds,
and ah′ drops out from the candidate of leaders. Next, ah′′ observes three virtual IDs ah′′ .id1, ah′′ .id2, ah′′ .id3,
and both ah′′ .id1 = ah.id2 and ah′′ .id2 = ah.id3 hold. Since ah′′ .id1 = ah′′ .id2 holds, ah′′ does not satisfy the
condition to remain as a candidate of leaders and drops out from the candidate. Thus, in each phase, at least
half of active agents drop out from the candidates of leaders and become inactive. After executing i phases,
there exist at most k/2i active agents. Therefore, after executing dlog ge phases, there exist at most bk/gc
leader agents.
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Finally, we show that there exist at least g− 1 inactive agents between two leader agents in the virtual ring.
At first, we show that after executing j phases, there exist at least 2j − 1 inactive agents between two active
agents. We show this by induction. For the case j = 1, there exists at least 21 − 1 = 1 inactive agent between
two active agents as mentioned before. For the case j = k, we assume that there exist at least 2k − 1 inactive
agents between two active agents. After executing k + 1 phases, since at least one of neighboring active agents
becomes inactive, the number of inactive agents between two active agents is at least (2k − 1) + 1 + (2k − 1) =
2k+1 − 1. Hence, after executing j phases, there exist at least 2j − 1 inactive agents between two active agents.
Therefore, after executing dlog ge phases, there exist at least g − 1 inactive agents between two leader agents in
the virtual ring.

lemma 4.6 Algorithm 13 requires O(n log g) total moves.

Proof. In the virtual ring, each active agent moves until it observes three virtual IDs in each phase. This
requires at most O(n) total moves because each communication link of the virtual ring is passed at most three
times and the length of the ring is 2(n − 1). Since agents execute dlog ge phases, we have the lemma.

4.3.2 The second part: leaders’ instruction and agents’ movement

In this section, we explain the second part, i.e., an algorithm to achieve the g-partial gathering by using leaders
elected by the algorithm in Section 4.3.1. Let leader nodes (resp., inactive nodes) be the nodes where agents
become leaders (resp., inactive agents). Note that all leader nodes and inactive nodes are token nodes. In this
part, states of agents are divided into the following three types:

• leader: The agent instructs inactive agents where they should move.

• inactive: The agent waits for the leader’s instruction.

• moving: The agent moves to its gathering node.

We explain the idea of the algorithm in the virtual ring. The basic movement is also similar to Section 3.1.2,
that is, to divide agents into groups with at least g agents. In Section 3.1.2, each node has a whiteboard, while
in this paper, each node is allowed to have an only token. In this section, agents achieve the g-partial gathering
by using removable tokens. Concretely, each leader agent ah moves to the next leader node, and while moving
ah repeats the following behavior: ah removes tokens of inactive nodes g − 1 times consecutively and then ah

does not remove a token of the next inactive node. After that, agents move to token nodes and meet at least g
agents there.

First, we explain the behavior of leader agents. Whenever leader agent ah visits an inactive node vj , it
counts the number of inactive nodes that ah has visited. If the number plus one is not a multiple of g, ah

removes a token at vj . Otherwise, ah does not remove the token and continues to move. Agent ah continues
this behavior until ah visits the next leader node vj′ . After that, ah removes a token at vj′ . After completing
this behavior, there exist at least g − 1 inactive agents between two token nodes. Hence, agents solve the
g-partial gathering problem by going to the nearest token node (This is done by changing their states to moving
states). For example, let us consider the configuration like Fig. 15(a) (g = 3). We assume that a1 and a2 are
leader agents and the other agents are inactive agents. In Fig. 15(b), a1 visits the node v2 and a2 visits the
node v4 respectively. The numbers near nodes represent the number of inactive nodes that a1 and a2 observed
respectively. Agents a1 and a2 remove tokens at v1 and v3, and do not remove tokens at v2 and v4 respectively.
After that, a1 and a2 continue this behavior until they visit the next leader nodes. At the leader nodes, they
remove the tokens (Fig. 15(c)).

When a token at vj is removed, an inactive agent at vj changes its state to a moving state and starts to
move. Concretely, each moving agent moves to the nearest token node vj . Note that, since each agent moves in a
FIFO manner, it does not happen that a moving agent passes a leader agent and terminates at some token node
before the leader agent removes the token. After all agents complete their own movements, the configuration
changes from Fig. 15(c) to Fig. 15(d) and agents can solve the g-partial gathering problem. Note that, since
each agent moves in the same virtual ring in a FIFO manner, it does not happen that an active agent executing
the leader agent election passes a leader agent and that a leader agent passes an active agent.

Pseudocode. In the following, we show the pseudocode of the algorithm. The pseudocode of leader agents is
described in Algorithm 15. Variable tCount is used to count the number of inactive nodes ah visits. When ah

visits a token node vj with another agent, vj is an inactive node because an inactive agent becomes inactive at
a token node and agents move in a FIFO manner. Whenever each leader agent ah visits an inactive node, ah

increments the value of tCount. At inactive node vj , ah removes a token at vj if tCount 6= g − 1 and continues
to move otherwise. This means that, if a token is not removed at inactive node vj , at least g agents meet at vj .
When ah removes a token at vj , an inactive agent at vj changes its state to a moving state. When ah visits a
token node vj′ with no agents, vj′ is the next leader node. This is because agents at token nodes are in leader
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Figure 15: Partial gathering for removable-token model for the case g = 3 (a1 and a2 are leaders, and black
nodes are token nodes)

Algorithm 15 The behavior of leader agent ah (vj is the current node of ah)
Variable in Agent ah

int tCount = 0;
Main Routine of Agent ah

1: NextToken()
2: while there exists another agent at vj do
3: //this is an inactive node
4: tCount = (tCount + 1) mod g
5: if tCount 6= g − 1 then
6: remove a token at vj

7: //an inactive agent at vj changes its state to a moving state
8: end if
9: NextToken()

10: end while
11: remove a token at vj

12: change its state to a moving state

or inactive states, and each inactive agent does not leave the token node until the token is removed. When
leader agent ah moves to the next leader node vj′ , ah removes a token at vj′ and changes its state to a moving
state. In Algorithm 15, ah uses the procedure NextToken(), by which ah moves to the next token node. The
pseudocode of NextToken() is described in Algorithm 16. In Algorithm 16, ah performs the basic walk until ah

visits a token node vj through the port (dvj − 1).
The psedocode of inactive agents is described in Algorithm 17. Inactive agent ah waits at vj until either a

token at vj is removed or ah observes another agent. If the token is removed, ah changes its state to a moving
state. If ah observes another agent, the agent is a moving agent and terminates the algorithm at vj . This means
vj is selected as a token node where at least g agents meet in the end of the algorithm. Hence, ah terminates
the algorithm at vj .

The pseudocode of moving agents is described in Algorithm 18. In the virtual ring, each moving agent ah

moves to the nearest token node by using NextToken().
We have the following lemma about algorithms in Section 4.3.2.

lemma 4.7 After the leader agent election, agents solve the g-partial gathering problem in O(gn) total moves.

Proof. We show the lemma in the virtual ring. At first, we show the correctness of the proposed algorithms.
Let vf

0 , vf
1 , . . . , vf

l be inactive nodes that still have tokens after all leader agents complete their behaviors, and
we call these nodes final nodes. From Algorithm 15, each leader agent ah removes the token at the inactive
node g − 1 times consecutively and does not remove the token at the next inactive node respectively. By this
behavior and Lemma 4.5, there exist at least g− 1 moving agents between vf

i and vf
i+1. Moreover, each moving

agent moves to the nearest final node. Therefore, agents solve the g-partial gathering problem.
In the following, we analyze the total moves required for the algorithms. At first, let us consider the total

moves required for each leader agent to move to the next leader node. This requires 2(n− 1) total moves since
all leader agents move around the virtual ring. Next, let us consider the total moves required for each moving
(inactive) agent to move to the nearest token node (For example, the total moves form Fig. 15(c) to Fig. 15(d)).
From Algorithm 18, each moving agent moves to the nearest final node. We assume that some moving agent
ah goes to final node vf

i and terminates the algorithm. Then, ah only moves between vf
i−1 and vf

i . In the
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Algorithm 16 void NextToken() (vj is the current node of ah.)
Main Routine of Agent ah

1: leave vj through the port 0
2: let p be the port number through which ah visits vj

3: while (there dose not exist a token) ∨ (p 6= dvj − 1) do
4: leave vj through the port (p + 1) mod dvj

5: let p be the port number through which ah visits vj

6: end while

Algorithm 17 The behavior of inactive agent ah (vj is the current node of ah)
1: while (there dose not exist another agent at vj)∨(there exists a token at vj) do
2: wait at vj

3: end while
4: if there exists another agent at vj then
5: terminate the algorithm
6: end if
7: if there does not exist a token then
8: change its state to a moving state
9: end if

Algorithm 18 The behavior of moving agent ah (vj is the current node of ah)
Main Routine of Agent ah

1: NextToken()
2: terminate the algorithm

following, we show that the number of moving agents between some final node vf
i and its forward final node

vf
i+1 is at most O(g). From Algorithm 15, the number of moving agents between two vf

i and vf
i+1 is the sum

of inactive nodes and leader nodes between vf
i and vf

i+1. Since there exists at least one final node between two
leader nodes, there exists at most one leader node between vf

i and vf
i+1. If there exist no leader node between

vf
i and vf

i+1, then clearly there exist g − 1 inactive nodes between vf
i and vf

i+1. If there exists one leader node
vl between vf

i and vf
i+1, there exist at most g − 1 inactive nodes between vf

i and vl, and at most g − 1 inactive
nodes between vl and vf

i+1 respectively. Thus, there exist at most O(g) moving agents between some final node
vf

i and vf
i+1, and the total moves required for each moving (inactive) agent to move to the nearest final node is

at most O(gn) since each communication link is passed by at most O(g) times.
Therefore, we have the lemma.
From Lemma 4.6 and Lemma 4.7, we have the following theorem.

Theorem 4.5 In the weak multiplicity detection and the removable-token model，our algorithm solves the g-
partial gathering problem in O(gn) total moves.

5 Conclusion

In this paper, we proposed algorithms to solve the g-partial gathering problem in asynchronous unidirectional
ring and asynchronous tree networks. If the network is a ring, we proposed three algorithms. First, we
proposed a deterministic algorithm to solve the g-partial gathering problem for distinct agents in O(gn) total
moves. Second, we proposed a randomized algorithm to solve the g-partial gathering problem for anonymous
agents in expected O(gn) total moves. Third, we proposed a deterministic algorithm to solve the g-partial
gathering problem for anonymous agents in O(kn) total moves and we showed that there exist unsolvable initial
configurations in this model. In these three models, we assume that each node has a whiteboard. If the network
is a tree, we considered three model variants. First, in the weak multiplicity and non-token model, we showed
that there exist no algorithms to solve the g-partial gathering problem. Second, in the multi-visibility and
non-token model, we showed that agents require Ω(kn) total moves to solve the g-partial gathering problem
and proposed a deterministic algorithm to solve the g-partial gathering problem in O(kn) total moves. Finally,
in the single-visibility and removable-token model, we proposed a deterministic algorithm to solve the g-partial
gathering problem in O(gn) total moves.
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