
Move-efficient algorithms for group gossiping of mobile agents

Jun Ri, Masahiro Shibata, Fukuhito Ooshita, Hirotsugu Kakugawa and Toshimitsu Masuzawa
Graduate School of Information Science and Technology

Osaka University
Osaka, Japan

Email: {jun-ri, m-sibata, f-oosita, kakugawa, masuzawa}@ist.osaka-u.ac.jp

Abstract—We introduce a concept of agent groups and
formulate the group gossiping problem. An (agent) group is
a set of agents that work together to attain a single objective.
For example, agents created by a single application form one
group. Since multiple applications are executed in a single
mobile agent system, there exist multiple groups in such a
system. In this case, it is useful to support cooperation among
agents in each group.

From this motivation, we formulate the group gossiping
problem. The group gossiping problem requires each agent to
collect information of all agents in its group. Since information
to be collected is private and precious, no agents want to expose
the information to other groups. For this reason, agents can
exchange only control information (e.g., counter values or IDs)
with other groups. In this setting, we aim to minimize the total
number of moves to solve the group gossiping problem. As
a result, we show the asymptotically tight upper and lower
bounds for several network topologies.

Keywords-Mobile agent, Group gossiping, Move complexity,
Distributed algorithm

I. INTRODUCTION

A. Background and Motivation

As a design paradigm for distributed systems, mobile
agents have received a lot of attention [3], [14], [15]. A
(mobile) agent is an autonomous piece of software that
moves in a network carrying its state information. There are
many reasons for using agents [15]; For example, if remote
hosts store a large amount of data for processing, agents can
reduce the network traffic by moving to the remote hosts
and processing the data locally. Besides adaptability and
flexibility of agents simplify design of distributed systems.

In most mobile agent systems, multiple agents work
cooperatively to improve system performance. For example,
in a network management system, multiple agents traverse
the network to collect load information of nodes and links,
share the collected information, and inform each node
about the information. To support the cooperation of mobile
agents, many algorithms for fundamental operations such
as gossiping and gathering have been developed [20], [25].
Gossiping requires all agents to share information of all
agents, and gathering requires all agents to meet at a single
node.

In this paper, we introduce a concept of agent groups.
Intuitively, agents in a single agent group work to attain
the same objective. For example, if an application creates
multiple agents to attain some objective, the agents form a
single agent group. Previous algorithms for gossiping and
gathering assume all agents belong to a single group in the
sense that all agents aim to achieve the same goal (i.e., share
the information of all agents or meet all agents).

On the other hand, mobile agents from multiple agent
groups often share a single mobile agent system. For ex-
ample, if multiple applications share a single mobile agent
system, agents created by each application make up one
agent group. Another example is a mobile agent system
used by multiple organizations. In such a system, agents
created by each organization make up one agent group. For
both cases, agents are not interested in agents that belong to
other agent groups. Consequently agents want to share the
information or to gather among agents in their agent groups.
This motivates us to consider new variants of operations,
gossiping or gathering in each agent group.

B. Our contributions

From the above motivation, we formulate the group
gossiping problem. In this problem, agents are divided
into groups, and the goal is to make each agent collect
information of all agents in its group. We aim to minimize
the total number of agent moves (over all groups) to solve
the group gossiping problem. This is because, since all
agents share a single mobile agent system, it is important to
optimize the performance of the whole system.

Since algorithms for gossiping among agents in a single
agent group are proposed [25], there are two trivial solutions
to solve the group gossiping problem. One is to execute
the algorithm in [25] by assuming that all agents belong to
a single group. However, to execute this algorithm, agents
must expose its information to agents in other groups. Such
a behavior is usually not allowed due to security reasons
since the information may be private and precious. Another
solution is to execute the algorithm in [25] independently for
each group. This solution avoids the above security problem.
However, since agents do not cooperate with agents in other
groups, this requires a large total number of moves. For
this reason, we aim to reduce the total number of moves by

Table I
THE TOTAL NUMBER OF MOVES TO SOLVE THE GROUP GOSSIPING PROBLEM

Graph System model Sense of direction A trivial solution Our results

Ring synchronous without O(gN) Θ(gN)
asynchronous without O(gN log k′) Θ(N log k′ + gN)

Tree asynchronous without O(gN) Θ(gN)

Complete asynchronous without O(gN log k′) Θ(N log k)
with O(gN) Θ(N)

Arbitrary asynchronous without O(gN log k′ + gM) Θ(N log k′ +M + gN)
N , M and k are the numbers of nodes, links and agents respectively.
g is the numbers of groups, and k′ is the maximum number of agents in a group.

exchanging some control data (e.g., counter values or IDs)
among agents in different groups.

Table I summarizes the contribution of this paper for the
group gossiping problem. The column of a trivial solution
shows the total number of moves required to execute the
algorithm in [25] independently for each group. For syn-
chronous rings and asynchronous trees, we show that the
trivial algorithm is asymptotically optimal in terms of the
total number of moves. For asynchronous ring networks,
asynchronous complete networks, and asynchronous arbi-
trary networks, we propose algorithms that can reduce the
total number of moves compared to the trivial solution. This
means cooperation of agents in different groups reduces
the total number of moves to solve the group gossiping
problem. We also show that the proposed algorithms are
asymptotically optimal in terms of the total number of
moves.

C. Related Works

To improve the performance of mobile agent systems,
many fundamental problems for cooperation of agents have
been studied. The most investigated problem is the gathering
problem [14], [20], which requires all agents to meet at a
single node1. The gathering problem has been considered in
several settings [2], [4], [6], [7], [8], [10], [18]. Dessmark
et al. [6] give algorithms for synchronous agents in trees,
rings, and arbitrary graphs. Dieudonné and Pelc [7] propose
deterministic algorithms for multiple synchronous agents
in arbitrary networks. Dieudonné et al. [8] show that two
asynchronous agents can meet in arbitrary networks at
polynomial number of moves.

The gossiping problem is considered in [17], [25]. Note
that algorithms for the gathering problem are also solutions
for the gossiping problem because all agents can exchange
their information by meeting at a single node. However, the
gossiping problem can be solved without gathering of all
agents. Suzuki et al. [25] show that the gossiping problem
requires a smaller total number of moves than the gathering
problem. In [17], self-stabilizing algorithms for the gossiping
problem are studied.

1The gathering problem for two agents is sometimes called the ren-
dezvous problem.

Another fundamental problem is the exploration prob-
lem, which requires agents to visit every node. Exploration
algorithms for a single agent [19], [22] and for multiple
agents [5], [9] have been proposed. The important notion for
the exploration problem is a universal exploration sequence
(UXS) [13]. By moving based on a UXS, agents can visit
every node. Reingold [22] gives a log-space constructible
UXS and shows that an agent solves the exploration problem
with O(log n) bits of memory.

While all the above researches do not consider agent
groups, Shibata et al. [23], [24] consider some groups
and introduce the partial gathering problem. The partial
gathering problem requires, for given input g, that each agent
makes a group composed of at least g agents and meet them
at a single node. The concept looks similar to groups in this
paper, however that is different because groups are initially
given in the group gossiping problem.

II. PRELIMINARIES

In this section, we define the system model and the group
gossiping problem. Note that we use the same system model
as [25] except for a concept of groups.

A. Mobile Agent Systems

A network is modeled as an undirected graph G = (V,E),
where V and E are respectively the node set and the link set
in G. The numbers of nodes and links are denoted by N (i.e.,
N = |V |) and M (i.e., M = |E|), respectively. A link in E
connects two distinct nodes in V . The link between nodes u
and v is denoted by euv or evu. On each node, each incident
link is locally labeled by port numbers. Let λu(e) be the port
number of link e on a node u (λu(e) ∈ {1, 2, . . . , degu},
where degu is the number of u’s incident links). There exist
k agents in the network. An agent ai (0 ≤ i < k) is an
autonomous state machine that can migrate from one node
to another in the network. Agents on a node u ∈ V can
migrate to a node v ∈ V only when link euv is contained in
E. We assume that each agent has a distinct identifier (ID) 2.
Let idi be the ID of agent ai (use idi and ai interchangeably
in this paper). Each agent does not initially know IDs of

2Node IDs are not required in this paper, however this is not essential.
This is because distinct agents can assign distinct IDs to nodes when they
visit the nodes.

other agents. Agents are divided into g groups. Each agent
ai knows its group ID gidi, and agents with the same group
ID form a single group. For each agent ai, we define G(ai)
as the set of agents that belong to the same group as ai
(i.e., have the same group ID as ai). Note that ai ∈ G(ai)
holds for any i. We assume each group consists of at least
two agents. Let k′ be the maximum number of agents that
belong to a single group (i.e., k′ = max0≤i<k{|G(ai)|}).
We assume that each agent has prior knowledge of neither
G, N , M , k, g nor k′. Each agent is initially located on any
node in G, and more than one agent is not located on the
same node. A node on which an agent is initially located is
called the home node of the agent. When a node v is the
home node of agent ai, we also say ai is the home agent of
v.

Each node v is provided with a whiteboard, i.e., local
storage where agents on v can write and read data. When
multiple agents on a node execute their operations, the
operations are sequentially executed in an arbitrary order
with the following assumption: at the beginning of the
algorithm, each agent executes operations at its home node
before other agents access a whiteboard on the node.

An agent ai on each node v performs a sequence of the
following operations;

• read(v) : agent ai reads data written on node v’s
whiteboard, and executes local computation.

• write(v, d) : agent ai writes data d on node v’s white-
board.

• move(v, λv(e)) : agent ai moves to one of v’s neighbor
nodes through the link labeled by port number λv(e).
If λv(e) is zero, ai stays on v.

We assume that these three operations are executed atom-
ically. Agents are said to be asynchronous if migration
time and local processing time of agents are unpredictable
but finite. In contrast, agents are synchronous if all agents
execute every rounds synchronously; in each round, every
agent arrives at a node, accesses the whiteboard and executes
local computation on the node, and stays on the node or
starts migration to one of the neighboring nodes. The agents
arrive at the destination nodes at the beginning of the next
round.

A state of an agent is represented by a set of variables
the agent has and a set of information the agent has
collected. A state of a node is represented by the state
of its whiteboard. A system configuration C is represented
by the states of all nodes, the states of all agents, and the
locations of all agents. A system configuration is changed by
events of agents (e.g., read and write on a whiteboard, and
migration). Let C0 be an initial configuration of a system
and Evi be a set of events that occur simultaneously at the
configuration Ci. An execution of a mobile agent system is
an alternate sequence of configurations and sets of events
EX = C0, Ev0, C1, Ev1, C2, · · · , such that occurrence of
events Evi−1 changes the configuration from Ci−1 to Ci.

We say that an agent aj terminates in a configuration Ci iff
aj never executes any operation after Ci.

B. Group Gossiping Problem

In this paper, we define the group gossiping problem.
In an initial configuration, each agent aj has only its own
information Ij . The goal of this problem is that every agent
collects information of all agents in its group. Hereinafter
information means information each agent has to collect.
The group gossiping problem is defined as follows.

Let Sj(Ci) be a set of the information an agent aj has in
configuration Ci. In initial configuration C0, each agent aj
has only its own information Ij ;

Sj(C0) = {Ij}.

The group gossiping problem is solved in configuration Ci

iff all k agents terminate and the following condition is
satisfied;

∀j(0 ≤ j < k) : Sj(Ci) =
∪

aℓ∈G(aj)

{Iℓ}

Agents can write only the control data on a whiteboard,
e.g., some number of identifiers and counter values. We
disallow each agent aj to leave any information Ij on a
whiteboard due to security reason. It is insecure to write
precious information on a whiteboard because every agent
in different groups can access the whiteboard. Instead, we
allow agents to exchange the set of information if agents in
the same group stay on the same node. When a set P of
agents is located on the same node in configuration Ci, then
the subsequent configuration Ci+1 satisfies;

∀aj ∈ P : Sj(Ci+1) =
∪

aℓ∈P∩G(aj)

Sℓ(Ci).

We define a move as a migration of an agent from one
node to its neighbor node. The complexity of the group
gossiping problem is measured by the total number of moves
until all agents terminate in the worst case.

III. A LEADER-ELECTION-BASED ALGORITHM

In this section, we show a leader-election-based algorithm
to solve the group gossiping problem for several networks.
To elect a leader among agents, we use an algorithm for the
node leader election problem in message-passing systems.
For this reason, we first give the definition of the node leader
election problem.

Definition 1 In message-passing systems, an algorithm is
said to solve the node leader election problem for network
G iff it satisfies the following conditions: 1) exactly one of
nodes is elected as a leader and all nodes in G know the
ID of the leader node, and 2) once a node decides to be a
leader, the node never changes its decision.

If we have a node leader election algorithm for asyn-
chronous message-passing systems, we can use it to elect
a leader agent in mobile agent systems from the following
theorem in [25].

Theorem 1 [25] Suppose the total number of exchanged
messages to execute a node leader election algorithm with
k initiators in asynchronous message-passing systems is at
most mmp. Then, the (agent) leader election with k agents
is solved with at most 2 ·mmp moves.

In the rest of this section, we explain an algorithm to
solve the group gossiping problem by using an algorithm
for the agent leader election. First, we explain the idea
of algorithms for the gossiping problem in [25] to extend
it to the group gossiping problem. Remind that the gos-
siping problem requires agents to collect information of
all agents. In the algorithm, agents first execute a leader
election algorithm and elect a single leader. Then, the leader
completes gossiping by traversing the network twice: The
leader collects information of all agents in the first traversal,
and distribute the information to every agent in the second
traversal. Since the leader election usually requires a larger
number of moves, the leader election dominates the total
number of moves throughout the algorithm.

For the group gossiping problem, we can use the same
idea. That is, each group elects a single group leader, and the
group leader completes gossiping in the group by traversing
the network twice. However, if each agent group executes a
leader election independently, this requires a lot of moves.
To avoid this, we elect a single leader among all agents at
the beginning of the algorithm. Then, the leader elects a
group leader for each group by traversing the network once.
Concretely, when the leader meets an agent of group gid, it
nominates the agent as a group leader if it has not yet met
another agent of group gid.

From the above algorithm, we have the following lemma.

Lemma 1 Suppose that the leader election with k agents is
solved with at most ml moves and the number of moves
required for an agent to traverse the whole network is at
most mt. Then, the group gossiping problem with k agents
and g groups is solved with ml + (2g + 1)mt moves.

Proof: Agents elect a single leader and then the leader
elects a group leader for each group by traversing the
network once. This requires ml+mt moves. After that, each
group leader completes gossiping in its group by traversing
the network twice. This requires 2gmt moves.

IV. UPPER AND LOWER BOUNDS

In this section, we present the upper and lower bounds on
the total number of moves for the group gossiping problem
in several networks.

A. Synchronous ring networks

In this subsection, we consider synchronous ring networks
without sense of direction. For ring networks, the node
leader election problem in synchronous message-passing
systems can be solved with O(N) messages [11]. Since
this algorithm works in only synchronous systems, Theo-
rem 1 cannot be applied. However, fortunately this result
can be easily applied to agent systems, and it is proved
that gossiping among k agents can be solved with O(N)
moves in any synchronous ring network [25]. By executing
this algorithm independently for each group, we have the
following theorem.

Theorem 2 The group gossiping problem is solved with
O(gN) moves in synchronous ring networks.

For the lower bound, we have the following theorem.

Theorem 3 Any algorithm for the group gossiping problem
requires Ω(gN) moves in synchronous ring networks.

Proof: For any given N , k, g and k′, we show that there
exists an initial configuration that requires Ω(gN) moves
to solve the group gossiping problem. Assume that nodes
v0, v1, . . . , vN−1 are located in this order. Let Gi (0 ≤ i < g)
be a set of agents in group i. Since |Gi| ≥ 2 holds, we can
deploy agents as follows: First deploy two agents in Gi on
vi and vi+N/2 for each i (0 ≤ i < g), and then deploy
remaining agents on remaining nodes arbitrarily. Since the
two agents in each group must exchange their information,
this requires at least N/2 moves for each group. Therefore,
the total number of moves is at least gN/2.

B. Asynchronous ring networks

In this subsection, we consider asynchronous ring net-
works without sense of direction. For ring networks, the
node leader election problem in asynchronous message-
passing systems can be solved with O(N logN) messages
[21]. This is the message complexity for an arbitrary num-
ber of initiator nodes in the worst case. It can easily be
shown that the message complexity for k initiator nodes is
O(N log k) by using an algorithm similar to [21]. Therefore,
from Theorem 1, leader election among k agents can be
solved with O(N log k) moves.

An agent can travel the whole network with N moves.
Thus, from Lemma 1 and k ≤ gk′, the following theorem
is obtained.

Theorem 4 The group gossiping problem is solved with
O(N log k′ + gN) moves in asynchronous ring networks.

In the following, we show the lower bound. Similarly to
Theorem 3, we have the following lemma.

Lemma 2 Any algorithm for the group gossiping problem
requires Ω(gN) moves in asynchronous ring networks.

In addition, we prove the following lemma from the lower
bound of the node leader election problem in message-
passing systems.

Lemma 3 Any algorithm for the group gossiping problem
requires Ω(N log k′) moves in asynchronous ring networks.

Proof: We show the lemma holds even if the number
of group g is given to each node. For contradiction, assume
that the group gossiping problem is solved with o(N log k′)
moves in any asynchronous ring network. Then, we show
that the node leader election problem with k′ initiator
nodes in message-passing systems is solved with o(N log k′)
messages.

Consider a N -node ring network G = (V,E) in message-
passing systems. Assume that nodes v0, v1, . . . , vN−1 are
located in this order. Let VI be a set of k′ initiator nodes.
To solve the node leader election in G with the initiator
node set VI , we let nodes in G simulate (agent) leader
election in a virtual ring network G′ = (V ′, E′) constructed
as follows: For each vi ∈ VI , replace vi in G by a
path Pi = (v0i , v

1
i , . . . , v

g−1
i), and add links {vi−1, v

0
i }

and {vg−1
i , vi+1} to G. Then, the length of ring G′ is

N ′ = N+(g−1)k′ ≤ 2N . To solve the node leader election
in G, each initiator node vi simulates all of nodes in Pi of
the virtual ring network G′.

Each node can easily simulate the agent algorithm by
sending a state of an agent in a message. Then, the
number of total messages is equal to the number of total
moves of agents. First, each initiator node vi puts g agents
a0i , a

1
i , . . . , a

g−1
i on every node in path Pi. At that time,

each agent aji has an ID (idi, j) and a group ID j, where
idi is the ID of node vi. In the whole virtual ring network,
there exist k = gk′ agents and each group consists of k′

agents. Each agent uses its ID as information to be collected.
In this setting, nodes simulate an algorithm to solve the
group gossiping problem. This is done with o(N ′ log k′) =
o(N log k′) messages. After completing the group gossiping,
each initiator node knows IDs of all initiator nodes. Thus,
the node with the minimum ID can become a leader. After
that, the leader broadcasts its ID with O(N) messages and
then the node leader election problem is solved. Throughout
the algorithm, nodes exchange o(N log k′) messages to solve
the node leader election problem.

However, it is proved in [?] that the lower bound on
messages for the node leader election problem with k′

initiator nodes is Ω(N log k′). This is a contradiction.
From Lemmas 2 and 3, we have the following theorem.

Theorem 5 Any algorithm for the group gossiping problem
requires Ω(N log k′ + gN) moves in asynchronous ring
networks.

C. Asynchronous non-rooted tree networks

In this subsection, we consider asynchronous non-rooted
tree networks without sense of direction. For asynchronous
tree networks, it is proved in [25] that gossiping among
k agents can be solved with O(N) moves. By executing
this algorithm independently for each group, we have the
following theorem.

Theorem 6 The group gossiping problem is solved with
O(gN) moves in asynchronous tree networks.

For the lower bound, we have the following theorem.

Theorem 7 Any algorithm for the group gossiping problem
requires Ω(gN) moves in asynchronous tree networks.

Proof: We consider a N -node line network as a tree
network. Then, we can prove the theorem similarly to
Theorem 3.

D. Asynchronous complete networks without sense of direc-
tion

In this subsection, we consider asynchronous complete
networks without sense of direction. It is proved in [1]
that the message complexity of an algorithm for the node
leader election problem in message-passing systems is
O(N logN). This is the message complexity for an arbitrary
number of initiator nodes in the worst case. It can easily
be shown that the message complexity for k initiator nodes
is O(N log k) by using an algorithm similar to [1]. Thus,
from Theorem 1, k agents can elect a leader in O(N log k)
moves. Since an agent can travel the whole network in O(N)
moves, agents can solve the group gossiping problem in
O(N log k + gN) moves from Lemma 1.

In the following, we reduce the total number of moves
from O(N log k + gN) to O(N log k). This is done by re-
ducing the total number of moves after one leader is elected.
First, we explain the overview of the whole algorithm. In the
first phase, agents execute leader election and then move
back to their home nodes. In the second phase, an elected
leader aℓ traverses the whole network, and recognizes, for
each group, the links incident at aℓ’s home node that connect
to home nodes of the agents in the group. Agent aℓ writes
this information on the whiteboard of its home node to guide
group leaders later. In the third phase, aℓ traverses the whole
network to elect one group leader from each group. In the
fourth phase, each group leader visits every agent in its
group twice. To do this, each group leader first moves to
aℓ’s home node and then visits every agent in its group by
using the information written in the second phase. Note that,
since the sets of nodes visited by group leaders are disjoint
except for aℓ’s home node, the fourth phase requires O(N)
total moves.

We give the details of the algorithm. First, we explain
some important variables on an agent or a whiteboard.

For each agent ai, we denote the ID and the group ID
by ai.id and ai.gid, respectively. Agent ai has a variable
ai.role which indicates the role of ai. The role of ai can
be a candidate (ai.role = candidate), a leader (ai.role =
leader), a non-leader (ai.role = non leader), or a group
leader (ai.role = group leader). At the beginning of the
algorithm, every agent is a candidate. After the first phase,
one agent becomes a leader and others become non-leaders.
After the third phase, one agent in each group becomes a
group leader. Each node v has the following variables in its
whiteboard: v.id, v.gid, v.port label[0, 1, . . . , N − 2], and
v.pleader. If v is the home node of some agent ai, ai first
assigns its ID and group ID to v.id and v.gid respectively.
Variables v.port label[0, 1, . . . , N − 2] and v.pleader store
the information to guide group leaders. We assume every
variable on the whiteboard has ⊥ as its initial value.

In the first phase, each agent assigns its ID and group
ID to v.id and v.gid, and then executes a leader election
algorithm described in the first paragraph of this subsec-
tion. After completing the leader election, each agent goes
back to its home node. This behavior is easily realized by
memorizing its trajectory (i.e., a sequence of port numbers)
and moving based on the reverse of the trajectory. At the
end of the first phase, one agent aℓ is elected as a leader
(i.e., aℓ.role = leader) and others are non-leaders (i.e.,
ai.role = non leader for i ̸= ℓ).

In the second and third phases, only a leader agent aℓ
moves. The pseudocode of the second and third phases
is given in Algorithm 1. In the second phase, for each
port p, aℓ leaves its home node vℓ through port p, visits
a node v, records v’s group ID (if v is a home node of
an agent), returns to vℓ, and then writes v’s group ID to
vℓ.port label[p]. During the second phase, after aℓ moves
from vℓ to some node v, aℓ writes on v.pleader the port
number connecting to vℓ. In the third phase, for each group
except for aℓ’s group, aℓ moves to a home node of one agent
and nominates it as a group leader. At the end of the third
phase, aℓ also becomes a group leader. In the pseudocode,
aℓ uses some additional variables on agents. In line 17, a
leader nominates an agent as a group leader by exchanging
some messages with the agent. The message exchange is
easily realized by using the whiteboard.

In the fourth phase, each group leader ag visits home
nodes of agents in its group twice. The pseudocode of the
fourth phases is given in Algorithm 2. On the first visit ag
collects information of each agent, and on the second visit
ag delivers collected information. Each group leader visits
only home nodes of agents in its group by moving based
on vℓ.port label[0 . . . N − 2]. Each group leader terminates
after it completes delivery of information. Each non-leader
agent terminates after it receives information of all agents
in the same group.

From the above algorithms, the following theorem is
obtained.

Algorithm 1 The second and third phases: the behavior of
leader aℓ.

1: // The second phase
2: for p := 0 to N − 2 do
3: leave through port p and visit v through port q
4: v.pleader := q
5: v gid := v.gid // v.gid =⊥ if v has no home agent
6: leave through port q and go back to vℓ
7: vℓ.port label[p] := v gid
8: end for
9:

10: // The third phase
11: selected := {⊥, aℓ.gid}
12: for p := 0 to N − 2 do
13: if vℓ.port label[p] ∈ selected then
14: continue
15: else
16: leave through port p and visit v
17: wait for a home agent of v and nominate it as a

group leader
18: selected := selected ∪ {v.gid}
19: leave through port v.pleader and go back to vℓ
20: end if
21: become a group leader
22: end for

Algorithm 2 The fourth phase: the behavior of group leader
ag.

1: // vg is the current node of ag .
2: if vg.pleader ̸=⊥ then
3: // vg = vℓ if vg.pleader =⊥ holds.
4: leave through port vg.pleader and visit vℓ
5: end if
6: for p := 0 to N − 2 do
7: if vℓ.port label[p] = ag.gid then
8: leave through port p and visit v
9: wait for the home agent of v and collect informa-

tion
10: leave through port v.pleader and visit vℓ
11: end if
12: end for
13: for p := 0 to N − 2 do
14: if vℓ.port label[p] = ag.gid then
15: leave through port p and visit v
16: deliver information to the home agent of v
17: leave through port v.pleader and visit vℓ
18: end if
19: end for

Theorem 8 The group gossiping problem is solved with
O(N log k) moves in asynchronous complete networks with-
out sense of direction.

Proof: Clearly the above algorithm solves the group
gossiping problem. In the following, we consider the total
number of moves. In the first phase, agents elect a leader
with O(N log k) moves from the algorithm proposed in
[1] and Theorem 1. They return to their home nodes with
the same number of moves. Consequently, the first phase
requires O(N log k) moves. In the second and third phases,
a leader visits all nodes twice with O(N) moves. In the
fourth phase, each group leader visits home nodes of agents
in its group twice. Since the sets of nodes visited by group
leaders are disjoint except for vℓ, the fourth phase requires
O(N) total moves. Therefore, the toal number of moves is
O(N log k) throughout the algorithm.

In the following, we show the lower bound. Similarly to
[1], it can be proved that the message complexity of the node
leader election problem with k initiator nodes is Ω(N log k).
By the proof similar to Lemma 3, we can show the lower
bound is Ω(N log k′). However, since this is not tight, we
prove the tight lower bound by another approach.

Theorem 9 Any algorithm for the group gossiping prob-
lem requires Ω(N log k) moves in asynchronous complete
networks without sense of direction.

Proof: For simplicity, we assume k = 2p and N = qk
hold for some positive integers p, q. Without loss of gen-
erality, we assume a0 and ak−1 belong to the same group.
To prove the lower bound on the total number of moves,
we consider agents that have a communication capability
stronger than that assumed in Section II. To be concrete, we
assume that, when agent ax visits some node v after agent ay
visits v, agents ax and ay can continue to obtain both of ax’s
state and ay’s state after that. We say, in this case, ax and ay
share the states, and denote the relation by ax ≃ ay . Clearly,
the relation ≃ satisfies reflexive law and symmetrical law.
In addition, we assume ≃ satisfies transitive law, that is,
∀ax, ay, az : ax ≃ ay ∧ ay ≃ az ⇒ ax ≃ az holds.
Then, ≃ satisfies equivalence law and consequently a set
of agents can be divided into equivalence classes. We
define [ax] as the equivalence class of ax under ≃, that
is, [ax] = {ay|ay ≃ ax}. We define the territory T (ax)
of ax as the set of nodes visited by an agent in [ax].
From the definition, when agent ay visits a node in T (ax),
equivalence classes [ax] and [ay] are merged. To solve the
group gossiping problem, all agents in the same group must
belong to the same equivalence class.

To prove the lower bound, we consider an (adversary)
scheduler. The scheduler decides the timing of agents’ move-
ments. In addition, we assume the scheduler decides the port
number of each link during execution of an algorithm. That
is, the scheduler assigns a port number to a link on a node
when the port number on the node is first used. When an
agent visits node v through link e, the port number of e on
v is also assigned if it is first used.

Fix an algorithm A that solves the group gossiping
problem. We construct the behavior of the scheduler that
makes agents move Ω(N log k) times to solve the group
gossiping by A.

The behavior of the scheduler is divided into multiple
rounds. The scheduler activates agents independently but
synchronizes them at the end of each round. First, we
consider the 0-th round. During the 0-th round, the scheduler
makes every agent visit N/k nodes on the condition that
no two agents visit the same node. That is, the scheduler
assigns a port number to each link so that no two agents
visit the same node. Then, for every agent ax, [ax] = {ax}
and |T (ax)| = N/k hold. At the end of the 0-th round,
the scheduler makes a2m and a2m+1 (m = 0, 1, . . . , k/2−
1) visit a node in T (a2m+1) and T (a2m), respectively.
Since equivalence classes [a2m] and [a2m+1] are merged,
[a2m] = {a2m, a2m+1} and |T (a2m)| = 2N/k hold. The
total number of moves during the 0-th round is N because
every agent moves N/k times.

After that, the first round starts. Let [ax]1 and T1(ax) be
the equivalence class and territory of ax at the beginning of
the first round, respectively. Then, [a2m]1 = {a2m, a2m+1}
and |T1(a2m)| = 2N/k hold for m = 0, 1, . . . , k/2 − 1.
During the first round, the scheduler makes agents in [a2m]1
move in their territory T1(a2m) as many times as possi-
ble. That is, the scheduler, if possible, chooses an agent
ax ∈ [a2m]1 and assigns a port number so that ax moves
to a node in T1(a2m). If such a behavior is impossible, the
scheduler makes agents move so that an agent in [a4m]1
and [a4m+2]1 (m = 0, 1, . . . , k/4 − 1) moves to a node in
T1(a4m+2) and T1(a4m), respectively. Then, the first round
ends. At that time, [a4m] = {a4m, a4m+1, a4m+2, a4m+3}
and |T (a4m)| = 4N/k hold for m = 0, 1, . . . , k/4− 1. We
consider the total number of moves during the first round.
Assume that, at the end of the first round, agent ax ∈ [a4m]1
(resp., ax ∈ [a4m+2]1) moves from node u ∈ T1(a4m)
(resp., u ∈ T1(a4m+2)) to node v ∈ T1(a4m+2) (resp.,
v ∈ T1(a4m)). This behavior happens because every unused
link around u connects to a node not in T1(ax). In other
words, every link connecting to a node in T1(ax) is used.
From |T1(ax)| = 2N/k, 2N/k − 1 links around u is
used. Note that, before the beginning of the first phase, the
number of used links around u is at most N/k because
|T (ay) = N/k| holds for each ay at the end of the 0-th
round. This implies at least N/k − 1 links around u are
used during the first round. That is, during the first round,
agents in [ax]1 move at least N/k times in total including
the movement from u to v. Since there exist k/2 equivalence
classes, the total number of moves during the first round is
at least N/2.

We can repeat the same discussion for the subsequent
rounds. Consider the i-th round. Let [ax]i and Ti(ax)
be the equivalence class and territory of ax at the be-
ginning of the i-th round, respectively. Then, [a2im]i =

v0 v1

v2

v3v4

v5

1
2

4
1

1

1

1

1

2

2

2

2

2

3 3

3

3

3

3

4

4

4
4

4

5

5

5

5
5

5

v0v0 v1v1

v2v2

v3v3v4v4

v5v5

1
2

4
1

1

1

1

1

2

2

2

2

2

33 33

33

33

33

33

4

4

4
4

4

5

5

5

5
5

5

Figure 1. A complete network with sense of direction of six nodes.

{a2im, a2im+1, . . . , a2i(m+1)−1} and |Ti(a2im)| = 2iN/k
hold for m = 0, 1, . . . , k/2i − 1. Similarly to the first
round, the scheduler makes agents in [a2im]i move in their
territory Ti(a2im) as many times as possible. At the end
of the round, the scheduler makes agents move so that an
agent in [a2i+1m]i and [a2i+1m+2i]i (m = 0, 1, . . . , k/2i−1)
moves to a node in Ti(a2i+1m+2i) and Ti(a2i+1m), respec-
tively. Then, the i-th round ends. We consider the total
number of moves during the i-th round. Assume that, at
the end of the i-th round, agent ax ∈ [a2i+1m]i (resp.,
ax ∈ [a2i+1m+2i]i) moves from node u ∈ Ti(a2i+1m) (resp.,
u ∈ T1(a2i+1m+2i)) to node v ∈ Ti(a2i+1m+2i) (resp.,
v ∈ Ti(a2i+1m)). Since 2iN/k − 1 links around u are used
at that time and at most 2i−1N/k links are used before the
i-th round, 2i−1N/k−1 links are used during the i-th round.
Consequently, agents in each equivalence class move at least
2i−1N/k times in total during the i-th round. Since there
exist k/2i equivalence classes, the total number of moves
during the i-th round is at least N/2.

Lastly, we consider how many rounds are required to
solve the group gossiping problem. Since a0 and ak−1

belong to the same group, a0 and ak−1 must belong to the
same equivalence class. However, this occurs at the end of
the (log k − 1)-th round. This implies Ω(log k) rounds are
required. Since agents move Ω(N) times in total during each
round, agents move Ω(N log k) times in total to complete
the group gossiping problem.

E. Asynchronous complete networks with sense of direction

In this subsection, we consider asynchronous complete
networks with sense of direction. The sense of direction
is given at each node as follows; nodes are denoted by
v0, v1, . . . , vN−1, numbered clockwise in a ring, and for
every i, j (0 ≤ i, j ≤ N − 1, i ̸= j), the port number of link
evivj on vi is (j − i) mod N . Figure 1 shows a complete
network with sense of direction of six nodes.

For this network, we can apply the algorithm proposed in
the previous subsection. In addition, it is proved in [16] that

the message complexity of an algorithm for the node leader
election in message-passing system is O(N). This implies
the first phase of the algorithm requires only O(N) total
moves. Therefore we have the following theorem.

Theorem 10 The group gossiping problem is solved with
O(N) moves in asynchronous complete networks with sense
of direction.

The following lower bound clearly holds since every node
should be visited by at least one agent.

Theorem 11 Any algorithm for the group gossiping prob-
lem requires Ω(N) moves in asynchronous complete net-
works with sense of direction.

F. Asynchronous arbitrary networks

In this subsection, we consider asynchronous arbitrary
networks without sense of direction. For a network G, a
leader election in asynchronous message-passing systems
can be solved by Gallager’s algorithm for constructing a
minimum spanning tree (MST) in G [12]. It is proved
in [12] that the message complexity of the algorithm is
O(N logN +M), where M is the number of links. In [25],
it is proved that, in a network with k initiator nodes, the mes-
sage complexity for constructing a MST is O(N log k+M)
by using Gallager’s algorithm. Therefore, from Theorem
1, leader election among k agents can be solved with
O(N log k +M) moves.

An agent can travel the whole network with O(N) moves
by traversing the constructed MST. Thus, from Lemma 1 and
k ≤ gk′, the following theorem is obtained.

Theorem 12 The group gossiping problem is solved with
O(N log k′ + M + gN) moves in asynchronous arbitrary
networks.

In the following, we consider the lower bound. Clearly,
since every link should be traveled by at least one agent, any
algorithm requires Ω(M) moves. In addition, since arbitrary
networks include ring networks, any algorithm requires
Ω(N log k′ + gN) moves from Theorem 5. Therefore, we
have the following theorem.

Theorem 13 Any algorithm for the group gossiping prob-
lem requires Ω(N log k′ +M+gN) moves in asynchronous
arbitrary networks.

V. CONCLUSION

In this paper, we introduced a concept of agent groups and
formulated the group gossiping problem. We also showed the
upper and lower bounds on the total number of moves to
solve the group gossiping problem for various networks. As
a future work, we would like to study some problems related
to agent groups. For example, it is interesting to consider the

group gathering problem, which requires agents in the same
group to meet at a single node.

REFERENCES

[1] Y. Afek and E. Gafni. Time and message bounds for election
in synchronous and asynchronous complete networks. In
Proc. of the 4th Annual ACM Symposium on Principles of
Distributed Computing, pages 186–195, 1985.

[2] D. Baba, T. Izumi, F. Ooshita, H. Kakugawa, and T. Ma-
suzawa. Linear time and space gathering of anonymous
mobile agents in asynchronous trees. Theoretical Computer
Science, 478:118–126, 2013.

[3] J. Cao and S. K. Das. Mobile agents in networking and
distributed computing. Wiley-Interscience, 2012.

[4] J. Czyzowicz, D. Kowalski, and A. Pelc. Time versus space
trade-offs for rendezvous in trees. Distributed Computing,
27:95–109, 2014.

[5] S. Das, P. Flocchini, A. Nayak, S. Kutten, and N. Santoro.
Map construction of unknown graphs by multiple agents.
Theoretical Computer Science, 385:34–48, 2007.

[6] A. Dessmark, P. Fraigniaud, D. Kowalski, and A. Pelc.
Deterministic rendezvous in graphs. Algorithmica, 46:69–96,
2006.

[7] Y. Dieudonné and A. Pelc. Anonymous meeting in networks.
In Proc. of 24th Annual ACM-SIAM Symposium on Discrete
Algorithms, 2013.

[8] Y. Dieudonné, A. Pelc, and V. Villain. How to meet asyn-
chronously at polynomial cost. In Proc. of 2013 ACM Symp.
on Principles of Distributed Computing, pages 92–99, 2013.

[9] P. Fraigniaud, L. Gasieniec, D. Kowalski, and A. Pelc. Col-
lective tree exploration. Networks, 48:166–177, 2006.

[10] P. Fraigniaud and A. Pelc. Delays induce an exponential
memory gap for rendezvous in trees. ACM Transactions on
Algorithms, 9, 2013.

[11] G. N. Frederickson and N. A. Lynch. Electing a leader in a
synchronous ring. Journal of ACM, 34(1):98–115, 1987.

[12] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed
algorithm for minimum-weight spanning trees. ACM Trans-
actions on Programming Languages and Systems, 5(1):66–77,
1983.

[13] M. Koucký. Universal traversal sequences with backtracking.
Journal of Computer and System Sciences, 65:717–726, 2002.

[14] E. Kranakis, D. Krizanc, and E. Markou. The mobile
agent rendezvous problem in the ring. Synthesis Lectures
on Distributed Computing Theory, Lecture # 1. Morgan &
Claypool Publishers, 2010.

[15] D. B. Lange and M. Oshima. Seven good reasons for mobile
agents. Communications of the ACM, 42(3):88–89, 1999.

[16] M. C. Loui, T. A. Matsushita, and D. B. West. Election in
a complete network with a sense of direction. Information
Processing Letters, 22(4):185–187, 1986.

[17] T. Masuzawa and S. Tixeuil. Quiescence of self-stabilizing
gossiping among mobile agents in graphs. Theoretical Com-
puter Science, 411:1567–1582, 2010.

[18] F. Ooshita, S. Kawai, H. Kakugawa, and T. Masuzawa.
Randomized gathering of mobile agents in anonymous unidi-
rectional ring networks. IEEE Transactions on Parallel and
Distributed Systems, 25:1289–1296, 2014.

[19] P. Panaite and A. Pelc. Exploring unknown undirected graphs.
Journal of Algorithms, 33:281–295, 1999.

[20] A. Pelc. Deterministic rendezvous in networks: A compre-
hensive survey. Networks, 59:331–347, 2012.

[21] G. L. Peterson. An o(n logn) unidirectional algorithm
for the circular extrema problem. ACM Transactions on
Programming Languages and Systems, 4(4):758–762, 1982.

[22] O. Reingold. Undirected connectivity in log-space. Journal
of ACM, 55, 2008.

[23] M. Shibata, S. Kawai, F. Ooshita, H. Kakugawa, and T. Ma-
suzawa. Algorithms for partial gathering of mobile agents in
asynchronous rings. In Proc. of 16th Int’l Conf. on Principles
of Distributed Systems, pages 254–268, 2012.

[24] M. Shibata, F. Ooshita, H. Kakugawa, and T. Masuzawa.
Move-optimal partial gathering of mobile agents in asyn-
chronous trees. In Proc. of 21st Int’l Colloquium on Structural
Information and Communication Complexity, 2014.

[25] T. Suzuki, T. Izumi, F. Ooshita, H. Kakugawa, and T. Ma-
suzawa. Move-optimal gossiping among mobile agents.
Theoretical Computer Science, 393:90–101, 2008.

