
酵素を用いた数値膜計算における
基本演算およびソートの実現

(Enzymatic Numerical P Systems for basic operations and sorting)

Shohei Maeda and Akihiro Fujiwara
Graduate School of Computer Science and Systems Engineering

Kyushu Institute of Technology
Iizuka, Fukuoka, 820-8502, Japan

Abstract—Membrane computing, which is a computational
model inspired by the structures and behaviors of living cells, has
considerable attention as one of non-silicon based computing. In
the present paper, we propose EN P systems for basic operations,
and sorting.
We first propose three EN P systems for computing three logic

operations, OR, AND, and EX-OR functions. All of the EN P
systems work in a constant number of steps.
Next, we propose two EN P systems that operates as a half

adder and a full adder, and then, propose two EN P system for
additions of two binary numbers and n binary numbers. We
show the EN P systems for two additions work in O(m) steps
and O(nm) steps, respectively.
Finally, we propose two EN P systems for sorting. We propose

an EN P system for compare-and-exchange operation. Then,
using the EN P system as sub-systems, we propose an EN P
system for sorting n numbers, and show that the EN P system
works in O(n) steps.

I. INTRODUCTION

Membrane computing, which is a representative example of
natural computing, is a computational model inspired by the
structures and behaviors of living cells. In the initial study
on membrane computing, a basic feature of the membrane
computing was introduced by Păun[1] as a P system. In the
P system, activities in living cells are considered as parallel
computing. In [2], [3], algorithms of P system for logical
function and additions have been proposed as basic operations.
As a derived model of the P system, A Numerical P system,

which is inspired from structures of living cells and economics,
has been introduced in [4] by Păun. Each region of numerical
P system contains a number of numerical variables that are
evolved according to a program. Each program consists of a
production function and a repartition protocol. The production
function calculates an output value from numerical variables
of the same region, and the output value is distributed into
the region and neighboring regions, which are outside and
inside regions, by a repartition protocol. Enzymatic Numerical
P systems [5] (EN P systems, for short) is also a model such
that a number of variables, which is called enzyme, is used to
promote evolution programs.
In the present paper, we propose EN P systems for logic

operation, additions, and sorting. we first propose three EN P
systems for computing OR, AND, and EX-OR functions. All
of the proposed EN P system work in a constant number of

steps by using O(1) variables, O(1) membranes, and a constant
number of programs.
Second, we propose four EN P systems for additions. The

first and second EN P systems operates as a half adder and a
full adder, respectively. Both EN P systems work in a constant
number of steps by using O(1) variables, O(1) membranes,
and a constant number of programs. The third and fourth EN
P systems are for addition of binary numbers of m bits. The
third EN P system computes addition of two binary numbers
of m bits, and works in O(m) steps by using O(m) kinds of
variables, O(m) membranes, and programs of size O(m). The
fourth P system computes addition of n binary numbers of m
bits by using the above EN P system as a sub-system. The
EN P system for the addition works in O(nm) steps by using
O(nm) kinds of variables, O(nm) membranes, and programs
of size O(nm).
Finally, we propose two EN P systems for sorting. The first

EN P system executes a compare-and-exchange operation for
two integers in constant number of steps by using O(1) vari-
ables, O(1) membrane, and a constant number of programs.
The second EN P system executes sorting for n integers. The
EN P system is based on an idea of the odd-even sort [6], and
works in O(n) steps by using O(n) types of variables, O(n)
size of membrane, and programs of size O(n).

II. PRELIMINARIES

A. Enzymatic numerical P systems

In the P system, a membrane is a computing cell, in which
independent computation is executed, and may contain objects
and other membranes. In other words, the membranes form
nested structures. In the present paper, each membrane is
denoted by using a pair of square brackets, and the number
on the right-hand side of each right-hand bracket denotes the
label of the corresponding membrane.
For example, [[]2 []3]1 and Fig. 1 denote the same

membrane structure that consists of three membranes. The
membrane labeled 1 contains two membranes labeled 2 and
3.
We now describe details of the numerical P system. The

Numerical P system and the sets used in the system are defined
as follows.

ΠNP = (m, H,μ, (Vm, Pm, Vm(0)), . . . , (Vm, Pm, Vm(0)), Vo))

Fig. 1. An example of membrane structure

m: m is the number of membranes in the system.
H : H is a set of labels for membranes. In the present

paper, we always use consecutive integer labels such
that H = {1, 2, · · · , m}. (We assume that a mem-
brane labeled 1, which is called the skin membrane,
is the outermost membrane, i.e., the skin membrane
contains all of the other membranes.)

μ: μ is membrane structure that consists of m mem-
branes. Each membrane in the structure is labeled
with an element in H .

Vi: Vi is a set of numerical variables in the membrane
labeled i.

Pi: Pi is a set of programs in the membrane labeled i.
Vi(0): Vi(0) is a set of initial values of variables in the

membrane labeled i.
Vo: Vo is a set of output variables.

The elements of Vi are written in the form xj,i(t), where j
is an integer running from 1 to |Vi| at step t. In this paper, Vo

is included in the outermost region of the system.
We next formally define a k-th program prk,i ∈ Pi, which

is a program applied in membrane labeled i, as follows.

prk,i = {Fk,i(y1,i, . . . , ylk,i)
→ ck,1|v1 + ck,2|v2 + . . . ck,ni |vni)}

In the above expression, Fk,i(y1,i, . . . , ylk,i) is called a pro-
duction function and computed as arguments y1,i, . . . , ylk,i ⊂
Vi. ck,1|v1 + ck,2|v2 + . . . ck,ni |vni is called a repartition
protocol. {v1, . . . , vni} is a set of variables in the region
and in neighboring regions, which are outside and inside
regions, and a repartition protocol allocates an output of
Fk,i(y1,i, . . . , ylk,i) to the variables according to coefficients
{ck,1, . . . , c,ni} ⊂ N.
The numerical P system is executed repeatedly according

to the following procedure.

(1) Select an applicable program in each region.
(2) Calculate the production functions of the selected

programs.
(3) Change the variables used in production functions or

repartition protocols to zero.
(4) Allocate output values of (2) according to repartition

protocols.

We next describe details of the enzymatic numerical P
system. The EN P system is a model such that a number of
variables, which are called enzyme, in the numerical P systems
is used to promote evolution programs. The enzyme in the
membrane labeled i is denoted by ei.

TABLE I
OR FUNCTION

Input 1: x1,1 Input 2: x2,1 Output: xout

-1 -1 -1
-1 -2 -2
-2 -1 -2
-2 -2 -2

We formally define EN P system ΠENP as follows.

ΠENP = (m, H, μ, (V1, P1, V1(0)), . . . , (Vm, Pm, Vm(0)), Vo)

The above definition is the same as the numerical P system
because an enzyme is just a numerical variable of the numer-
ical P system. The enzymes ei are written in the form ej,i(t),
where j is an integer running from 1 and |Vi| at step t in the
same way as xj,i(t).
We next formally define a k-th program prk,i, which is a

program applied in membrane labeled i as follows.

prk,i = {Fk,i(y1,i, . . . , ylk,i)|ej,i

→ ck,1|v1 + ck,2|v2 + . . . + ck,ni |vni}
In case that ej,i(t) > min{y1,i(t), . . . , ylk,i(t)} at step t, the

enzyme works as catalyst, and then the program is applicable.
In this paper, the EN P system is executed repeatedly

according to the following procedure.

(1) Select applicable programs in which enzymes are
used.

(2) Select an applicable program in each region.
(3) Calculate the production functions of the selected

programs.
(4) Change the variables that used in the production

functions or repartition protocols to zero.
(5) Allocate output values of (3) by repartition protocols.

The above EN P system has two features, which are max-
imal parallelism and non-determinism. Maximal parallelism
means that all applicable programs are applied in parallel.
(However, only one program is applied in a membrane.) On the
other hand, non-determinism means that applicable programs
are non-deterministically chosen in case that there are several
possibilities of the applicable programs.

III. LOGIC FUNCTIONS

A. Input and output for OR function

In this section, we first consider simple EN P system that
computes two input OR functions. An input of the function
is two binary bits x1,1, x2,1, and we assume that -1 and -2
denotes general binary numbers 0 (FALSE) and 1 (TRUE),
due to computation on the EN P system. Then, outputs of the
function on the EN P system are defined in Table I.

B. An overview of EN P system

We now describe an overview of an EN P system for the
OR function. The EN P system consists of inner and outer
membranes, i.e. membrane structure of the EN P system is
[[]2]1.

The computation in the EN P system mainly consists of the
following 3 steps.

Step 1: Compute a sum s of two input value. (s is -2 in
case of the output is 0, otherwise, the sum is -3 or
-4.)

Step 2: Compute two values from the sum of Step 1. The
first value is −s + 3 such that the value is 0 if and
only if the output is FALSE. The second value is
s + 2 such that the value is negative if and only if
the output is TRUE.

Step 3: Send out an output value depending on the result
of Step 2. In case that the result of the first value in
Step 2 is a negative value, a value −1 is sent out as
FALSE. On the other hand, a value −2 is sent of as
as TRUE in case that the result of the second value
in Step 2 is negative.

C. Details of EN P system

We now show details of each step of the EN P system for
the OR function.
Step 1 is executed by applying the following program pr1,1

to two input values x1,1 and x2,1.
(A programs for the outer membrane)

pr1,1 = {2(x1,1 + x2,1)|e1,1 → 1|x3,1 + 1|x1,2}
In this step, a sum s of two input value is computed from

two input values, and the sum is copied to two variable x3,1

and x1,2. (x3,1 is a variable in the outer membrane, and x1,2

is a variable in the inner membrane.)
Step 2 is executed by applying the following two programs

pr2,1 and pr1,2 in the outer and inner membranes, respectively.
(A program for the outer membrane)

pr2,1 = {−x3,1 − 3|e1,1 → 1|x4,1}
(A program for the inner membrane)

pr1,2 = {x1,2 + 2|e1,2 → 1|x5,1}
In this step, two values are computed in the outer and inner

membranes in parallel. The first value −s − 3 is computed
according to pr2,1 in the outer membrane, and the value is
copied to x4,1 in the same membrane. The second value s+2
is computed according to pr1,2 in the inner membrane, and
the value is copied to x5,1 in the outer membrane.
Step 3 is executed by applying one of the following two

programs pr3,1 and pr4,1 according to two values x4,1 and
x5,1.
(A program for the outer membrane)

pr3,1 = {x4,1|e1,1 → 1|xout}
pr4,1 = {−2 + 0x5,1|e1,1 → 1|xout}

In this step, a value xout is determined by two values x4,1

and x5,1. In case that x4,1 is negative, an output is FALSE,
and a variable xout is set to −1. Otherwise, x5,1 is negative,
and a variable xout is set to −2 as TRUE.

Fig. 2. EN P system for the OR function

TABLE II
AN EXECUTION OF ΠOR

Initial value Step 1 Step 2 Step 3
Input 1: x1,1 -1 0 0 0
Input 2: x2,1 -2 0 0 0
Variable x3,1 0 -3 0 0
Variable x4,1 0 0 0 0
Variable x5,1 0 0 -1 0
Enzyme e1,1 0 0 0 0
Variable x1,2 0 -3 0 0
Enzyme e1,2 0 0 0 0
Output xout - - - -2

We summarize the EN P system for the OR function ΠOR

and the sets used in the system as follows.

ΠOR = (2, H, μ, (V1, P1, V1(0)), (V2, P2, V2(0)), Vo)

• H = {1, 2}
• μ = [[]2]1
• V1 = {x1,1, x2,1, x3,1, x4,1, x5,1, e1,1}
• P1 = pr1,1 ∪ pr2,1 ∪ pr3,1 ∪ pr4,1

• V1(0) = (α1, α2, 0, 0, 0, 0)
• V2 = {x1,2, e1,2}
• P2 = pr1,2

• V2(0) = (0, 0)
• Vo = {xout}
The above system ΠOR is also illustrated in Fig. 2.
In addition, Table II shows an example of variables in

execution on ΠOR in case of x1,1 = −1 and x2,1 = −2.

D. Complexity and other logic operations

Since the number of types of variable in the EN P system
ΠOR is O(1), and O(1) kinds of programs are used, we obtain
the following theorem for ΠOR.
Theorem 1: The EN P system ΠOR, which computes OR

function, works in O(1) steps by using O(1) types of variables,
a constant number of membranes, and programs of size O(1).

�

We can also propose two EN P systems ΠAND and ΠEX-OR

for other two logic operations, AND and EX-OR, using a
similar idea, and obtain the following theorems for ΠAND

and ΠEX-OR. (We omit details of the EN P systems due to
space limitation.)
Theorem 2: The EN P systems ΠAND, which computes

AND function, works in O(1) steps by using O(1) types of

TABLE III
HALF ADDER

xin1 xin2 x1,1 Carry: xcarry Sum: xsum

-1 -1 -2 -1 -1
-1 -2 -3 -1 -2
-2 -1 -3 -1 -2
-2 -2 -4 -2 -1

variables, a constant number of membranes, and programs of
size O(1). �

Theorem 3: The EN P systems ΠEX-OR, which computes
EX-OR function, works in O(1) steps by using O(1) types of
variables, a constant number of membranes, and programs of
size O(1). �

IV. ADDITION

A. Input and output for a half adder

In this section, we first consider an EN P system that
executes computation of a half adder of two inputs. We assume
that -1 and -2 denotes general binary numbers 0 (FALSE)
and 1 (TRUE), due to computation on the EN P system. In
addition, we assume that an input of the function is x1,1, which
is a sum of two input binary bits xin1 , xin2 because the sum is
easily computed on the EN P system. Outputs of the function
on the EN P system are a carry bit and a sum, which are
defined in Table III.

B. An overview of EN P system

We now describe an overview of an EN P system for the
half adder. The EN P system consists of a main membrane,
and the main membrane includes two EN P systems ΠAND

and ΠEX-OR, which are described in the previous section, as
sub-system. We define that an output of ΠEX-OR is x2,1 and
an output of ΠAND is x3,1.
The computation on the EN P system mainly consists of

the following 2 steps.

Step 1: Move input values in the main membrane into
ΠAND and ΠEX-OR.

Step 2: Compute a carry bit and a sum in ΠAND and
ΠEX-OR, respectively, and send out the two values
to the main membrane.

Step 3: Send out an output value of ΠAND as a carry bit
of the half adder, and send out an output value of
ΠEX-OR as a sum of the half adder.

C. Details of EN P system

We now show details of each step of the EN P system for
the half adder.
Step 1 is executed by applying the following program pr1,1

to input values x1,1.
(A programs for membrane 1)

pr1,1 = {2x1,1|e1,1 → 1|x1,EX-OR + 1|x1,AND}
In this step, an input variable x1,1 is copied to a variable

x1,EX-OR in ΠEX-OR and a variable x1,AND in ΠAND.

Fig. 3. EN P system for the half adder

In Step 2, two values are computed from EN P systems
ΠEX-OR and ΠAND , and the two output value are sent out
from the two sub-systems to x2,1 and x3,1, respectively.
Step 3 is executed by applying one of the two programs

pr2,1 or pr3,1.
(A program for membrane 1)

pr2,1 = {x2,1|e1,1 → 1|xsum}
pr3,1 = {x3,h|e1,h

→ 1|xcarry}
After application of the above programs, the output values

xcarry and xsum are sent out as a carry and a sum of half
adder, respectively.
We summarize the EN P system for the half adder ΠHADD

and the sets used in the system as follows.

ΠHADD = (6, H, μ, (V1, P1, V1(0)), V PAND, V PEX-OR, Vout)

• H = {h, HEX-OR, HAND}
– HEX-OR: a label of ΠEX-OR

– HAND: a label of ΠAND

• μ = [μEX-OR μAND]h
– μEX-OR: μEX-OR is the membrane structure of

ΠEXOR

– μAND: μAND is the membrane structure of ΠAND

• V ar1 = {x1,1, x2,1, x3,1, e1,1}
• Par1 = pr1,1 ∪ pr2,1 ∪ pr3,1

• V ar1(0) = (β, 0, 0, 0)
• V PAND: V PAND is the set of (Vi, Pi, Vi(0)) in ΠAND.
• V PEX-OR: V PEX-OR is the set of (Vi, Pi, Vi(0)) in

ΠEX-OR.
• Vout = {xsum, xcarry}
The above system ΠHADD is also illustrated in Fig. 3.
In addition, Table IV shows an example of variables in

execution on ΠHADD in case of x1,1 = −3. In the example,
we assume that program pr2,1 is applied before application of
program pr3,1.

D. Complexity and other operations

Since the number of types of variable in the EN P system
ΠHADD is O(1), and O(1) kinds of programs are used, we
obtain the following theorem for ΠHADD .
Theorem 4: The EN P system ΠHADD , which executes

computation of a half adder of two inputs, works in O(1)

TABLE IV
AN EXECUTION OF ΠHADD

Initial value Step 1 · · · Step 4 Step 5 Step 6
Input: x1,1 -3 0 0 0 0
Variable x2,1 0 0 -2 0 0
Variable x3,1 0 0 -1 -1 0
Enzyme e1,1 0 0 0 0 0
Variable xsum - - - -2 -2
Output xcarry - - - - -1

steps by using O(1) types of variables, a constant number of
membranes, and programs of size O(1). �

We can also propose three EN P systems ΠFADD , Π2ADD

and ΠnADD for other three operations, which are a full adder,
addition of two binary numbers of m bits, and addition of n
binary numbers of m bits, using a similar idea. We obtain the
following theorems for ΠFADD , Π2ADD , and ΠnADD . (We
omit details of the EN P systems due to space limitation.)
Theorem 5: The EN P system ΠFADD , which executes

computation of a full adder, works in O(1) steps by using
O(1) types of variables, a constant number of membranes,
and programs of size O(1). �

Theorem 6: The EN P system Π2ADD, which computes
addition of two binary numbers ofm bits, works in O(m) steps
by using O(m) types of variables, O(m) kinds of membranes,
and programs of size O(m). �

Theorem 7: The EN P system ΠnADD, which computes
addition of n binary numbers of m bits, works in O(nm)
steps by using O(nm) types of variables, O(nm) kinds of
membranes, and programs of size O(nm). �

V. COMPARE-AND-EXCHANGE AND SORTING

A. Input and output for compare-and-exchange

In this section, we first consider an EN P system that
executes compare-and-exchange operation for two input val-
ues. Inputs are two negative integers, x1,1, x2,1, and we also
assume that x1,1 and x2,1 are values between -1 to nmin−1+1,
where nmin is the minimum values on the EN P system. (The
assumption is considered due to computation on the EN P
system.)
The result of the computation is outputted to xlarge and

xsmall. xlarge and xsmall are larger and smaller values of the
inputs, respectively.

B. An overview of EN P system

We now describe an overview of an EN P system for the
compare-and-exchange. The membrane structure of the EN P
system is [[[]3]2 []4]1.
The computation on the EN P system mainly consists of

the following 5 steps.
Step 1: Compute x1,1 − 0.1.
Step 2: Copy the value of Step 1 to variable v1 and enzyme

e1 and copy the inputs x2,1 to variable v2 and enzyme
e2.

Step 3: Compare v1 and e2, and compare v2 and e1.
Step 4: Send out a smaller value according to a result of

Step 3. In case that the result of the first comparison

in Step 3 is v1 < e2, send out v1 as a smaller value,
otherwise, send out v2 as a small value.

Step 5: Send out a larger value according to a result of
Step 3. In case that the result of the first comparison
in Step 3 is v1 < e2, send out e2 as a larger value,
otherwise send out e1 as a larger value.

C. Details of EN P system

We now show details of each step of the EN P system for
the compare-and-exchange.
Step 1 is executed by applying a program pr1,1 to an input

value x1,1.
(A programs for membrane 1)

pr1,1 = {4(x1,1 − 0.1)|e1,1 → 1|x3,1 + 1|x5,1 + 1|x1,2 + 1|x3,2}
In this step, x1,1 − 0.1 is computed, and the result is copied to

four variable x3,1, x5,1, x1,2, and x3,2. (x3,1 and x5,1 are variables
in membrane 1, and x1,2 and x3,2 are variables in membrane 2.)
Step 2 is executed by applying the following two programs pr2,1

and pr1,2 in membrane 1 and membrane 2, respectively.
(A program for membrane 1)

pr2,1 = {4x2,1|e1,1 → 1|x4,1 + 1|x6,1 + 1|x2,2 + 1|x4,2}
(A program for membrane 2)

pr1,2 = {x5,2 − 0.1 + 0x1,2|e1,2 → 1|x5,2}
In this step, input x2,1 is copied to four variable x4,1, x6,1, x2,2,

and x4,2 by pr2,1. (x4,1 and x6,1 are variables in membrane 1, and
x2,2 and x4,2 are variables in membrane 2.) A formula x5,2 − 0.1 is
computed by program pr1,2, and the result is copied to x5,2.
Step 3 is executed by applying the following program pr2,2.

(A program for membrane 2)

pr2,2 = {x5,2 − 0.1 + 0x2,2|e1,2 → 1|x5,2}
In this step, x5,2 − 0.1 is computed by program pr2,2, and the

result is copied to x5,2. Then, x5,2 = −0.2, and the value denotes a
finish of comparison of the two values x1,1 and x2,1.
In addition, a result of the comparison is set to an enzyme by

applying the following program pr3,2 and pr4,2.
(A program for membrane 2)

pr3,2 = {x5,2|e2,2 → 1|e3,2}
pr4,2 = {2x3,2|e3,2 → 1|e2,1 + 1|x1,3}

In this step, x5.2 is copied to e3,2 by pr3,2, and then, x3.2 is copied
to e2,1 and x1,3 by pr4,2.
Step 4 is executed by applying the following programs pr3,1, pr5,1,

pr5,2, and pr1,3. (At first, programs pr3,1 and pr5,2 are applied, and
then program pr1,3 is applied.)
(A program for membrane 1)

pr3,1 = {2(x3,1 + 0.1 + 0x4,1)|e2,1 → 1|xlarge + 1|x1,4}

(A program for membrane 2)

pr5,2 = {x4,2|e3,2 → 1|e3,1}

(A program for membrane 3)

pr1,3 = {nmin−1 + 0x1,3|e1,3 → 1|e3,2}

Fig. 4. EN P system for the compare and exchange

In this step, a larger value x1,1 is sent out to xlarge by pr3,1, and
the value is copied to x1,4. A value x4,2 is also copied to e3,1 by
pr5,2. In addition, e3,2 is reset to nmin−1 by pr1,3.
Finally, Step 5 is executed by applying the following two pro-

grams, pr5,1 and pr1,4.
(A program for membrane 1)

pr5,1 = {x5,1 + 0.1|e3,1 → 1|xsmall}
(A program for membrane 4)

pr1,4 = {2nmin−1 + 0x1,4|e1,4 → 1|e1,1 + 1|e2,1}
In this step, a smaller value x2,1 is sent out to xsmall by pr5,1,

and e1,1 and e2,1 are reset to nmin−1 by pr5,2.
We summarize the EN P system for the compare-and-exchange

function ΠCMPEX and the sets used in the system as follows.

ΠCMPEX = (4, H,μ, (V1, P1, V1(0)), (V2, P2, V2(0)),

(V3, P3, V3(0)), (V4, P4, V4(0)), Vout)

• H = {1, 2, 3, 4}
• μ = [[[]3]2 []4]1
• V1 = {x1,1, x2,1, x3,1, x4,1, x5,1, x6,1, e1,1, e2,1, e3,1}
• P1 = pr1,1 ∪ pr2,1

• V1(0) = (γ1, γ2, 0, 0, 0, 0, 0, nmin−1, nmin−1)
• V2 = {x1,2, x2,2, x3,2, x4,2, x5,2, e1,2, e2,2, e3,2}
• P2 = pr1,2 ∪ pr2,2 ∪ pr3,2 ∪ pr4,2 ∪ pr5,2

• V2(0) = (0, 0, 0, 0, 0, −0.2, −0.1, nmin−1)
• V3 = {x1,3, e1,3}
• P3 = pr1,3

• V3(0) = (0, 0)
• V4 = {x1,4, e1,4}
• P4 = pr1,4

• V4(0) = (0, 0)
• Vout = {xlarge, xsmall}
The above system ΠCMPEX is also illustrated in Fig. 4.
In addition, Table V shows an example of variables in execution

on ΠCMPEX in case of x1,1 = −3 and x2,1 = −8.

D. Complexity and sorting
Since the number of types of variable in the EN P system

ΠCMPEX is O(1), and O(1) kinds of programs are used, we obtain
the following theorem for ΠCMPEX .
Theorem 8: The EN P system ΠCMPEX , which computes the

compare-exchange operation, works in O(1) steps by using O(1)
types of variables, a constant number of membranes, and programs
of size O(1). �

We can also propose an EN P system ΠOddEven for soring.
The EN P system is based on the odd-even sort [6], which is a

TABLE V
AN EXECUTION OF ΠCMPEX

Initial value Step 1 Step 2 Step 3 Step 4 Step 5
x1,1 -3 0 0 0 0 0
x2,1 -8 -8 0 0 0 0
x3,1 0 -3.1 -3.1 -3.1 0 0
x4,1 0 0 -8 -8 0 0
x5,1 0 -3.1 -3.1 -3.1 -3.1 0
x5,1 0 0 -8 -8 -8 0
e0,1 0 0 0 0 0 0
e1,1 -10 -10 -10 -3.1 -3.1 -10
e2,1 -10 -10 -10 -10 -8 -10
x1,2 0 -3.1 0 0 0 0
x2,2 0 0 -8 0 0 0
x3,2 0 -3.1 -3.1 0 0 0
x4,2 0 0 -8 0 0 0
x5,2 0 0 -0.1 0 0 0
e0,2 0 0 0 0 0 0
e1,2 -10 -10 -10 -3.1 -3.1 -10
e2,2 0 0 0 0 -3.1 0
x1,3 0 0 0 0 0 0
e1,4 0 0 0 0 0 0
x1,4 0 0 0 0 -3 0

xlarge - - - - -3 -3
xsmall - - - - - -8

well-known parallel sorting algorithm. For ΠOddEven, we obtain the
following theorem. (We omit details of the EN P systems due to
space limitation.)
Theorem 9: The EN P system ΠOddEven, which performs the

odd-even sort for n inputs, works in O(n) steps by using O(n) types
of variables, O(n) kinds of membranes, and programs of size O(n).

�

VI. CONCLUSIONS
In the present paper, we proposed EN P systems for logic opera-

tions, additions and a sorting. As future work, we are considering an
EN P system using the fewer number of membranes and programs.

REFERENCES

[1] G. Păun, “Computing with membranes,” Journal of Computer and System
Sciences, vol. 61, no. 1, pp. 108–143, 2000.

[2] A. Leporati and C. Zandron, “P systems with input in binary form,”
International Journal of Foundations of Computer Science, vol. 17, pp.
127–146, 2006.

[3] A. Fujiwara and T. Tateishi, “Logic and arithmetic operations with a
constant number of steps in membrane computing,” International Journal
of Foundations of Computer Science, vol. 22, no. 3, pp. 547–564, 2011.

[4] G. Păun and R. Păun, “Membrane computing and economics: Numer-
ical p systems,” Fundamenta Informaticae, vol. 73, pp. 213–227, 2006.

[5] A. Pavel, O. Arsene, and C. Buiu, “Enzymatic numerical p systems -
a new class of membrane computing systems,” IEEE Fifth International
Conference on BioInspired Computing: Theories and Applications (BIC-
TA), pp. 1331–1336, 2010.

[6] N. Haberman, “Parallel neighbor-sort(or the glory of the induction prin-
ciple),” CMU Computer Science Report, 1972.

