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Abstract—In this paper, we consider a new variant of
the minimum weight vertex cover problem (MWVC) in
which each vertex can cover a fractional amount of edges
incident on it. For example, if the degree of a vertex is
five and the designated fraction is 2/3, then it can cover
at most ⌈(2/3)× 5⌉ = 4 edges among five incident edges.
This problem is motivated by a sustainable monitoring of
the environment by a set of agents placed at the vertices
of graph G so that the failure of agents can be easily
recovered by its nearby agents within a short time. This
paper investigates the computational complexity of this
optimization problem. More specifically, we show that the
number of vertices of odd degree, denoted as no, plays a
key role in determining the hardness of the problem, so
that when the given fraction is 1/2, the complexity of the
problem increases as no increases, i.e., it can be solved in
polynomial time when no = O(1), although it cannot be
approximated within an arbitrary constant factor when
no = n, where n is the total number of vertices in the
given graph.

Index Terms—Minimum weight vertex cover problem,
computational complexity, APX-hardness.

I. INTRODUCTION

Let G = (V,E) be an undirected graph with vertex
set V and edge set E, and let w be a weight function
from V to R+. In the following, we call w(u) the weight
of vertex u. A vertex cover of G is a subset of V such
that any edge in E has at least one end-vertex in the
subset. Minimum weight vertex cover problem (MWVC,
for short) is the problem of finding a vertex cover with
minimum weight. In the following, we refer to MWVC
with w(u) = 1 for all u’s as MVC, for brevity.

A. Related Work

The computational complexity of MWVC and MVC
has been extensively investigated during past decades.
MVC is NP-hard even for planar graphs [8], while it
is polynomially solvable for bipartite graphs, chordal
graphs, graphs with bounded treewidth, and others [3].
It has a simple 2-approximation algorithm based on the
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maximal matching, while it is hard to approximate within
an arbitrary constant factor unless P = NP , i.e., APX-
hard1 [11].

Several variants of MVC have also been investigated
in the literature. Minimum connected vertex cover prob-
lem is the problem of finding a minimum vertex cover
which induces a single connected component of G. This
problem is known to be NP-hard even for planar graphs
of maximum degree 4 [7], which was later refined to
be planar bipartite graphs with maximum degree 4 [5],
while it is polynomially solvable when the degree of the
input graph is bounded by 3 [12]. As for the approx-
imability of the problem, it is known that the minimum
connected vertex cover problem is 2-approximable [2].
Capacitated vertex cover problem (CVC, for short) is
a variant of MWVC in which each vertex is given a
capacity and the number of incident edges covered by a
vertex is bounded by the capacity of the vertex [9]. It is
known that CVC is 2-approximable, and several fixed-
parameter algorithms have been proposed for CVC and
its variants [10]. Maximum partial vertex cover problem
is the problem of, given two integers k ≥ 0 and t ≥ 0,
determining whether there exists a vertex subset U ⊆ V
of size at most k such that U covers at least t edges in G
[4]. It admits a 2-approximation similar to other variants
of MVC [4], [6] and the connection to fixed-parameter
algorithms is deeply investigated in [10].

B. Our Contribution

In this paper, we consider a new variant of MWVC
in which each vertex can cover a fractional amount of
edges incident on it. The problem we will consider in
this paper is formally stated as follows. Let ρ be a real
in (0, 1]. A vertex cover with fan-out bound ρ is a
vertex subset U(⊆ V ) and a function f : E → U such
that:

1A problem is said to be APX-hard if there is a PTAS reduction
from every problem in APX to that problem, where APX is a
subclass of NP problems which admit constant-factor approximation
algorithms. It is known that any APX-hard problem does not admit
an approximation scheme with arbitrarily small approximation factor,
unless P = NP .



• f(e) = u implies u ∈ e, i.e., every edge must be
covered by a vertex in U incident on it, and

• for all u ∈ U , the number of edges assigned to u
must not exceed ⌈ρ× d(u)⌉, where d(u) denotes
the degree of u in G.

MWVC with fan-out bound ρ, abbreviated as ρ-MWVC
hereafter, is the problem of finding a minimum weight
vertex cover under fan-out bound ρ. Note that this is a
generalization of MWVC since “ρ = 1” corresponds to
the ordinary MWVC and this is a special case of CVC
so that the capacity of the vertices is controlled by a
single parameter ρ.

A motivation of introducing fan-out bound to MWVC
is to realize a sustainable monitoring of the environment
by several agents. In an ordinary setting, given a network
modeled by graph G, the agent placed at a vertex is
expected to cover all edges incident on it (e.g., hallways
in a musium). In addition, to reduce the cost of the
monitoring as much as possible, the number of agents
to be deployed must be minimized, which is attained
by solving MWVC for graph G (although it is NP-
hard). In other words, it is commonly requested that
agents are placed at the vertices so that the number of
edges covered by two agents is as small as possible (if
every edge is covered by exactly one end-vertex, then it
naturally derives a minimal vertex cover of G). However,
such a rigid assignment is not robust against failures. In
fact, if an agent crushes, we need to reconfigure a large
portion of the assignment of agents, and in many cases,
we need to deploy a new agent as a substitute of the
crushed one which generally takes (at least) few hours
before completing the recovery. On the other hand, if
the fan-out of each vertex u is bounded by ⌈ρ× d(u)⌉
for an appropriate ρ < 1, the role of a crushed agent
can be efficiently taken over by its nearby agents, which
significantly reduces the recovery time. In addition, by
bounding the number of edges actually monitored by
each agent by a certain value, we can reduce the load
of each agent, while it increases the number of agents
necessary to cover all edges. As such, parameter ρ
used in the definition of the problem effectively controls
the residual availability of each agent, which strongly
motivates us to investigate the property of the new
problem, including the computational complexity and the
existence of polynomial time algorithms for special cases
(note that since ρ-MWVC is at least as hard as MWVC,
we need to make some restrictions on the problem to
derive positive results).

Main results derived in this paper are summarized as
follows: 1) (1/2)-MWVC is polynomially solvable if the
number of vertices of odd degree is bounded by O(1);

and 2)
(

r
2r−1

)
-MWVC for (2r − 1)-regular graphs2 is

APX-hard for any fixed r ≥ 3. Since⌈
r

2r − 1
× (2r − 1)

⌉
=

⌈
1

2
× (2r − 1)

⌉
= r

holds,
(

r
2r−1

)
-MWVC is equivalent to (1/2)-MWVC

for (2r − 1)-regular graphs. Thus the above results
indicate that when ρ = 1/2, the complexity of ρ-MWVC
strongly depends on the number of vertices of odd
degree, namely, although the problem is polynomially
solvable if the number of such vertices is small, it is hard
to approximate within an arbitrary factor if the number
of such vertices is n even if the underlying graph is
restricted to be regular.

The remainder of this paper is organized as fol-
lows. Section II describes elementary results. Section III
describes positive results including a polynomial time
algorithm for a subclass of instances. Section IV gives a
proof of the APX-hardness. Finally, Section V concludes
the paper with future work.

II. ELEMENTARY RESULTS

Since any subset U ⊆ V can cover at most∑
u∈V ⌈ρ× d(u)⌉ edges under fan-out bound ρ, param-

eter ρ should satisfy the following inequality:∑
u∈V

⌈ρ× d(u)⌉ ≤ |E|. (1)

In the following, we assume ρ ≥ 1/2, without loss of
generality. The reader should note that although “to be
ρ ≥ 1/2” is a sufficient condition to have a feasible
solution (see Lemma 1 below), this is not necessary in
general, since if the given graph is 3-regular, any ρ >
1/3 admits a feasible solution.

Lemma 1: For any G, ρ ≥ 1/2 is a sufficient condi-
tion for the existence of a feasible solution to ρ-MWVC.

Proof: It is enough to show that there is a feasible
solution when ρ = 1/2 and U = V . If every vertex in
V has even degree, we can calculate a feasible solution
in the following manner: 1) identify a cycle C in G and
fix the orientation of edges in the cycle so that it forms
a directed cycle; 2) for each edge e = {u, v} in C, if it
is oriented from u to v, then assign e to u; 3) remove
all edges in C from G to have a new graph G′. By
construction, a feasible solution for G can be obtained
from a feasible solution for G′ and the assignment given
to C (recall that we are assuming ρ = 1/2). Hence by
repeating similar steps until the resulting graph becomes

2Graph G is said to be r-regular (or simply regular) if all vertices
have the same number of adjacent vertices.



empty (note that such a recursion always terminates
because we are assuming that every vertex in G has even
degree), we have a feasible solution for G.

If G contains a vertex of odd degree, on the other
hand, we can extend the above argument in the following
manner. Let W be the set of vertices with odd degree.
Note that |W | must be even since

∑
u∈V d(u) = 2|E|.

By connecting |W |/2 arbitrary pairs of the vertices in
W by dummy edges, we have a super-graph G′′ of
G such that all vertices have even degree. Thus, after
constructing a vertex cover of G′′ with ρ = 1/2 using
the above argument, we can obtain a solution for G by
simply omitting dummy edges in G′′. Hence the lemma
follows.

Corollary 1: If every vertex in G has even degree,
(1/2)-MWVC of G can be calculated in linear time.

With the above notions, we can derive a naive approxi-
mation scheme for solving ρ-MVC as follows. Let ∆ and
∆∗ denote the maximum and average degree of graph G,
respectively. By assumption, each vertex in G can cover
at most ⌈ρ∆⌉ ≤ ρ∆+ 1 incident edges. Thus, to cover
all of |E| edges, any feasible solution must contain at
least

|E|
ρ∆+ 1

vertices. As Lemma 1 claims, when ρ ≥ 1/2, U = V
is a feasible solution to the problem. Since |V | can be
represented as |V | = 2|E|/∆∗, the approximation ratio
of such a naive scheme is at most

|V |
|E|/(ρ∆+ 1)

=
2(ρ∆+ 1)

∆∗ .

Thus we have the following proposition.
Proposition 1: For any ρ ≥ 1/2, there is an approxi-

mation scheme for solving ρ-MVC with approximation
ratio

2(ρ∆+ 1)

∆∗

where ∆ and ∆∗ are the maximum and average degree
of G, respectively.

Corollary 2: If the given G is r-regular, the approxi-
mation ratio of the above naive scheme is 2ρ+ 2/r.

Thus for example, when r = 5 and ρ = 2/3, the
approximation ratio of the scheme is calculated as 2 ×
2/3 + 2/5 ≤ 1.734.

III. POSITIVE RESULTS

As Lemma 1 claims, if ρ = 1/2 and G contains no
vertex of odd degree, then U = V is the unique solution
to the problem (although there might exist exponential
number of candidates for function f ). However, if G
contains vertices of odd degree, we could “reduce” the

size of U from V by carefully assigning edges to the
vertices. This section first describes a heuristic scheme
to calculate such a solution. The reader should note that
although we could bound the approximation ratio of the
resulting scheme by a certain value as in Proposition 1,
as will be proved in the next section, the approximation
ratio could not be arbitrarily small, unless P = NP .

Let ϕ denote a (1/2)-MWVC with U = V obtained
by applying the procedure described in the proof of
Lemma 1. In the following, to make the exposition clear,
we identify function ϕ with the orientation of edges
satisfying the constraint (see the proof of Lemma 1 as
for the meaning of the orientation of edges). Given such
an initial configuration, we can reduce the weight of
U in the following steps. Recall that by construction,
under the assignment ϕ, each vertex u has at least
⌊d(u)/2⌋ “incoming” edges and at most ⌈d(u)/2⌉ “out-
going” edges. Let a(u) be a variable representing the
number of incident edges of u which can be changed
from an incoming edge to an outgoing edge without
violating the constraint on the fan-out bound ρ for u.
Since u can have at most ⌈ρ× d(u)⌉ outgoing edges,
under ϕ, a(u) is initialized to ⌈ρ× d(u)⌉− ⌈d(u)/2⌉ or
⌈ρ× d(u)⌉ − ⌊d(u)/2⌋ for each u (note that the above
value is not negative since ρ ≥ 1/2).

Let u∗ be a vertex in U . Vertex u∗ can be “removed”
from U by changing all of its outgoing edges to incoming
edges. More specifically, an outgoing edge of u∗, say e∗,
can be changed to be an incoming edge by conducting
the following steps:

1) identify a directed path starting from e∗ which
ends up with a vertex v with a(v) > 0,

2) change the direction of the path to be “from v to
u∗,” and

3) decrement a(v) by one and increment a(u∗) by
one.

Note that such a change of the direction of a path does
not change the value of a(·) of non-terminal vertices on
the path; i.e., it works as an alternating path used in
max-flow algorithms.

A possible heuristic to find a small U is to repeat
the above “path reversal” operation until no additional
removal can be applied. Unfortunately, such a reversible
path does not always exist in G even if there remains
a vertex v ∈ U with a(v) > 0; i.e., the goodness of
the solution depends on the order of removals of the
vertices from U . In fact, there is an instance such that we
can remove three vertices from U by removing vertices
in an appropriate order, but by using a wrong order of
removals, we can not remove more than two vertices (see
Figure 1 for illustration).

As will be shown in the next section, the problem



Two paths to be reversed	

Two vertices are removed	

Path starting from this edge is blocked by the removed vertex	

(a)

Three paths to be reversed	

Three vertices are removed	

This solution is optimum since 9 vertices are necessary to cover 18 edges	

(b)

Fig. 1. Counter-example for the naive path reversal scheme.

of finding a solution with minimum weight is in fact
NP-hard and difficult to approximate within an arbitrary
approximation ratio. However, by setting an appropriate
constraint on the set of instances, we can calculate an
optimum solution in polynomial time as the following
theorem claims.

Theorem 1: If the number of odd vertices in G is
O(1), then (1/2)-MWVC can be solved in polynomial
time.

Proof: Let W (⊆ V ) denote the subset of vertices
of odd degree. Since any vertex of even degree does not
have more outgoing edges than incoming edges under
any configuration for (1/2)-MWVC, the total number of
paths contributing to the removal of vertices from U = V
is at most |W |. In other words, if we assume that the
set of vertices contributing to the removal of vertices is
Y (⊆ W ) and G has a sufficiently large connectivity to

Graph G=(V,E)	

Vertex set Y 
(a subset of vertices 

of odd degree)	
Vertex set X 

(a subset of V-Y)	

Vertex s	 Vertex t	

Fig. 2. Graph G′ in the proof of theorem 1 (the capacity of red
edges is infinity and the capacity of the other edges is one).

allow edge-disjoint paths connecting Y and the set of
removed vertices, say X , in G so that all edges incident
on X are “fully” used, then we can maximize the weight
of removed vertices by solving a Knapsack problem in
which:

1) each item corresponding to a vertex in V − Y is
assigned cost (i.e., d(·) in our terminology) and
value (w(·) in our terminology), and

2) the total value of selected items is maximized sub-
ject to the total cost of selected items is bounded
by |Y |.

Thus by examining the feasibility of each subset of V−Y
as a set of removed vertices and by taking the maximum
of the resulting value over all feasible subsets, we have
a maximum, feasible subset of vertices which can be
removed from G with the aid of subset Y , where the
feasibility check for subset X(⊆ V − Y ) proceeds as
follows:

• Attach vertices s and t to G so that s connects to
all vertices in Y by links of infinite capacity and
t connects to all vertices in X by links of infinite
capacity (see Figure 2 for illustration);

• Calculate the maximum flow from s to t by assum-
ing that each edge in G has unit capacity; and

• If the size of the maximum flow is smaller than∑
u∈X d(u), then X is not feasible, otherwise, it

is feasible, i.e., there exists a set of edge-disjoint
paths from Y to X so that all edges incident on X
are incoming edges.

The number of subsets of V − Y to be examined
in the above procedure is polynomial since the size of
each subset is assumed to be constant (i.e., there are at
most nO(1) such subsets), and for each subset, we can



calculate the feasibility of the subset in polynomial time
by using max-flow algorithm. Thus an optimum solution
with respect to Y (⊆ W ) is calculated in polynomial
time. In addition, since the number of subsets of W is
polynomial, the total running time of the overall scheme
is polynomial. Hence the theorem follows.

IV. APX-HARDNESS

This section proves the APX-hardness of ρ-MWVC.
More precisely, we prove the following theorem.

Theorem 2: For any ρ = r
2r−1 with fixed integer r ≥

3, ρ-MWVC for (2r − 1)-regular graphs is APX-hard.
The proof of the theorem is based on an L-reduction

from MVC for cubic graphs which is known to be APX-
complete [11]. Given two NP optimization problems F
and G and a polynomial time transformation ξ from
instances of F to instances of G, we say that ξ is an
L-reduction from F to G if there are positive constants
α and β such that the following two conditions hold for
every instance x of F [11].

1) Optimum solution of ξ(x) with respect to problem
G, denoted by optG(ξ(x)), is at most α times of
the optimum solution of x with respect to problem
F , denoted by optF(x).

2) For every feasible solution y of ξ(x) with objective
value c2, we can in polynomial time find a solution
y′ of x with objective value c1 such that |optF(x)−
c1| ≤ β|optG(ξ(x))− c2|.

It is known that if F is APX-hard and there is an L-
reduction from F to G, then G is also APX-hard [11].
Our proof consists of two steps. The first step is a
reduction from MVC for cubic graphs to MVC for r-
regular graphs (Section IV-A), and the second step is
a reduction from MVS for r-regular graphs to ( r

2r−1)-
MWVC for (2r − 1)-regular graphs (Section IV-B).

A. First Step

This subsection proves the following theorem.
Theorem 3: MVC for r-regular graphs is APX-hard

for any fixed r ≥ 3.
This theorem is an immediate consequence of the

following two lemmas.
Lemma 2: MVC for r-regular graphs is APX-hard,

for r = 3 and 4.
Proof: Since APX-hardness for r = 3 is proved

in [1], it is enough to prove the claim for r = 4. Let
G = (V,E) be a cubic graph, where we assume G is
connected, without loss of generality. Before proceeding
to the detailed description of the proof, we introduce two
notions which play a key role in the proposed reduction.
A perfect matching of an n-set S is a set of ⌊n/2⌋

(a) Edge connecting two vertices of degree three.	

(b) Edge connecting vertices of degrees three and four.	

u	 u	

w1	 w3	

w2	 w4	

v	 v	

u	 u	

w2	 w4	

w3	 w5	

v	 v	α	

β	

γ	

α	

β	

γ	w1	

Fig. 3. Two transformations used in Lemma 2.

disjoint 2-sets drawn from S. Given two edge-disjoint
paths p1 and p2 sharing a vertex in cubic graph G, we say
that p1 dominates p2 if: 1) p1 passes through a terminal
vertex of p2 and 2) p2 does not pass through a terminal
vertex of p1. Note that any two edge-disjoint paths p1 and
p2 which share two vertices in G but are not sharing their
end vertices can be transformed into two edge-disjoint
paths p′1 and p′2 such that p′1 dominates p′2, while keeping
the set of edges used in these paths.

At first, we calculate a perfect matching M of V sat-
isfying the following conditions, which will be referred
to as Condition DOM hereafter:

1) pairs in M are connected by a set P of edge-
disjoint paths in G; namely, so that every edge
in G is used at most once in P ;

2) if two paths p1 and p2 in P share a vertex, then
either p1 dominates p2 or p2 dominates p1; and

3) the domination relation between paths in P is a
partial order on P .

Since |V | is even, V has a perfect matching of cardinality
|V |/2. In addition, we can find a perfect matching
satisfying Condition DOM in polynomial time by re-
peating local modification starting from arbitrary perfect
matching of V .

For each {u, v} ∈ M , let p(u, v) ∈ P denote the path
connecting u and v. If p(u, v) consists of one edge, we
can increase the degree of u and v by one, by applying
the transformation shown in Figure 3 (a). For the other
pairs of vertices, we conduct the following operation
in an order such that the processing for a path p(u, v)
can start only after all paths dominated by p have been
processed. The reader should note that under such an
ordering, we have a situation such that for each path
currently being processed, all vertices on the path, except



u	

u	

v	
α	 γ	

α	

β	

β	 δ	

v	

γ	

δ	

u	

β	

v	

γ	

δ	

α	

Fig. 4. The movement of a vertex of degree 3 from the position of
vertex u to the position of the adjacent vertex of v.

for the terminal vertices, have degree 4. The idea of the
transformation is to sequentially “move” the position of
a vertex of degree 3 from the position of u to the adjacent
vertex of v on the path, by repeating the transformation
Tb represented in Figure 3 (b), where pairs of vertices
of degree 3 enclosed by a dashed rectangle in the figure
are replaced by a component consisting of vertices of
degree 4, by applying the transformation Ta shown in
Figure 3 (a). After completing the movement of a vertex
of degree 3 to the adjacent vertex of v, we increase the
degree of those vertices by applying Ta to them. Figure
4 illustrates the movement in two hops. As such, we can
always have a 4-regular graph G′ from cubic graph G
by applying two operations shown in Figure 3.

The fact that the above transformation from G to G′

is in fact an L-reduction is verified as follows. Every
application of transformation Ta increases the size of
the solution by 3. Every application of transformation
Tb increases the size of the solution by 3 and for each
pair of the vertices enclosed by a dashed rectangle, an
application of Ta increases the size of the solution by
3. Thus, the total amount of increase due to the move
of a degree-3 vertex to its neighbor is 3 + 3 × 3 = 12.
Since the set of paths P is established in an edge-disjoint
manner, such a move of a degree-3 vertex occurs at
most |E| ≤ 2n times before completing the overall
transformation. On the other hand, since the maximum
degree of G is 3, the size of the optimum solution for
G is at least |E|/3 ≥ n/3. Thus the optimum solution
for G′ is at most constant times of the optimum solution
for G, i.e., the first condition of the L-reducibility holds,
and simultaneously, for any vertex cover of G′, we can
construct a vertex cover of G satisfying the second

α	 β	

α	 β	 α	 β	

Uncovered	

Fig. 5. Component used in the proof of Lemma 3 for r = 5 (two
figures at the bottom represents vertex covers of the component of
cardinality five).

condition. Thus the claim follows.
Lemma 3: MVC for r-regular graphs is APX-hard for

any fixed r ≥ 5.
Proof: Let G′ be a 4-regular graph which is obtained

from cubic graph G by applying the transformation
described in the proof of Lemma 2. We prove the claim
by providing a transformation from G′ to an r-regular
graph for r ≥ 5, which is a part of the transformation
of a given cubic graph G to an r-regular graph G′′ (the
reader should note that G′ is not an arbitrary 4-regular
graph).

At first, we show that graph G′ has a perfect matching
in the graph theoretical sense. Recall that the role of Tb
is to transform a vertex of degree 4 into six vertices of
degree 3 each, and the actual increment of the degree
is attained by applying Ta to a part of the component
enclosed by a dashed rectangle or two neighboring
vertices of degree 3 each. In addition, for each edge in
G, the transformation of the edge is conducted at most
once. Hence by (imaginarily) suspending the application
of Ta to the graph obtained by applying Tb to G (graph
shown in Figure 3 (b) represents such a graph), we have
a cubic graph to have a perfect matching consisting of
edges to which Ta will be applied. Thus, by selecting
edges in each copy of the component used in Ta so that
{{u,w1}, {w2, w3}, {w4, v}} (see Figure 3 (a) for the
notation), we have a perfect matching of the resulting
graph G′.

Let Ê be a perfect matching of 4-regular graph G′.
Since the number of vertices in G′ is even, Ê is an edge
cover of G′, i.e., each vertex in G′ is incident on exactly
one edge in Ê. Consider the following construction of



4-regular graph G=(V,E)	

Vertex set U	

Each vertex in V is 
connected with (r-1) 

vertices in U	

Each vertex in U is 
connected with exactly 

one vertex in V	

Vertices in U are connected to 
form a (2n-2)-regular graph	

Fig. 6. Transformation used in Lemma 4 (r = 4).

an r-regular graph (r ≥ 5) G′′ from G′:
1) Prepare (r − 3)|Ê| copies of the component de-

picted in Figure 5, which is obtained by “cutting”
an edge in Kr+1 at the middle point. The reader
should note that to cover all edges in the compo-
nent except for one “open” edge, we must use at
least r vertices and there is a subset of r vertices
which cover all edges in the component except for
one open edge (see two graphs in the bottom of the
figure, where green vertices form a vertex cover).

2) Replace each edge {u, v} ∈ Ê by r − 3 copies of
the component each of which connects u and v.

By construction, the resulting graph is r-regular. In
addition, if G′ has a vertex cover of size c, then G′′ has
a vertex cover of size c + r(r − 3)|Ê|, and vise versa.
Since c ≥ n/2 and |Ê| = n/2, by Lemma 2, it gives
an L-reduction from MVC for cubic graphs to MVC for
r-regular graphs. Hence the lemma follows.

B. Step Two

Next, we prove the following lemma, which completes
the proof of Theorem 2.

Lemma 4: For any r ≥ 3, there is an L-reduction
from MVC for r-regular graphs to ( r

2r−1)-MWVC for
(2r − 1)-regular graphs.

Proof: Let G = (V,E) be an r-regular graph
consisting of n vertices. Let U be a set of (r − 1)n
vertices such that U ∩ V = ∅. We construct a (2r − 1)-
regular graph G′ with vertex set U ∪ V by connecting
those vertices in the following manner (see Figure 6 for
illustration):

• Vertices in V are connected as in G, and each vertex
in V is connected with r− 1 vertices in U , so that
the degree of those vertices becomes 2r − 1.

• Each vertex in U is connected with exactly one
vertex in V and 2r − 2 other vertices in U so that
the degree of those vertices becomes 2r−1, in such
a way that the subgraph of G′ induced by U is a
(2r−2)-regular graph. Note that such a connection
is always possible for any n ≥ 3 since it is known
that there exists a k-regular graph of order ℓ iff
ℓ ≥ k + 1 and kℓ is even.

In addition, we assign the “weight” to each vertex in
G′ in the following manner:

• w(u) := 1 for each u ∈ V ; and
• w(v) := ϵ for each v ∈ U , where ϵ is a constant

satisfying ϵ < 1
r(n−1)

By construction, the total weight of the vertices in U
is smaller than the weight of a single vertex in V . Thus
for any feasible solution f for G′ (with respect to (1/2)-
MWVC), we can have a solution f ′ such that: all vertices
in U are selected and the difference to the optimum
solution f∗ increases by at most one. Thus without loss
of generality, we may assume that all vertices in U are
selected in every feasible solution for G′.

Given a minimum vertex cover of G of size c, we can
construct a solution of ( r

2r−1)-MWVC for G′ of size
c+ 1 by including all vertices in U into the subset and
by determining the assignment of edges incident on U
such that: 1) each vertex has r − 1 incoming edges and
r− 1 outgoing edge connecting to the vertices in U and
2) it has an outgoing edge connecting to a vertex in V .
Note that it realizes a weighted vertex cover of G′ under
fractional bound ρ = r

2r−1 , since each vertex in V has
r− 1 incoming edges connecting to vertices in U and at
most r outgoing edges connecting to vertices in V . Thus
the first condition of the L-reducibility holds. Since such
a correspondence holds even for optimum solution for
the problems, the second condition also holds. Thus the
lemma follows.

V. CONCLUDING REMARKS

This paper proposes a new variant of the minimum
weighted vertex cover problem with a fractional fan-out
bound. It is clarified that the computational complexity of
the problem strongly depends on the number of vertices
of odd degree when the designated fraction is 1/2.

Future works are listed as follows:
• To extend Theorem 1 so that polynomially solvable

cases will be expanded, e.g., when the number of
vertices of odd degree is O(log n) or O(log log n).
To this end, we need to apply the dynamic pro-
gramming to the algorithm, while it seems to be
complicated since we should examine the feasibility



of subset X with respect to the existence of edge-
disjoint paths from Y unlike ordinary calculations
which merely consider the cost bound.

• To expend Theorem 2 so that a similar claim holds
for ρ-MVC. To this end, we need to develop a new
technique for the reduction which does not rely on
the weight of the vertices.

• To evaluate the sustainability of monitoring systems
constructed based on the notion of ρ-MWVC with
respect to several metrics such as the fault-tolerance
and the convergence speed.
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