
An Efficient Silent Self-Stabilizing Algorithm for
1-Maximal Matching in Anonymous Network

Yuma Asada and Michiko Inoue

Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, NARA 630-0192
JAPAN,

{asada.yuma.ar4, kounoe}@is.naist.jp

Abstract. We propose a new self-stabilizing 1-maximal matching algo-
rithm which is silent and works for anonymous networks without a cycle
of a length of a multiple of 3 under a central unfair daemon. Let e be
the number of edges and let n be the number of nodes in a graph. The
time complexity is O(e) moves. Therefore, the complexity is O(n) moves
for trees or rings whose length is not a multiple of 3.

Keywords: distributed algorithm, self-stabilization, graph theory, match-
ing problem

1 Introduction

Self-Stabilization [5] can tolerate several inconsistencies of computer networks
caused by transient faults, erroneous initialization, or dynamic topology change.
It can recover and stabilize to consistent system configuration without restarting
program execution.

Maximum or maximal matching is a well-studied fundamental problem for
distributed networks. A matching is a set of pairs of adjacent nodes in a network
such that any node belongs to at most one pair. It can be used in distributed ap-
plications where pairs of nodes, such as a server and a client, are required. This
paper proposes an efficient anonymous self-stabilizing algorithm for 1-maximal
matching. A 1-maximal matching is a 2

3 -approximation to the maximum match-
ing, and expected to find more matching than a maximal matching which is a
1
2 -approximation to the maximum matching.

Self-stabilizing algorithms for the maximum and maximal matching problems
have been well studied[7]. Table 1 summarizes the results, where n and e denote
the numbers of nodes and edges, respectively.

Blair and Manne[1] showed that a maximum matching can be solved with
O(n2) moves for tree networks under a read/write daemon. They proposed a
leader election algorithm for non-anonymous trees where a rooted tree is con-
structed in a bottom-up fashion, and then showed bottom-up algorithms includ-
ing a maximum matching[2] can be combined with the proposed leader election
algorithm so that the combined algorithm simultaneously solves the two prob-
lems. For anonymous networks, Karaata et al.[10] proposed a maximum match-
ing algorithm with O(n4) moves for trees under a central daemon, and Chat-
topadhyay et al.[3] proposed a maximum matching algorithm with O(n2) rounds

2

Table 1. Self-stabilizing matching algorithms.

Reference Matching Topology Anonymous Daemon Complexity

[1] maximum tree no read/write O(n2) moves
[10] maximum tree yes central O(n4) moves
[3] maximum bipartite yes central O(n2) rounds
[9] maximal arbitrary yes central O(e) moves
[6] 1-maximal tree, ring yes central O(n4) moves
[12] 1-maximal arbitrary no distributed O(n2) rounds

this paper 1-maximal arbitrary* yes central O(e) moves

* arbitrary topology without a cycle of length of a multiple of 3.

for bipartite networks under a central daemon. Recently, Datta and Larmore[4]
proposed a silent weak leader election algorithm for anonymous trees. The al-
gorithm elects one or two co-leaders with O(n · Diam) moves in a bottom-up
fashion under an unfair distributed daemon, where Diam is a network diame-
ter. Though there is no description, it seems that it can be combined with the
maximum matching algorithm[2] without increasing the time complexity.

Hsu and Huang[9] proposed a maximal matching algorithm for anonymous
networks with arbitrary topology under a central daemon. They showed the
time complexity of O(n3) moves, however, it has been revealed that the time
complexity of their algorithm is O(n2) moves by Tel[13] and Kimoto et al.[11]
and O(e) moves by Hedetniemi et al. [8].

Goddard et al.[6] proposed a 1-maximal matching with O(n4) moves for
anonymous trees and rings whose length is not a multiple of 3 under a central
daemon. They also showed that there is no self-stabilizing 1-maximal match-
ing algorithm for anonymous rings with length of a multiple of 3. Manne et al.
[12] also proposed a 1-maximal matching algorithm for non-anonymous networks
with any topology under a distributed unfair daemon. Their algorithm stabilizes
in O(n2) rounds and (2n ·∆ ·n) moves, where ∆ is the maximum degree of nodes.

Our contribution: In this paper, we propose a new self-stabilizing 1-maximal
matching algorithm. The proposed algorithm is silent and works for anonymous
networks without a cycle of a length of a multiple of 3 under a central unfair
daemon. We will show that the time complexity of the proposed algorithm is
O(e) moves. Therefore, the complexity is O(n) moves for trees or rings whose
length is not a multiple of 3.

The remaining of the paper is organized as follows. In Section 2, we describe
a concept of distributed systems, self-stabilization, a computational model and
a definition of the 1-maximal matching problem. In Section 3, we explain an
overview of our proposed algorithm for 1-maximal matching problem. It includes
informal descriptions of variables, states, and behavior in each state. In Section
4, we describe the algorithm. In Section 5, we prove the correctness of our algo-

3

rithm. The proof is divided into two parts; properties of terminal configuration
and time complexity.

2 Preliminaries

A distributed system consists of multiple asynchronous processes. Its topology
is represented by an undirected connected graph G = (V,E) where a node in V
represents a process and an edge in E represents the interconnection between
the processes. A node is a state machine which changes its states by actions.
Each node has a set of actions, and a collections of actions of nodes is called a
distributed algorithm. Let n and e denote the numbers of nodes and edges in a
distributed system.

In this paper, we consider state-reading model as a communication model
where each process can directly read the internal state of its neighbors. An
action of a node is expressed 〈label〉 :: 〈guard〉 7→ 〈statement〉. A guard is a
Boolean function of all the states of the node and its neighbors, and a statement
updates its local state. We say a node is privileged if some of its actions has a
true guard. Only privileged node can move by selecting one action with a true
guard and executing its statement.

Moves of processes are scheduled by a daemon. Among several daemons con-
sidered for distributed systems, we consider an unfair central daemon in this
paper. A central daemon chooses one privileged node at one time, and the se-
lected node atomically moves. A daemon is unfair in a sense that it can choose
any node among privileged nodes.

A problem P is specified by its legitimate configurations where configura-
tion is a collection of states of all the nodes. We say a distributed algorithm A
is self-stabilizing if A satisfies the following properties. 1) convergence: The
system eventually reaches to a legitimate configuration from any initial state
by distributed algorithm A, and 2) closure: The system once reaches to a le-
gitimate configuration, all the succeeding moves keep the system configuration
legitimate. A self-stabilizing algorithm is silent if, from any arbitrary initial con-
figuration, the system reaches a terminal configuration where no node can move.
A self-stabilizing algorithm is anonymous if it does not use global IDs of nodes.
We only assume that nodes have pointers and a node can determine whether its
neighbor points to it.

A matching in an undirected graph G = (V,E) is a subset M of E such that
each node in V is incident to at most one edge in M . We say a matching is
maximal if no proper superset of M is a matching as well. A maximal match-
ing M is 1-maximal if, for any e ∈ M , any matching cannot be produced by
removing e from M and adding two edges to M −{e}. A maximal matching is a
1
2−approximation to the maximum matching. On the other hand, a 1-maximal
matching is a 2

3−approximation. In this paper, we propose a silent and anony-
mous self-stabilizing algorithm for the 1-maximal matching problem for graphs
without a cycle of length of a multiple of 3.

4

3 Overview of An Algorithm MM1

First, we will show an overview of a proposed self-stabilizing 1-maximal matching
algorithm MM1. Each node i uses stages to construct 1-maximal matching. There
are seven stages; S1a, S1b, S2a, S2b, S3, S4, S5. Stages S1a and S1b mean that
the node is not matched. A stage S2a means the node is matched with a neighbor
node. Moreover, S2b, S3, S4, S5 mean the node is matched and in progress to
increase matching. We say that a state of a node is valid if the state represents
some stage, and if a node detects its invalidity, the node resets to S1a. A node i
has three variables; leveli, m-ptri, i-ptri. We describe how to use the variables
in our algorithm.

S1a, S1b, S2a We say a node is free if the node is in S1a or S1b. A node in
S1a doesn’t invite any nodes, while A node in S1b invites a node. Fig.1 shows
making match behavior of free nodes. When a free node i finds a free neighbor
node j, i invites j by i-ptri. Then invited node j updates its level to 2 and
points to i by m-ptrj to accept the invitation from i. Finally i regards that j
accepted i’s invitation, and i points to j by m-ptri to make match. A node in
S2 is at level 2 and doesn’t invite any nodes.

jileveli = 1 levelj = 1

(a)

jileveli = 1 levelj = 1

(b)

i-ptri

jileveli = 1 levelj = 2

i-ptri

(c)

m-ptrj

jileveli = 2 levelj = 2

m-ptri

(d)

m-ptrj

i and j are matched

S1a S1a S1b S1a

S1b

S2a

S2a

S2a

Fig. 1. Making match behavior of free nodes

S2b, S3, S4, S5 Matched nodes try to increase the number of matching M
if they have free neighbor nodes. Fig. 2 shows an example increasing match
behavior.

5

ji

k

l

(a) (b)

(c) (d)

m-ptri

m-ptrj

ji

k

lm-ptri

m-ptrj
i-ptri

i-ptrj

m-ptri

m-ptrj
i-ptri

i-ptrj

i-ptrk

ji

k

S2a

S2a S1a

S1a
S3

S3

S1a

S1a
leveli = 2 levelj = 2

levell = 1

levelk = 1

leveli = 2 levelj = 2

levell = 1

i-ptrl

levelk = 1

l
levell = 1

leveli = 5

levelk = 1

levelj = 5
S5

S5
S1b

S1b m-ptri

m-ptrj

m-ptrk

ji

k

m-ptrl

l
levell = 2

leveli = 2

levelk = 2

levelj = 2
S2a

S2a
S2a

S2a

Fig. 2. Increasing matching

In Fig. 2 (a), we can increase matching to break matching between i and j,
and create new matchings between i and k, and j and l, respectively. Node i
and j invite its free neighbors if exist, and when both nodes i and j invite free
neighbor node, they change their level to 3. That indicates that they are ready
to be approved as Fig. 2 (b) Then k and l point to the inviting nodes by i-ptr

to approve their invitations. Node i and j change their level to 4 if the neighbors
approve the invitations, and change their level to 5 when they notice that both
invitations are approved. This indicates that they are ready to break matching
as Fig. 2 (c). Then they create new matchings with the free nodes as Fig. 2 (d).

Reset Each node always check its validity which means three variable level,
m-ptr, i-ptr represent some stage. In addition, the validity among the states of
the node and its neighbors is also evaluated. For example, if a level is 1 and
m-ptr points to some neighbor the state is invalid. If a node is at level 3 and
m-ptri points to a neighbor j but j’s level is 1, a combination of these states is
invalid. A node resets to S1a if it find its invalidity. In addition, a node does not
move while some neighbor is in an invalid state.

Cancel A node cancels an invitation or progress to increase matching, if it
detect that the invitation cannot be accepted or it cannot increase matching.
When canceling, a node goes back to S1a if it is at level 1, to S2a if it is at level
2 or more.

6

4 Algorithm MM1

A node i has three variables, leveli, m-ptri, i-ptri.

– leveli ∈ {1, 2, 3, 4, 5}
– m-ptri ∈ (N(i) ∩ {⊥})
– i-ptri ∈ (N(i) ∩ {⊥})

The validity is defined as follows.

Each stage is represented by some valid combinations of three variables. The
predicates in Fig. 3 are used to represent such validities.

S1b valid(i,k): leveli = 1 ∧ m-ptri =⊥ ∧i-ptri = k
S2a valid(i,j): leveli = 2 ∧ m-ptri = j ∧ m-ptri =⊥
S2b valid(i,j,k): leveli = 2 ∧ m-ptri = j ∧ m-ptri = k ∧ j 6= k
S3 valid(i,j,k): leveli = 3 ∧ m-ptri = j ∧ m-ptri = k ∧ j 6= k
S4 valid(i,j,k): leveli = 4 ∧ m-ptri = j ∧ m-ptri = k ∧ j 6= k
S5 valid(i,j,k): leveli = 4 ∧ m-ptri = j ∧ m-ptri = k ∧ j 6= k

Fig. 3. Valid predicates

Fig. 4 shows definitions of one node invalidity of a node which can be evalu-
ated by only a state of the node.

S1a valid1(i): leveli = 1 ∧ m-ptri =⊥ ∧i-ptri =⊥
S1b valid1(i): ∃k ∈ N(i) S1b valid(i,k)
S2a valid1(i): ∃j, k ∈ N(i) S2a valid(i,j)
S2b valid1(i): ∃j, k ∈ N(i) S2b valid(i,j,k)
S3 valid1(i): ∃j, k ∈ N(i) S3 valid(i,j,k)
S4 valid1(i): ∃j, k ∈ N(i) S4 valid(i,j,k)
S5 valid1(i): ∃j, k ∈ N(i) S4 valid(i,j,k)
valid1(i): S1a valid(i) ∧ S1b valid(i) ∧ S2a valid(i) ∧ S2b valid(i) ∧ S3 valid(i) ∧
S4 valid(i) ∧ S5 valid(i)
invalid1(i): ¬ valid1(i)

Fig. 4. One node invalid functions

Fig. 5 shows definitions of valid functions that evaluate the validity of stages
of a node with states of the node and its neighbors if needed. Fig. 6 shows
statement macros which are utilized in a statement of action. Fig. 7 shows guard
function which are utilized in guard of action. Fig. 8 shows a code of the proposed
algorithm MM1. Daemon selects the first action in the described order in Fig. 8
if a node satisfies simultaneously some guards.

7

S1a(i): S1a valid1(i)
S1b(i): S1b valid1(i)
S2a(i): ∃j ∈ N(i)(S2a valid(i,j)∧((levelj = 2∨levelj = 3)∧m-ptrj = i)∨(levelj =

1 ∧ i-ptrj = i) ∨ (levelj = 5 ∧ i-ptrj = i))

S2b(i): ∃j ∈ N(i)(S2b valid(i,j,k)∧(levelj = 2∨levelj = 3∨levelj = 4)∧m-ptrj =

i)
S3(i): ∃j ∈ N(i)(S3 valid(i,j,k)∧(levelj = 2∨levelj = 3∨levelj = 4)∧m-ptrj = i)

S4(i): ∃j, k ∈ N(i)(S4 valid(i,j,k)∧(levelj = 2∨levelj = 3∨levelj = 4∨levelj =
5) ∧ m-ptrj = i ∧ levelk = 1 ∧ i-ptrk = i ∧ i-ptrj 6=⊥)

S5(i): ∃j, k ∈ N(i)(S5 valid(i,j,k)∧(levelk = 1∧i-ptrk = i)∨(levelk = 2∧m-ptrk =
i))
valid(i): S1a(i) ∧ S1b(i) ∧ S2a(i) ∧ S2b(i) ∧ S3(i) ∧ S4(i) ∧ S5(i)
invalid(i): ¬ valid(i)

Fig. 5. Valid functions

make match: i-ptri =⊥, m-ptri = j, leveli = 2
reset state: i-ptri =⊥, m-ptri =⊥, leveli = 1
abort exchange: i-ptri =⊥, leveli = 2

Fig. 6. Statement macros

no invalid1 neighbor(i): ∀x ∈ N(i) valid1(x)

Fig. 7. Guard function

5 Correctness

5.1 Correctness in Properties on Terminal Configuration

Lemma 1. There are no nodes whose level is 5 in any terminal configuration
of MM1.

Proof. By contradiction. Assume that there is a node i that is in S5 in a terminal
configuration. Therefore, i satisfies m-ptri 6=⊥ and i-ptri 6=⊥. Let k be a node
pointed by i-ptri. Node k satisfies levelk = 1 ∧ i-ptrk = i or levelk =
2 ∧ m-ptrk = i because i satisfies S5(i). If it is levelk = 1, k can execute
migrate1. Also i can execute migrate2 if it is levelk = 2. A contradiction. ut

Lemma 2. A node that points to its neighbor node by m-ptr also pointed by the
neighbor’s m-ptr in any terminal configuration of MM1.

Proof. By contradiction. There are no node whose level is 5 in any terminal
configuration and all nodes are valid. Assume that there are nodes i and i’s
neighbor j ∈ N(i) and m-ptri = j ∧ m-ptrj 6= i. A node i is in S2a since i
cannot satisfy S2b, S3 and S4. A node j is at level 1 and points to i by i-ptrj
because i satisfies S2a. Since i is in S2a and j is levelj = 1∧ i-ptrj = i, j can
execute match3. A contradiction. ut

8

Reset
reset1 :: invalid1(i) 7→ reset state

reset2 :: invalid1(i) ∧ no invalid1 neighbor(i) 7→ reset state

S1a
match1 :: S1a(i) ∧ no invalid1 neighbor(i) ∧ ∃x ∈ N(i)(i-ptrx = i ∧ levelx =
1) 7→ i-ptri =⊥, m-ptri = x, leveli = 2
approve1 :: S1a(i)∧no invalid1 neighbor(i)∧∃x ∈ N(i)(i-ptrx = i∧levelx =
3) 7→ i-ptri = x
invite1 :: S1a(i)∧no invalid1 neighbor(i)∧∃x ∈ N(i)levelx = 1 7→ i-ptri =
x

S1b
match2 :: S1b(i)∧no invalid1 neighbor(i)∧ (∃x ∈ N(i)(i-ptrx = i∧ levelx =
1)) ∧ (∃k ∈ N(i)(S1b valid(i,k) ∧ levelk < 4)) 7→ i-ptri =⊥, m-ptri =
x, leveli = 2
match3 :: S1b(i)∧no invalid1 neighbor(i)∧(∃k ∈ N(i)(S1b valid(i,k)∧m-ptrk =
i ∧ levelk = 2)) 7→ make match

migrate1 :: S1b(i) ∧ no invalid1 neighbor(i) ∧ (∃k ∈ N(i)(S1b valid(i,k) ∧
i-ptrk = i ∧ levelk = 5)) 7→ make match

cancel1 :: S1b(i) ∧ no invalid1 neighbor(i) ∧ (∃k ∈ N(i)(S1b valid(i,k) ∧
(m-ptrk 6= i ∧ levelk = 5) ∨ (i-ptrk 6= i ∧ levelk ≥ 3))) 7→ make match

S2a
invite2 :: S2a(i) ∧ no invalid1 neighbor(i) ∧ (∃x ∈ N(i)levelx = 1) ∧ (∃j ∈
N(i)(S2a valid(i,j) ∧ m-ptrj = i)) 7→ i-ptri = x

S2b
cancel2 :: S2b(i) ∧ no invalid1 neighbor(i)(∃j, k ∈ N(i)(S2b valid(i,j,k) ∧
levelk ≥ 2)) 7→ abort exchange

proceed1 :: S2b(i) ∧ no invalid1 neighbor(i)(∃j, k ∈ N(i)(S2b valid(i,j,k) ∧
i-ptrj 6=⊥)) 7→ leveli = 3

S3
cancel3 :: S3(i)∧no invalid1 neighbor(i)(∃j ∈ N(i)(S3 valid(i,j,k)∧(levelj =
2 ∧ i-ptrj =⊥) ∨ levelk 6= 1) 7→ abort exchange

proceed2 :: S3(i) ∧ no invalid1 neighbor(i)(∃j, k ∈ N(i)(S3 valid(i,j,k) ∧
i-ptrk = i ∧ levelk = 1)) 7→ leveli = 4

S4
proceed3 :: S4(i) ∧ no invalid1 neighbor(i)(∃j ∈ N(i)(S4 valid(i,j,k) ∧
(levelj = 4 ∨ levelj = 5))) 7→ leveli = 5

S5
migrate2 :: S5(i) ∧ no invalid1 neighbor(i)(∃j, k ∈ N(i)(S5 valid(i,j,k) ∧
levelk = 2 ∧ m-ptrk = i)) 7→ i-ptri =⊥, m-ptri = k, leveli = 2

Fig. 8. Algorithm MM1

9

Lemma 3. There are no two nodes i and j such that leveli = 1, levelj = 3
or 4, i-ptri = j and i-ptrj = i in any termination configuration of MM1 for
any graphs without a cycle of length of a multiple of 3.

Proof. By contradiction. There are no nodes whose level is 5 in any terminal
configuration and all nodes are valid. Assume that there are adjacent nodes i
which is at 1 level and i-ptri = j, and j which is at level 3 or 4 and i-ptrj = i.
If i and j satisfy leveli = 1 ∧ levelj = 3, j can execute proceed2 since j is in
S3.

Consider the case where i and j satisfy leveli = 1 ∧ levelj = 4. There is a
node k ∈ N(j) such that levelk = 2 or 3 or 4, m-ptrj = k, i-ptrk 6=⊥. More-
over, k can execute proceed1 if levelk = 2 and also j can execute proceed3 if
levelk = 4. Hence levelk is limited to 3. Therefore, there is a node l ∈ N(k)
such that i-ptrk = l and levell = 1 since k is in S3. Node l satisfies i-ptrl 6= k
because it is in termination configuration. Furthermore, there is a node m ∈ N(l)
such that i-ptrl = m and levelm = 4. In addition, there is a node o ∈ N(o)
which is at level 3 in the same reason above.

Repeating the above observation, we can show there is an infinity sequence
of nodes 1, 4, 3, 1, 4, 3, · · ·. However there is no such sequence since there is no
cycle of length of a multiple of 3. A contradiction. ut

Theorem 1. A maximal matching is constructed in any terminal configuration
of MM1 for any graphs without a cycle of length of a multiple of 3.

Proof. By contradiction. There are no nodes whose level is 5 in any terminal
configuration and all nodes are valid. Assume that a matching is not maximal in
some terminal configuration. Hence there are adjacent nodes i and j such that
their level is 1 by the assumption and Lemma 2.

If node i or j is in S1a, it can execute invite1 (Observation 1).
Consider the case where both i and j are in S1b. Let node k be pointed by

i-ptri. The level of node k is less than 5 by Lemma 1.
Consider the case where levelk = 1. A node k is in S1b by the same reason

as Observation 1. Let x a node pointed by i-ptrk. A node k can execute match2
if levelx 6= 4. It satisfies i-ptrx = k if levelx = 4 by Lemma 3. Therefore,
k can execute cancel1. Consider the case where levelk = 2. Node k is in S2b
because k can execute invite2 if k is in S2a. Then i can execute cancel1 since
m-ptrk 6= i. If it satisfies levelk = 3, i can execute cancel1 by Lemma 3
because i-ptrk 6= i. If it satisfies levelk = 4, i can execute cancel1 as in the
case of levelk = 3. A contradiction. ut

Theorem 2. A 1-maximal matching is constructed in any terminal configura-
tion of the algorithm MM1 for any graphs without a cycle of length of a multiple
of 3.

Proof. By contradiction. Assume that a matching is not 1-maximal in some
terminal configuration. Since it is terminal, a maximal matching is constructed
by Theorem 1. Therefore, there are matching nodes i and j and both have

10

neighbors at level 1 since any node at level 2 or more has matching neighbor by
Lemma 2.

Both i and j are at level 2 or more since they are matching, and any of them
is not in S1a since they have level 1 neighbor and can execute invite1 if they
are in S1a, or not at level 5 by Lemma 1. Since i and j are in S2b, S3 or S4,
both nodes point to some neighbor by i-ptr, and the neighbors are at level 1.
That is because, i or j can execute cancel2 in S2b, cancel3 in S3 and reset2

in S4 if it points to a node at level 2 or more.
Nodes i and j are not in S2b since i-ptri 6= ⊥ and i-ptrj 6= ⊥, and therefore,

they can execute proceed1 if they are in S2b.
Consider the case where i or j is in S3. Assume i is in S3 w.o.l.g., and let

k be a level 1 node that i points to by i-ptr. A node k can execute approve

if i-ptrk 6= ⊥, and node i can execute proceed2 if i-ptrk 6= i. Therefore,
i-ptrk 6= x for some x 6= i. Since there is no adjacent level 1 nodes by Theorem
1, there is no level 5 node by Lemma1, and m-ptrs point to each other between
two matching nodes by Lemma 2, x is at level 2, 3, or 4, and m-ptrx 6= k. A
node x is not at level 2 since k can execute cancel1 if x is at level 2. In case
where x is at level 3 or 4, i-ptrx 6= k by Lemma 3, and therefore, k can also
execute cancel1. Therefore, none of i and j is not in S3.

That is, both i and j are in S4, however, both can execute proceed3 in this
case. A contradiction. ut

5.2 Termination and Time Complexity

Lemma 4. If a node i at level 1 is valid, that is S1a(i) or S1b(i) holds, i is
valid while it is at level 1 in MM1.

Proof. Validity functions S1a(i) and S1b(i) checks only the variables of a node
i. That is the validity of a node at level 1 is independent of its neighbors’ states.
Any move for S1a or S1b keeps the state of node valid, a valid node at level 1 is
valid while it is at level 1. ut

Lemma 5. Once a node executes one of match1, match2, match3, migrate1

and migrate2, the node never reset in MM1.

Proof. By contradiction. Assume some nodes reset after executing match1, match2,
match3, migrate1 or migrate2. Let i be a node that executes such a reset r first.
Let m be the last move among match1, match2, match3, migrate1 and migrate2

before the reset. Since no move except reset1 and reset2 brings invalid states
and i already executed m, when i executes r, i is two node invalid. Therefore, i
detects some invalidity between i and some neighbor.

Let k be a node such that i-ptri = k when i executes r. From the algorithm,
that is when i is at level 4 or 5. When i moves to S4 by proceed2, i confirms
that k’s validity, levelk = 1 and i-ptrk = i. Node k never reset while it is
at level 1 by Lemma 4 and the validity between i and k is preserved. Node k
may move to S1b by migrate1 but never reset before r by the assumption, and
therefore, the validity i and k is also preserved.

11

Therefore, i executes r by detecting invalidity between i and j such that
m-ptri = j. Since m is the last chance to set m-ptr for i, i sets m-ptri = j by
m. When i executes m, j is in S1b, S2a, or S5.

In case of S1b, when i executes m, i confirms j’s validity and i-ptrj = i.
Node j is valid while it is at level 1 by Lemma4. Node i moves to S2b after j
sets m-ptrj = i by match2 or match3 and moves to S2a. Therefore, while j is
at level 1, i-ptrj = i always holds and therefore i cannot reset. After j moves
to level 2 by match2 or match3, j does not reset before r from the assumption.
Therefore, the validity between i and j is preserved until r.

In case of S5, when i executes m, i confirms i-ptrj = i. Since the validity
of a node in S5 only depends on its state and a state of a node pointing to by
i-ptr, j is valid if the validity between i and j is preserved. Since i does not
reset between m and r, the validity is preserved while j is in S5. After j moves to
level 2 by migrate2, j does not reset before r from the assumption. Therefore,
the validity between i and j is preserved until r.

In case of S2a, i confirms the validity between i and j and m-ptrj = i when
i executes m. Since j is in S2a, i-ptrj does not points to any node. Therefore,
even if j points to some node by i-ptr after m, the validity between j and the
pointed node is preserved like between i and k. Therefore j is valid if the validity
between i and j is preserved while m-ptrj = i and levelj ≤ 4 (When j moves
to S5, it does not take care of i). Since i does not reset between m and r, the
validity is preserved. ut

Lemma 6. Each node resets at most once in MM1.

Proof. Once a node execute reset1 or reset2, it moves to S1a. The node never
reset while it is at level 1 from Lemma 4. The node executes match1, match2 or
match3 to moves to level 2, and never reset after that by Lemma 5. ut

Lemma 7. In MM1, cancel1, cancel2 and cancel3 are executed O(e) times.

We say a move is progress move if it is match1, match2, match3, or migrate1.
A level of node changes from 1 to 2 by a progress move.

Lemma 8. Progress moves are executed O(n) times in MM1.

Proof. Only reset1 and reset2 change a level of a node from 2 or more to
1. Each node executes these reset actions at most once by Lemma 6. Hence,
progress moves are executed O(n) times. ut

Lemma 9. In MM1, migrate2 is executed O(n) times.

Theorem 3. MM1 is silent and takes O(e) moves to construct 1-maximal match-
ing for any graphs without a cycle of length of a multiple of 3.

Proof. Fig. 9 shows each stage transition in MM1. In MM1, each node moves
to a higher stage from the current stage in the order of S1a, S1b, S2a, S2b, S3,
S1a, S4 and S5 except reset1, reset2, cancel1, cancel2, cancel2, cancel3

12

S1a S1b S2a S2b S3 S4 S5
invite1 match2

match3
migrate1

match1

invite2 proceed1 proceed2 proceed3

migrate2

cancel2, cancel3cancel1

reset1, reset2

Fig. 9. Transitions of stages

and migrate2. Therefore, if a node does not execute these moves, the number
of executed moves is at most 6.

Let Ri, Ci and Mi be the numbers of resets (reset1 or reset2), cancels
(cancel1, cancel2, cancel2 or cancel3), and migrate2 executed by a node
i. Let MOVi denote the total number of moves executed by a node i. From the
observation, it is bounded as follows.

MOVi ≤ 6(Ri + Ci +Mi + 1)

From Lemmas 6, 7 and 9, we have

Σi∈VRi = O(n), Σi∈V Ci = O(e), and Σi∈VMi = O(n).

Therefore, the total number of moves executed in MM1 can be derived as follows.

Σi∈VMOVi ≤ 6(Σi∈VRi +Σi∈V Ci +Σi∈VMi) = O(e)

Since each node always executes a finite number of moves, MM1 always
reaches a terminal configuration where 1-maximal matching is constructed by
Theorem 2. This also implies MM1 is silent. ut

6 Conclusion

We proposed a 1-maximal matching algorithm MM1 that is silent and works
for anonymous networks without a cycle of a length of a multiple of 3 under a
central unfair daemon. The time complexity of MM1 is O(e) moves. Therefore,
it is O(n) moves for trees or rings whose length is not a multiple of 3. We had
a significant improvement from Goddarda et al.[6] that is also anonymous 1-
maximal matching algorithm but work for only trees or rings which length is
not a multiple of 3 and the time complexity is O(n4).

References

1. Jean RS Blair and Fredrik Manne. Efficient self-stabilizing algorithms for tree
networks. In Proceedings. 23rd International Conference on Distributed Computing
Systems, pages 20–26. IEEE, 2003.

13

2. JRS Blair, SM Hedetniemi, ST Hedetniemi, and DP Jacobs. Self-stabilizing max-
imum matchings. Congressus Numerantium, pages 151–160, 2001.

3. Subhendu Chattopadhyay, Lisa Higham, and Karen Seyffarth. Dynamic and self-
stabilizing distributed matching. In Proceedings of the twenty-first annual sympo-
sium on Principles of distributed computing, pages 290–297. ACM, 2002.

4. Ajoy K Datta and Lawrence L Larmore. Leader election and centers and medians
in tree networks. In Stabilization, Safety, and Security of Distributed Systems,
pages 113–132. Springer, 2013.

5. Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Com-
mun. ACM, 17(11):643–644, November 1974.

6. Wayne Goddard, Stephen T Hedetniemi, Zhengnan Shi, et al. An anonymous self-
stabilizing algorithm for 1-maximal matching in trees. In Proceedings International
Conference on Parallel and Distributed Processing Techniques and Applications,
pages 797–803, 2006.

7. Nabil Guellati and Hamamache Kheddouci. A survey on self-stabilizing algorithms
for independence, domination, coloring, and matching in graphs. Journal of Par-
allel and Distributed Computing, 70(4):406–415, 2010.

8. Stephen T Hedetniemi, David P Jacobs, and Pradip K Srimani. Maximal matching
stabilizes in time O(m). Information Processing Letters, 80(5):221–223, 2001.

9. Su-Chu Hsu and Shing-Tsaan Huang. A self-stabilizing algorithm for maximal
matching. Information Processing Letters, 43(2):77–81, 1992.

10. Mehmet Hakan Karaata and Kassem Afif Saleh. Distributed self-stabilizing al-
gorithm for finding maximum matching. Comput Syst Sci Eng, 15(3):175–180,
2000.

11. Masahiro Kimoto, Tatsuhiro Tsuchiya, and Tohru Kikuno. The time complexity
of Hsu and Huang’s self-stabilizing maximal matching algorithm. IEEE Trans.
Infrmation and Systems, E93-D(10):2850–2853, 2010.

12. Fredrik Manne, Morten Mjelde, Laurence Pilard, and Sébastien Tixeuil. A self-
stabilizing 2/3-approximation algorithm for the maximum matching problem. The-
oretical Computer Science, 412(40):5515–5526, 2011.

13. Gerard Tel. Introduction to distributed algorithms. Cambridge university press,
2000.

