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Abstract—Given a 2-D binary image of size n x n, Euclidean
Distance Map (EDM) is a 2-D array of the same size such
that each element is storing the Euclidean distance to the
nearest black pixel. It is known that a sequential algorithm
can compute the EDM in O(n®) and thus this algorithm
is optimal. Also, work-time optimal parallel algorithms for
shared memory model have been presented. However, these
algorithms are too complicated to implement in existing shared
memory parallel machines. The main contribution of this paper
is to develop a simple parallel algorithm for the EDM and
implement it in two parallel platforms: multicore processors
and a Graphics Processing Unit (GPU). More specifically, we
have implemented our parallel algorithm in a Linux server with
four Intel hexad-core processors (Intel Xeon X7460 2.66GHz).
We have also implemented it in a modern GPU system, Tesla
C1060, respectively. The experimental results have shown that,
for an input binary image with size of 10000 x 10000, our
implementation in the multi-core system achieves a speedup
factor of 18 over the performance of a sequential algorithm
using a single processor in the same system. Meanwhile, for
the same input binary image, our implementation on the GPU
achieves a speedup factor of 5 over the sequential algorithm
implementation.

Keywords-Euclidean Distance Map, Proximate Points, Multi-
core Processors, GPU

I. INTRODUCTION

In many applications of image processing such as blurring
effects, skeletonizing and matching, it is essential to measure
distances between featured pixels and nonfeatured pixels.
For a 2-D binary image with size of n X n, treating
black pixels as featured pixels, Euclidean Distance Map
(EDM) assigns each pixel with the distance to the nearest
black pixel using Euclidean distance as underlying distance
metric. We refer reader to Figure 1 for an illustration of
Euclidean Distance Map. Assuming that points p and g
of the plane are represented by their Cartesian coordi-
nates (z(p),y(p)) and (x(q),y(q)), as usual, we denote
the Euclidean distance between the points p and ¢ by

d(p,q) = /(z(p) — =(0))? + (y(p) — y(q))>-

Many algorithms for computing EDM have been proposed
in the past. Breu er al. [1] and Chen et al. [2], [3] have
presented O(n?)-time sequential algorithm for computing
Euclidean Distance Map. Since all pixels must be read at
least once, these sequential algorithms with time complexity
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Figure 1. Illustrating Euclidean Distance Map

of O(n?) is optimal. Since in any EDM algorithm, each
of the n? pixels has to be scanned at least once. Roughly
at the same time, Hirata [4] presented a simpler O(n?)-
time sequential algorithm to compute the distance map for
various distance metrics including Euclidean, four-neighbor,
eight-neighbor, chamfer, and octagonal. On the other hand,
for accelerating sequential ones, numerous parallel EDM
algorithms have been developed for various parallel model.
Lee et al. [5] presented an O(log® n)-time algorithm using
n? processors on the EREW PRAM. Pavel and Akl [6]
presented an algorithm running in O(logn) time and using
n? processors on the EREW PRAM. Clearly, these two
algorithms are not work-optimal. Fujiwara et al. [7] have
presented a work-optimal algorithm running in O(logn)

time using 2~ EREW processors and in O(logign)
. . 2 .
time using % CRCW processors. Later, Hayashi et

al. [8] have exhibited a more efficient algorithm running in
O(log n) time using 7— processors on the EREW PRAM

lo

and in O(loglogn) time using ﬁ processors on the
CRCW PRAM. Since the product of the computing time
and the number of processors is O(n?) these algorithms
are work optimal. Also, it was proved that the computing
time cannot be improved as long as work optimality is
satisfied, these algorithms are also work optimal. Thus, these
algorithms are work-time optimal. Recently, Chen et al. [9]
have proposed two parallel algorithms for EDM on Linear
Array with Reconfigurable Pipeline Bus System [10]. Their
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first algorithm can computes EDM in O(%) time

using n? processors and second algorithm can compute
EDM in O(logn loglogn) time using log’}jgn processors.

In practice, now many applications has employed both
general Multi-Core Processors and emerging GPUs (Graph-
ics Processing Unit) as real platforms to achieve an efficient
acceleration. We have also implemented and evaluated our
parallel EDM algorithm in the both platforms, a Linux
server with four Intel hexad-core processors (Intel Xeon
X7460 2.66GHz [11]) and a modern GPU (Graphics Pro-
cessing Unit) system, Tesla C1060 [12], respectively. The
experimental results show that, for an input binary image
with size of 10000 x 10000, our parallel algorithm can
achieve 18 times speedup in the multi-core system over
the performance of a sequential algorithm. Further, for the
same input image, our parallel algorithm for the GPU system
achieves a speedup factor of 5.

The remainder of this paper is organized as follows:
Section II introduces the proximate points problem for
Euclidean distance metric and discuss several technicalities
that will be crucial ingredients to our subsequent parallel
EDM algorithm. Section III shows the proposed parallel
algorithm for computing Euclidean distance map of a 2-
D binary image. Section IV exhibits the performance of our
proposed algorithm on various multi-core platforms. Finally,
Section V offers concluding remarks.

II. PROXIMATE POINTS PROBLEM

In this section, we review the proximate problem [8]
along with a number of geometric results that will lay
the foundation of our subsequent algorithms. Throughout,
we assume that a point p is represented by its Cartesian
coordinates (z(p), y(p)).

Consider a collection P = {p1,p2,...,pn} of n points
sorted by z-coordinate, that is, such that z(p1) < z(p2) <

. < z(pn). We assume, without loss of generality, that
all the points in P have distinct x-coordinates and that all
of them lie above the z-axis. The reader should have no
difficulty to confirm that these assumptions are made for
convenience only and do not impact the complexity of our
algorithms.

Recall that for every point p; of P the locus of all the
points in the plane that are closer to p; than to any other
points in P is referred to as the Voronoi polygon associated
with p; and is denoted by V(7). The collection of all the
Voronoi polygons of points in P partitions the plane into the
Voronoi diagram of P (see [13], p. 204). Let I;, (1 < i < n),
be the locus of all the points ¢ on the x-axis for which
d(q,pi) < d(q,p;) for all p;, (1 < j < n). In other words,
q € I; if and only if ¢ belongs to the intersection of the z-
axis with V'(7), as illustrated in Figure 2. In turn, this implies
that I; must be an interval on the x-axis and that some of
the intervals I;, (2 < i < n — 1), may be empty. A point p;
of P is termed a proximate point whenever the interval I; is
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nonempty. Thus, the Voronoi diagram of P partitions the z-
axis into proximate intervals. Since the point of P are sorted
by x-coordinate, the corresponding proximate intervals are
ordered, left to right, as I : Iy, I, ..., I,. A point ¢ on the
x-axis is said to be a boundary point between p; and p; if
q is equidistance to p; and p;, that is, d(p;, ¢) = d(p;, q). It
should be clear that p is boundary point between proximate
points p; and p; if and only if the ¢ is the intersection of
the (closed) intervals I; and I;. To summarize the previous
discussion, we state the following result;
Proposition 2.1: The following statements are satisfied:

1) Each I; is an interval on the x-axis;

2) The intervals I,1,...,I, lie on x-axis in this
order, that is, for any nonempty I; and I; with
1 < j, I; lies to the left of I;.

3) If the nonempty proximate intervals I; and I; are

adjacent, then the boundary point between p; and
p; separates I; U I; into I; and I;.
Referring again to Figure 2, among the seven points, five
points p1, P2, Pse, P and py are proximate points, while the
others are not. Note that the leftmost point p; and the
rightmost point p,, are always proximate points.

Figure 2.

Tllustrating proximate intervals

Given three points p;, p;, pr With ¢ < j < k, we say that
p; is dominated by p; and p; whenever p; fails to be a
proximate point of the set consisting of these three points.
Clearly, p; is dominated by p; and p if the boundary of
p; and p; is to the right of that of p; and p;. Since the
boundary of any two points can be computed in O(1) time,
the task of deciding for every triple (p;,p;, pr), whether p;
is dominated by p; and pj takes O(1) time using single
processor.

Consider a collection P = {p1, pa, ..., pn } of points in the
plane sorted by z-coordinate, and a point p to the right of
P, that is, such that z(p1) < z(p2) < ... < 2(pn) < z(p).
We are interested in updating the proximate intervals of P
to reflect the addition of p to P, as illustrated in Figure 3.

We assume, without loss of generality, that all points in
P are proximate points and let Iy, I, ..., I, be the corre-
sponding proximate intervals. Further, let Iy, I, ..., I}, I,
be the updated proximate intervals of P U {p}. Let p;
be a point such that I} and I, are adjacent. By point 3
in Proposition 2.1, the boundary point between p; and p
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Figure 3.

Illustrating the addition of p to P = {p1,p2,p3,pa}

separates I] and I,. As a consequence, point 2 implies
that all the proximate intervals I, ..., I], must be empty.
Furthermore, the addition of p to P does not affect any of
the proximate intervals I;, 1 < j < 4. In other words, for all
1 <j <, I} =1;. Since I;, 4, ..., I}, are empty, the points
Dit1, ..., Pn are dominated by p; and p. Thus, every point
pj. (i < j <), is dominated by p;_; and p; otherwise, the
boundary between p;_; and p would be to the left of that of
that between p; and p. This would imply that the nonempty
interval between these two boundaries corresponds to [ J’., a
contradiction. To summarize, we have the following result:

Lemma 2.2: There exists a unique points of p; of P such
that:

e The only proximate points
P1,D2,---,Pi, D-

o For 2 < j <4, the point p; is not dominated by p;_;
and p. Moreover, for 1 < j <i—1, I = I;.

e For i < j < n, the point p; is dominated by p;_, and
p and the interval I} is empty.

o I and I, are consecutive on the z-axis and are
separated by the boundary point between p; and p.

of P U {p} are

Let P = {p1,p2,...,pn} be a collection of proximate
points sorted by z-coordinate and let p be a point to the left
of P, that is, such that z(p) < z(p1) < z(p2) < ... < z(pp)-
For further reference, we now take note of the following
companion result to Lemma 2.2. The proof is identical and,
thus, omitted.

Lemma 2.3: There exists a unique points of p; of P such
that:

e The only proximate points

P, Pi, Pit15 -5 Pn-
o Fori < j <n, the point p; is not dominated by p and
Pj+1. Moreover, for i +1<j <n, I} =I;.

o Forl < j <1, the point p; is dominated by p and pj,

and the interval I} is empty.

o I, and I} are consecutive on the x-axis and are

separated by the boundary point between p and p;.

of P U {p} are

The unique point p; whose existence is guaranteed by
Lemma 2.2 is termed the contact point between P and p.
The second statement of Lemma 2.2 suggests that the task
of determining the unique contact point between P and a
point p to the right or the left of P reduces, essentially, to
binary search.

Now, suppose that the set P = {p1,pa,...,p2n}, With
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z(p1) < 2(p2) < ... < &(pan) is partitioned into two subsets
Py, = {p1,p2,.-»pn} and Pr = {Pnt1,Pn+2, .-, Pan}-
We are interested in updating the proximate intervals in
the process or merging P and Pgr. For this purpose,
let I,I5,...,1,, and I,41,In42,..., ]2, be the proximate
intervals of Pp and Pg, respectively. We assume, without
loss of generality, that all these proximate intervals are
nonempty. Let I],I},..., I} be the proximate intervals of
P = P;, U Pr. We are now in a position to state and prove
the next result which turns out to be a key ingredient in our
algorithms.

Lemma 2.4: There exists a unique pair of proximate
points p; € Pr, and p; € Pgr such that

e The only proximate points in P, U Pgr are

P1,D25 -3 Pis Pjs -+ P2n-
o Il ., Iy are empty, and I} = Iy, for 1 <k <i—1
and j+ 1<k <2n.

o The proximate intervals I} and I} are consecutive and
are separated by the boundary point between p; and
pj.

Proof: Let i be the smallest subscript for which p; € Py,
is the contact point between P, and a point in Pg. Similarly,
let j be the largest subscript for which the point p; € Pg is
the contact point between Pg and some point in Py,. Clearly,
no point in Py, to the left of p; can be proximate point of P.
Likewise, no point in Pg to the left of p; can be a proximate
point of P.

Finally, by Lemma 2.2, every point in Py, to the left of p;
must be a proximate point of P. Similarly, by Lemma 2.3,
every point in Pg to the right of p; must be a proximate
point of P, and proof of the lemma is complete. [ ]

The points p; and p; whose existence is guaranteed by
Theorem 2.4 are termed the contact points between P, and
Pr. We refer the reader to Figure 4 for an illustration. Here,
the contact points between P;, = {p1,p2,ps,ps,ps} and
Pr = {ps,p7,p8,P9, P10} are py and ps.

Next, we discuss a geometric property that enables the
computation of the contact points p; and p; between Pj,
and Pg. For each point p;, of Py, let ¢ denote the contact
point between p; and Pg as specified by Lemma 2.3. We
have the following result.

Lemma 2.5: The point py, is not dominated by py,_1 and
qr if 2 < k <4, and dominated otherwise.

Proof: If py, (2 < k < i), is dominated by pr—; and
gk, then I} must be empty. Thus, Lemma 2.4 guarantees that
Dr, (2 < k <), is not dominated by py_1 and gi. Suppose
that pg, (i +1 < k < n), is not dominated by pg_; and g.
Then, the boundary point between p; and ¢y, is to the right
of that between these two boundaries corresponds to I}, a
contradiction. Therefore, pg, (i + 1 < k < n), is dominated
by pr_1 and g, completing the proof. [ ]

Lemma 2.5 suggests a simple, binary search-like, ap-
proach to finding the contact points p; and p; between two
sets Pr, and Pg. In fact, using a similar idea, Breu et al. [1]
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Figure 4. Tllustrating the contact points between two sets of points

proposed a sequential algorithm that computes the proximate
points of an n-point planar set in O(n) time. The algorithm
in [1] uses a stack to store the proximate points found.

IT1. PARALLEL EUCLIDEAN DISTANCE MAP OF 2-D
BINARY IMAGE

A binary image I of size n X n is maintained in an array
bi ;. (1 <i,j < mn).Itis customary to refer to pixel (i, )
as black if b; ; = 1 and as white if b; ; = 0. The rows
of the image will be numbered bottom up starting from 1.
Likewise, the columns will be numbered left to right, with
column 1 being the leftmost. In this notation, pixel b 1
is in the south-west corner of the image, as illustrated in
Figure 5(a). In Figure 5(a), each square represents a pixel.
For this binary image, its final distance mapping array is
shown in Figure 5(b).

®.1) CE) @®,

N
=

(1,1 (1,8) (1,1 (1,8)

(a) Binary image (b) Mapping array

Figure 5. A binary image and its mapping array

The Voronoi map associates with every pixel in I the
closest black pixel to it (in the Euclidean metric). More
formally, the Voronoi map of I is a function v : [ — [
such that, for every (i,j), (1 <i,j < n), v(i,j) =v(i,j")
if and only if

d((i,5), (', 5') = min{d((i, ), (", ")) | bin j = 1},

where d((i,j), (i',5')) = /(i —i')2 + (j — j')? is the Eu-
clidean distance between pixels (i, 7) and (i, j").

The Euclidean distance map of image I associates with
every pixel in [ in the Euclidean distance to the closest black
pixel. Formally, the Euclidean distance map is a function m:
I — R such that for every (i,j), (1 <i,5 <n), m(i,j) =
d((i, ), (i, 7).

We now outline the basic idea of our algorithm for
computing the Euclidean distance map of image /. We begin
by determining, for every pixel in row j, (1 < j < n), the
nearest black pixel, if any, in the same column of subimage
of I. More precisely, with every pixel (i, j) we associate the
value

di,j = mln{d((la.])7 (ilajl)) | bi’,j’ = 171 S jl S n}

If by ;o = 0 forevery 1 < j' < m, thenlet d; ; = +o00. Next,
we construct an instance of the proximate points problem for
every row j, (1 < j < n), in the image I involving the set
P; of points in the plane defined as P; = {p; ; = (i,d; ;) |
1<i<n}.

Having solved, in parallel, all these instances of the prox-
imate points problem, we determine, for every proximate
point p; ; in P;, its corresponding proximity interval ;. With
Jj fixed, we determine, for every pixel (i, j) (that we perceive
as a point on the z-axis), the identity of the proximity
interval to which it belongs. This allows each pixel (i, j)
to determine the identity of the nearest pixel to it. The
same task is executed for all rows 1,2, ...,n in parallel, to
determine, for every pixel (i,j) in row j, the nearest black
pixel. The details are spelled out in the following algorithm:

Algorithm Euclidean Distance Map(I)

Step 1. For each pixel (4, j), compute the distance d; ; =
min{d((5,), (i, 3) | by = 1,1 < §' < n} to
the nearest black pixel in the same column as (i, j)
in the subimage of I.

Step 2. For every j, (1 < j < n), let P; = {p;; =
(i,d;;) | 1 < i < n}. Compute the proximate
points E(P;) of P;.

Step 3. For every point p in E(P;) determine its proximity
interval of P;.

Step 4. For every 4, (1 < i < n), determine the proximate

interval of P; to which the point (7, 0) (correspond-
ing to pixel (4,7)) belongs.
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We assume that there are k processors PE(1), PE(2),
..., PE(k) available. The parallel implementation of above
algorithm is shown in follow:

Step 1. Partition the input image I into k£ subimages

I, I, ..., I, along with column wise. For every
pixel of each subimage I; (1 < i < k), corre-
sponding processor PE(i) computes the distance
to the nearest black pixel in the same column. In
real implementation, first, each processor travels
every column of corresponding subimage from up
to bottom to compute that distance, as illustrated
in Figure 6(a) (its original input image is shown in
Fig 5). Second, each processor again travel every

PE, PE, PE, PE,PE; PE; PE; PEg PE, PE, PE; PE,PE; PE; PE; PEg

4]
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(a) process with up to bottom  (b) process with bottom to up

Figure 6. Process each column with two directions

column of corresponding subimage from bottom to
up to compute that distance, as illustrated in Fig-
ure 6(b). Finally, each processor selects a minimum
value of calculated two distances as final value of
the distance. It is clear that the time complexity of
this step is O(n?/k).

Step 2. Again, we compute Euclidean distance map of

input image I along with row wise.

Step 2.1. Partition the input image into k subimages

I, 15, ..., I} along with row wise. For every row
of each subimage I! (1 < i < k), each processor
PE() (1 < i < k) computes the proximate points
using the theorem of proximate points problem as
foundation, as illustrated in Figure 7 and Figure 8.
In Figure 8, the Voronoi polygons correspond to

PEg 0 0 Q0 Q0 3 Q 0 Q
PE, 0 0 1 1 2 1 0 1
PEg 9. 1 2 1 1 2 1 A
PE, 2 3 3 1 1 4 3 2
PE, 1 2 2 2 2 5 4 1
PE, 0 1 1 1 3 3 5 Q
pe, [0l 0]ololalzlelg
R}

=

Figure 7. Processing with row wise

the Sth row (shaded row) of the image illustrated
in Fig 7. The obtained proximate points are saved
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in a stack. It should be clear that each column has
its own corresponding stack. Therefore, in order
to add a new proximate point to the stack, we
need to calculate boundary points of this new point
and existed proximate points which are kept in the
stack. Then according to locus of boundary points,
we decide which point need to be deleted from the
stack.

3 o { |\‘
2 { J { J
1@
/ \-'i(is
1 1 1 .__. 1 1

Pixel(5,1)  Pixel(5,2) Pixel(53) Pixel(5,4) Pixel{5,5) Pixel(5,6) Pixel(5,7) Pixel(5,8)

Figure 8. Voronoi polygons

Step 2.2.For every row of each subimage I} (1 <i < k),
each processor PE(:) determines proximate inter-
vals of obtained proximate points by computing
boundary point of each pair of adjacent proximate
points. The boundary point of each pair of adjacent
proximate points can be obtained by calculating the
intersection point of two lines, one line is x-axis
and another is the normal line of the line which
connects two adjacent proximate points. We refer
reader to Figure 9 for the illustration. Each pair
of adjacent proximate points can be obtained from
the stack.

Step 2.3. According to the locus of boundary points
obtained from Step 2.2, each processor determines
the closest black pixel to each pixel of input image.
The distance between a given pixel and its closest
black pixel is also calculated in an obvious way.

3 N °
2 / @

1@ /
- Interval > Interval - Inteh\lmerval
1 1 1 .V _. 1 1 N ¢

Pixel(5,1) pi%r,yz) Pixel(5,3) Pixel(5,4] Pixel(5,5) Pixel(5,6) Pixel(5,7) Pixel(58)

Figure 9. Proximate intervals

It 2is clear that, the whole Step 2 can be implemented in
O(%-) time using k processors.



Theorem 3.1: For a given binary image I with the size of
nxn, l;?uclidean Distance Map of image I can be computed
in O(%-) time using k processors.

IV. EXPERIMENTAL RESULTS

We have implemented and evaluated our proposed parallel
EDM algorithm in the following two platforms, a general
multi-core processors system and a modern GPU system,
respectively. The multi-core processors system is a Linux
server with four Intel hexad-core processors (Intel Xeon
X7460 2.66GHz [11]), that is, there are twenty four cores
available. Each multi-core processor has its own local three-
level caches that are 64KB L1 cache, 3MB L2 cache and
16MB L3 cache. The capacity of the main memory is
128GB. The experimental GPU system is a Tesla C1060 [14]
which consists of 240 Streaming Processor Cores and 4GB
global memory.

As known, in general, a matrix is stored in a row-major
fashion in memory. Therefore, for a given program, different
access modes will result in different performances. In order
to find out in which access mode the implementation of our
parallel EDM algorithm can achieve the best performance,
we have evaluated our parallel EDM algorithm in the
following four access modes: HVHV (Horizontal-Vertical-
Horizontal-Vertical) access mode, HHVV (Horizontal-
Horizontal-Vertical-Vertical) access mode, VVHH (Vertical-
Vertical-Horizontal-Horizontal) access mode and VHVH
(Vertical-Horizontal-Vertical-Horizontal) access mode. We
refer reader to Figure 10 for illustrating HVHYV access mode.
As illustrated in Figure 10, for implementing Step 1 of the
proposed algorithm, each processor reads the corresponding
subimage along with row wise, and processes the subimage.
After that, each processor writes the processing results into
an extra array along with column wise. In implementation
of Step 2, each processor reads the extra array along with
row wise and processes the obtained data. Then, each
processor writes the processed data into the extra array along
with column wise again. In final, we can obtain Euclidean
distance map for the input image. It is clear that, the name
of HVHV access mode comes from the row-wise read and
column-wise write of Step 1, the row-wise read and column-
wise write of Step 2. In the same way, we can understand
other access modes easily.

“Bujssasoid "
—-Buissasoid "

Figure 10. HVHV access mode

Our proposed algorithm has implemented in C language
with OpenMP 2.0 (Open Multi-Processing) in that of multi-
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core processor system. The OpenMP is an application pro-
gramming interface that supports shared memory environ-
ment [15]. It consists of a set of compiler directives and
library routines. By using OpenMP, it is relatively easy to
create parallel applications in FORTRAN, C, and C++. Ta-
ble I has shown the performance of our proposed algorithm
with different access modes in the multi-core processors
system. The size of the input image is 10000 x 10000. In the
table, each measurement is an average value of 20 experi-
ments and, Step 1 and Step 2 is corresponding steps of our
proposed parallel algorithm. It is clear that, in HVHV access
mode, our implementation can achieve the best performance
and it can obtain approximate 18 times speedup. The table
also exhibit the scalability of the proposed algorithm. As
shown, our proposed algorithm can scale well with the
number of using cores smaller than or equal to 4. Actually
we have implemented the proposed algorithm in a multi-
processor system with 4 multi-core processors. Therefore
when the number of using cores is smaller than or equal
to 4, all the using cores will be distributed into different
multi-core processors. Consequently each level cache of a
multi-core processor occupied by only one core. It means
only one core utilizing all the available cache. But, when the
number of using threads is more than 4, then the scalability
of our implementation is decreasing significantly. One main
reason of the phenomenon is that, when the number of
using cores is larger than 4, then 1.2 and L3 cache of each
multi-core processor will be shared by multiple cores. It will
decrease the efficiency of our implementation significantly.
Meanwhile, many other factors such as Memory-CPU bus
bandwidth, communication overhead and synchronization
overhead also play the important roles in the scalability.
Hence we can understand why the real speedup is decreasing
along with increasing the number of using processors. On
the other hand, we have also evaluated the proposed parallel
algorithm with the different sized input images. Table II
shows the performance of the proposed parallel algorithm
for processing images with different sizes. As shown in the
table, for processing small sized images, the performance of
multiple cores is poor than the performance of single core,
because in comparison with total execution time, there is
considerable overhead due to parallel processing.

In another way, our proposed algorithm has been im-
plemented in that of GPU system using CUDA (Compute
Unified Device Architecture) [12], a general purpose parallel
computing architecture. Actually, CUDA is a new parallel
programming model and instruction set architecture. CUDA
comes with a software environment that allows developer
to use C-like high-level programming language. Table III
has shown the performance of our proposed algorithm with
different access modes in that of GPU system. The input
image is the same image used in the multi-core implemen-
tation. Recall that the size of input image is 10000 x 10000.
As shown, in VHVH access mode, our proposed algorithm



Table T
PERFORMANCE OF PROPOSED ALGORITHM IN MULTI-CORE PROCESSORS SYSTEM WITH DIFFERENT ACCESS MODE (n=10000)

(a) HVHV access mode

[ Num of using cores || Step 1 [s] | Speedup [ Step 2 [s] | Speedup [ Total [s] | Speedup |
1 1.8830 1.000 7.1138 1.000 8.9968 1.000
2 0.9740 1.933 3.6592 1.944 4.6333 1.941
4 0.5136 3.666 1.8465 3.852 2.3601 3.812
8 0.3007 6.262 0.9525 7.468 1.2532 7.179
12 0.2254 8.354 0.7063 10.071 0.9317 9.656
16 0.1776 10.602 0.5723 12.430 0.7499 11.997
20 0.1614 T1.666 | 0.4868 14613 | 0.6482 | 13.879
24 0.1617 T1.645 | 03290 | 21.563 | 04916 | 18301
(b) HHVV access mode
[ Num of using cores || Step 1 [s] | Speedup [ Step 2 [s] | Speedup [ Total [s] | Speedup |
1 0.5270 1.000 11.2238 1.000 11.7508 1.000
2 0.2690 1.959 5.6299 1.993 5.8989 1.992
4 0.1694 3.110 2.9462 3.809 3.1156 3,771
8 0.1074 4.906 1.4563 7.707 1.5637 7.514
12 0.1050 5.019 1.2843 8.739 1.3893 8.458
16 0.1040 5.067 0.9707 11.562 1.0747 10.934
20 0.1065 4,948 0.8423 13.325 0.9488 12.384
24 0.1089 4.839 0.9488 11.829 1.0577 11.109
(¢) VVHH access mode
[ Num of using cores || Step 1 [s] | Speedup [ Step 2 [s] | Speedup [ Total [s] | Speedup |
1 4.6438 1.000 6.1536 1.000 10.7974 1.000
2 2.3806 1.950 3.0819 1.996 5.4625 1.976
4 1.2133 3.827 1.5607 3.942 2,774 3.892
8 0.6396 7.260 0.7971 7.719 1.4367 7.515
12 0.5992 7.750 0.5311 11.586 1.1303 9.552
16 0.5809 7.994 0.4036 15.246 0.9845 10.967
20 0.5583 8.317 0.3253 18.916 0.8836 12.219
24 0.6363 7.298 0.2707 22.732 0.9070 11.904
(d) VHVH access mode
[ Num of using cores || Step 1 [s] | Speedup [ Step 2 [s] | Speedup [ Total [s] | Speedup |
T 2.4308 T.000 8.6189 T.000 | 11.0497 | 1.000
2 1.2310 1.974 4.4083 1955 | 5.6393 1.050
4 0.6307 3.854 2.2258 3.872 2.8565 3.868
8 0.3775 6.439 1.3138 6.560 1.6913 6.533
12 0.2605 9.331 0.8333 10.343 1.0938 10.102
16 0.2439 9.966 0.6569 13.120 0.9008 12.266
20 0.1970 12.339 0.5417 15.910 0.7387 14.958
24 0.1733 14.026 0.4617 18.667 0.6350 17.401
. Table IV
can achieve the best performance. PERFORMANCE OF PROPOSED ALGORITHM ON GPU SYSTEM FOR
PROCESSING IMAGES WITH DIFFERENT SIZES
Table III [ Size of image | [ CPU [ GPU [ Speedup |
PERFORMANCE OF PROPOSED ALGORITHM ON GPU SYSTEM WITH 100 Step 1 [ms] 0.087 0.290 0.300
DIFFERENT ACCESS MODE (n=10000) X Step 2 [ms] 0.679 0.631 1.070
[ Access mode [[ Step 1 [ms] [ Step 2 [ms] [ Total time [ms] | 11000(2) STotall [ms] (9);(6)2 2221 g;i
VOVH 572.686 1151.003 1724580 9 siif, 5 Eﬁg s =393 30
XXEE ‘7‘2322‘) é }Zg‘fiﬁg iigg'ggg 1000 Tol [ms] || 78960 | 11.253 7017
HOVY 1005' 373 931 2'120 19’)6'585 10000 Step 1 [ms] 1883.005 572.686 3.288
s e = X Step 2 [ms] 7113.811 1151.903 6.175
10000 Total [ms] 8996.816 | 1724.589 5.216

Table IV has shown the speedup of our GPU implemen-
tation comparing with the performance of single CPU im-
plementation. It is clear that, for processing image with size
of 10000 x 10000, our GPU implementation has achieved In this paper, we have presented an optimal parallel
approximate 5 times speedup. algorithm for computing Euclidean Distance Map (EDM)

V. CONCLUDING REMARKS
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Table IT
PERFORMANCE OF PROPOSED ALGORITHM IN MULTI-CORE PROCESSORS SYSTEM FOR PROCESSING IMAGES WITH DIFFERENT SIZES

[ Size of input image | Num of using cores || Step 1 [s] | Speedup [ Step 2 [s] | Speedup [ Total [s] | Speedup |

100 x 100 1 0.000087 1.000 0.000679 1.000 0.000766 1.000
24 0.011183 0.007 0.000348 1.95 0.011531 0.066

1000 x 1000 1 0.009905 1.000 0.069063 1.000 0.078969 1.000
24 0.013467 0.735 0.003731 18.510 0.017198 4.59

10000 x 10000 1 1.8830 1.000 7.1138 1.000 8.9968 1.000
24 0.1617 11.645 0.3299 21.563 0.4916 18.301

of a 2-D binary image. Using proximate points problem
as preliminary foundation, we have proposed a simple
but efficient parallel EDM algorithm which can achieve
O(%) time using k processors. To evaluate the performance
of the proposed algorithm, we have implemented it in a
Linux server with four Intel hexad-core processors (Intel
Xeon X7460 2.66GHz) [11] and a modern GPU (Graphics
Processing Unit) system, Tesla C1060 [14], respectively.
The experimental results have shown that, for an input
binary image with size of 10000 x 10000, the proposed
parallel algorithm can achieve 18 times speedup in the multi-
core system, comparing with the performance of general
sequential algorithm. Meanwhile, for the same input image,
the proposed parallel algorithm can achieve 5 times speedup
in that of GPU system.
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