2010 First International Conference on Networking and Computing

A Rewriting Algorithm to Generate AROM-{ree
Fully Synchronous Circuits

Md. Nazrul Islam Mondal, Koji Nakano, and Yasuaki Ito
Department of Information Engineering, Hiroshima University
1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan

Abstract—A Field Programmable Gate Array (FPGA) is used
to embed a circuit designed by users instantly. FPGAs can be
used for implementing hardware algorithms. Most of FPGAs have
Configurable Logic Blocks (CLBs) to implement combinational
and sequential circuits and block RAMs to implement Random
Access Memories (RAMs) and Read Only Memories (ROMs).
Circuit design that minimizes the number of clock cycles is easy if
we use asynchronous read operations. However, most RAMs and
ROMs in modern FPGAs support synchronous read operations,
but do not support asynchronous read operations. It is one of
the main difficulties for users to implement hardware algorithms
using RAMs and ROMs with synchronous read operations. The
main contribution of this paper is to provide one of the potent
methods to resolve this problem. We assume that a circuit using
asynchronous ROMs designed by a user is given. Our goal is to
convert this circuit into an equivalent circuit with synchronous
ROMs. We first clarify the condition that a given circuit with
asynchronous ROMs can be converted into a circuit without
asynchronous ROMs. For this purpose, we will show an algorithm
that can generate a circuit with synchronous ROMs, whenever the
original circuit with asynchronous ROMs satisfies this condition.
Using our conversion algorithm, users can assume that FPGAs
support asynchronous ROMs when they design their circuits.
Finally, we will show that we can generate an almost equivalent
circuit with synchronous ROMs by modifying the circuit even if
it does not satisfy this condition.

Index Terms—FPGA, Block RAMs, Asynchronous read oper-
ations, Rewriting algorithm.

I. INTRODUCTION

An FPGA is a programmable VLSI (Very Large Scale
Integration) in which a hardware designed by the users can
be embedded quickly. Typical FPGAs consist of an array
of programmable logic blocks (slices), memory blocks, and
programmable interconnects between them. The logic block
contains four-input logic functions implemented by a LUT
and/or several registers. Using four-input logic functions, reg-
isters, and their interconnections, any Combinational Circuit
(CC) and sequential logic can be implemented. The memory
block is a dual-port RAM which can perform read and/or write
operations for a word of data to two distinct or same addresses
in the same time. Usually, the dual-port RAM supports the
synchronous read and synchronous write operations. The read
and/or write operations are performed at the rising clock edges.
The dual-port RAM outputs data of a specified address after
the rising edge. Similarly data is written to a specified address
at the rising edge of clock if write enable is high. Design tools
are available to the users to embed their hardware logic into the
FPGAs. Some circuit implementations are described [1], [2],

978-0-7695-4277-5/10 $26.00 © 2010 IEEE
DOI 10.1109/IC-NC.2010.54

148

[11] to accelerate the computation in FPGAs. In particular,
FPGAs can implement hundreds of circuits that work in
parallel, they are used to accelerate useful computations. For
example, a parallel implementation [6] for the exhaustive
verification of the Collatz conjecture has been presented. In
this implementation, 24 co-processors embedded in a Xilinx
Virtex-2 Family FPGA perform the exhaustive verification in
parallel.

The circuit design is easier if asynchronous read operation
is possible. Let us show a practical example. Suppose that two
input sequences x1, T2, . .. and yi,ys, ... are given to the two
input ports. We need to design a circuit to compute (f(z;) +
9(yi))- (f(x;) —g(y;)) for every i (i > 1). Figure 1 illustrates
an example of the circuit for this task. Two ROMs supporting
asynchronous read operation (AROMs) are used to compute
f(k) and g(k). More specifically, they are storing the values
of f(k) and g(k) in address k. Since the read operation of
these ROMs are asynchronous, the values of f(k) and g(k) are
output immediately for input k. Using an adder, a subtractor,
and a multiplier, (f(z:) +g(y:)) - (f (z:) — g(yi)) is computed
for the input z; and y;. The resulting value is stored in a
register. In this way, the circuit can be designed using AROMs
easily. However, it is not always easy to design circuits using
ROMs supporting synchronous read operations (SROMs). The
main contribution of this paper is to present an algorithm to
convert a circuit with AROMs into an equivalent circuit with
SROMs. (i.e. an AROM-free circuit) automatically.

The outlines of our new idea are as follows:

1) We introduce a negative register (NR), which is an

imaginary register latching a future input.

2) We define simple five rules that rewrite a circuit.

3) The rewriting algorithm that we propose just repeats
applying these rules until no more rules can be applied.
When the rewriting algorithm terminates, we have an
equivalent AROM-free circuit to the original circuit.

The key and innovative idea is to introduce a negative register.
In our rewriting algorithm, a circuit with AROMs is first
converted into an AROM-free circuit with negative registers.
After that, our algorithm continue to rewrite circuit such that
all NRs are removed. When the algorithm terminates, all
negative registers will be removed if possible, and the resulting
circuit becomes an equivalent to the original circuit.

A circuit implementation with AROMs is better than
SROMs implementation, because of less power consumption,
easy to design etc. But it has some problems like small in

IEEE
computer
pSOC|ety

T Yi
v v
AROM AROM

f(z:) 9(yi)

Tx:) + 9(yi) T(@i) — g(yi)

(f(zi) + 9(yi)) - (f(zi) — 9(y:))

Register

'

Fig. 1. A circuit to compute (f(z;) + 9(y:)) - (f(x:) — g(yi)) using
Asynchronous ROMs (AROMs).

size so that it does not support the designer’s demand, more
expensive, and less speedy [3], [7], [8]. To cut the clock
distribution power, an asynchronous circuit design in FPGAs
is very much suitable, described in [10], [14], [17]. But it is
not supported by the current FPGAs.

On the other hand, a circuit implementation with SROMs is
dominating the modern digital circuit design industry, because
it supports the modern FPGA architecture although it has
some drawbacks to design like clock distribution, more power
consumption etc [3], [8]. So we should use SROMs when we
need a function of ROMs.

One of the research works described the implementation
of asynchronous circuit in FPGA [13]. In this paper, they
described the problems like hazards, timing constraints, state-
holding elements, analog components and decomposition of
the asynchronous circuit implementation in FPGA. Another
research work described a novel FPGA architecture for imple-
menting various styles of asynchronous logic [5]. They imple-
mented a full-adder circuit in two different logic styles. While
in synchronous circuits a clock globally controls the activity
where as asynchronous circuit activity is locally controlled
using communication channels to detect the presence of data
at their inputs and outputs. An asynchronous module com-
municates with each other using requests and acknowledges
[15]. Some dedicated FPGAs have also been developed to test
asynchronous designs. Unfortunately, these FPGAs are closely
associated to a style of design. For instance, MONTAGE [13]
and PGA-STC [9] are based on an asynchronous design,
GALSA [4] and STACC [12] are globally asynchronous
FPGAs but locally synchronous and PAPA [16] is a fully
asynchronous FPGA dedicated to optimize pipeline circuits.

To the best of our knowledge, there is no previous research
work on our topic. It is well known that the current FPGA

149

Fig. 2. An example of a combinational circuit (CC).

architecture is the best suited for digital synchronous circuit
design. Unfortunately, they do not have block RAMs sup-
porting asynchronous read operations. It is also known that
AROM is implemented in LUTs which is easy to use because
of the immediate output of data. However it is small in size
and costly. So, our target is to generate an AROM-free fully
synchronous sequential circuit from a sequential circuit with
AROM which is an equivalent to the original circuit so that it
can support the modern FPGA architecture.

This paper is organized as follows: Section II briefly de-
scribes the circuits and their equivalency. In Section III, we
describe our rewriting algorithm, circuit graph and also explain
the equivalency for our rewriting rules. Section IV presents the
proof of the correctness of our rewriting algorithm. Finally
Section V concludes this work and also describes the future
works.

II. CircUITS AND THEIR EQUIVALENCE

Let us consider a synchronous sequential circuit that con-
sists of input ports, output ports, combinational circuits (CCs),
registers (Rs), Read Only Memories (ROMs), a global clock
input (clock), and a global reset input (reset).

A combinational circuit (CC) is a network of fundamental
logic gates with no feedback. So, it can compute Boolean
functions represented by Boolean formulas, such as ' = A -
B+B-C and G = B - C as illustrated in Figure 2. Once inputs
are given, the outputs are computed in small propagation delay.

A b-bit register has a clock input and a reset input. It can
store a b-bit data as shown in Figure 3. If reset is 1, then the
b-bit data is initialized by 0. If reset is O, the stored data is
updated by the value given to the input port d at every rising
clock edge. The data stored in the register is always output
from port q.

A ROM (Read Only Memory) has b-bit input d and c-bit
data output ¢. It is storing 2° words such as M]0], M[1], ...,
M2% — 1] with ¢ bits each. We deal with two types of ROMs
in terms of read operations as follows:

o Synchronous ROM (SROM) An SROM has a clock

input and a reset input. If reset is 1 then the stored value
is initialized by 0. The read operation is performed at

clock — . .
b-bit register (R)
reset —

clock —

reset —f

Fig. 3. A register (R), a synchronous ROM (SROM) and an asynchronous
ROM (AROM).

every rising clock edge when reset is 0. The output ¢ is
the value of M[d] at the latest rising clock edge.
Asynchronous ROM (AROM) An AROM has no clock
input and no reset input. The value of M|d] is continu-
ously output from port q.

The Figure 4 shows a timing diagram of reading operations
of the R, SROM, AROM and NR. In the figure, time 0, 1,
2, ... correspond to rising edges of the periodic clock input.
Initially global reset is 1 and it drops to O just before time 0.
Data dy, dy, da, ..., are given to the input port d. As shown
in the figure, the value of output, ¢ of R and SROM is 0 at
time 0. Also, at time 1, 2, ..., the values of output,q of R
and SROM are do, dl, d2, cee and M[do], M[dl], M[dg], PN
respectively. For the AROM, the data M|[dp], M[d], M[d,],

. are taken from the output port, ¢ immediately at time O,
1, 2, ... respectively .

In current FPGAs, an SROM can be implemented in em-
bedded block RAMs. However, an AROM is implemented in
LLUTs, which are very costly. Hence, we should use SROMs
when we need a function of ROMs. On the other hand, AROM
is easy to use, because we can get output data from the AROM
immediately.

We will describe a behavior of a circuit element using a
sequence of output at every rising clock edge for periodic
clock (clock is inverted into a fixed frequency), and initial reset
(initially, reset is 1 and drops to O before the first rising clock
edge) as illustrated in Figure 4. The behavior of each circuit
element is described by the output sequences as follows:

o Combinational Circuit (CC) For simplicity, we assume
3-input 2-output combinational circuit which is shown
in Figure 2. It should not have no difficulty to extend
the definition for general m-input n-output combinational
circuit. We assume that, at time 7 (i > 0), a;, b;, and ¢;
are given to the 3 input ports A, B, and C. Let f and g

150

time 0 1 2 3
e || L] L] L]
et]

d do dy da ds

q®R) 0 do dy da

g (SROM) o Y M[do]YMI[d1JY [dz]
q(AROM) M [dolY M([d1 iy M[d>]}y M [d3]

¢(NR) do ds da

Fig. 4. A timing chart of a register(R), an SROM, an AROM and a negative
register (NR).

be the two functions with three arguments that determine
the value of output ports F' and G. The output sequences
of F' and G are as follows:

CC(F)I(f(ao, bo, Co), f((ll, b1, Cl), f(ag, b2, 62), .. >
CC(G):(g(ag, by, o), g(a1,b1,c1),g(az, b2, ca),...)
Register (R) Let d; denote an input value given to an
input port d at time ¢ (z > 0). The output sequence is

described as follows:

R: <0, do, dl, dz, .. >
Synchronous and Asynchronous ROMs (SROMs and
AROMs) Let Mj] denote the value stored in address j
(j > 0) of the ROM. The output sequences of SROM
and AROM are as follows:

SROM: (0, M[dp], M[d1], M[d>],...)

AROM: <M[d0], M[dl], M[dg], M[d3], .. >

In this paper, we assume that a fully synchronous circuit has
data input, data output, a global clock input, a global reset
input, combinational circuits (CCs), registers (Rs), SROMs,
AROMs, and their interconnects. The readers should refer to
the Figure 5 for illustrating an example of a fully synchronous
circuit. The global clock and the global reset are directly
connected to the clock input ports and the reset input ports
of all Rs and SROMs. Also, we assume that a circuit has no
loop.

Let us define equivalence of two fully synchronous circuits
for the periodic clock and initial reset. We say that two circuits
X and Y are equivalent if, for any input sequence, the output
sequences are the same except for first several outputs. For the
reader’s benefit, we will show an example of the equivalence.

Let us consider a circuit R+AROM, that is, the output
of R is connected to the input of AROM as illustrated in
Figure 6. We also consider a circuit AROM+R, in which
the output of AROM and the input of R are connected. For
the periodic clock with initial reset, the output sequences of

data input

©,
P

| | AROM | | AROM |

AROM

R CcC)
clock
reset ‘
data output 0

Fig. 5. An example of a fully synchronous circuit and the corresponding
circuit graph with potentiality.

SROM, R+AROM, and AROM+R are as follows:

SROM: (0, M[dp], M[d1], M[d>],...)

R+AROM: (M[0], M[do], M[d:], M[ds], . ..)

AROM+R: (0, M[do], M[d1], M[d2],...)
Since these three circuits have the same output in time 1, 2,
..., they are equivalent. Note that the outputs in time 0 are
not equal. In this paper, we ignore first several clock cycles
when we determine the equivalency of the circuits.

Suppose that a circuit X with AROMs is given. The main

contribution of this paper is to show

« anecessary condition such that an AROM-free circuit, ¥
can generates, which is equivalent to X, and

o an algorithm to derive Y if the necessary condition is
satisfied.

For later reference, we will introduce a negative register
(NR), which is a nonexistent device used only for showing
our algorithm to derive Y and related proofs. Recall that,
a regular register latches the input at the rising clock edge.
A negative register latches a future input. The Figure 4 also
shows a timing diagram of a negative register (NR). An NR
latches the value of input d at the rising edge of two clock
cycles later as illustrated in Figure 4. Thus, the NR has the
following output sequence for a periodic clock with an initial
reset is as follows:

NR: <d1,d2,d3,. - >
In our algorithm to derive an AROM-free circuit Y, circuits
with NR will be used as interim results.

III. CIRCUIT GRAPH AND REWRITING RULES

We simply use a directed graph to denote the interconnec-
tions of a fully synchronous circuit. We call such graph as
a circuit graph. A circuit graph consists of a set of nodes
and a set of directed edges connecting two nodes. Each
node is labeled by either T (Input port), O (Output port), CC

Fig. 7. A combinational circuit to implement fan-out 2 circuit.

(Combinational Circuit), R (Register), NR (Negative Register),
AROM, or SROM. A node with label I is connected with one
or more outgoing edges. A node with label O is connected with
exactly one incoming edge. A node with label CC has one or
more incoming edges and one or more outgoing edges. A node
with label R, NR, AROM, or SROM has one incoming and
one outgoing edge. We also assume that a circuit graph is a
directed acyclic graph (DAG), that is, it has no directed cycles.
The Figure 5 illustrates an example of a directed graph. Note
that nodes with label I, R, NR, AROM, or SROM has only
one outgoing edge. The readers may think that one outgoing
edge is a strong restriction because it does not allow two
or more fan-outs. However, we can implement multiple fan-
outs by attaching a simple combinational circuit (CC) that just
duplicate the input. For example, a CC with one input port A
and two output ports F' and G such that FF = A and G = A
is used to implement fan-out 2 as illustrated in Figure 7.

For a given circuit X with AROMs, we will show an
algorithm to derive an AROM-free and NR-free circuit, Y
by rewriting circuits. We assume that X is given as a circuit
graph. We will define rules to rewrite a circuit graph. The
readers should refer to Figure 8 for illustrating the rules, where
P and S denote predecessor and successor nodes respectively.
The nodes between predecessor and successor nodes are
rewritten as follows.

Rule 0 AROM node is rewritten into SROM+NR.

Rule 1 Adjacent R and NR nodes are rewritten into NULL
circuit, that is, they are removed.

Rule 2 R+SROM (or NR+SROM)
SROM+R (or SROM+NR).

Rule 3 If one of the incoming edges of a CC node is
connected to an NR node, then the NR node is
removed, a R node is added to all the other incoming
edges, and the NR node is moved to all the outgoing
edges of the CC node.

Rule 4 If all the incoming edges of a CC node are connected
to a R node, then all the Rs are removed to all the
outgoing edges of the CC node.

is rewritten into

Let us confirm that, after applying one of the rewriting rules,
an original circuit and the resulting circuit are equivalent.
Let a;, b;, ¢;, and d; (¢ > 0) denote inputs given from the
predecessor node at time 1.

Rule 0 Both AROM and SROM+NR have the output

sequence (M[do], M[d1], M[d>], M][ds], ...), and
thus they are equivalent.

d d
b 1 b i
d
i clock — i X
b b-bit register AROM
reset —
clock —
SROM = b = c
reset —| y \
i clock — . i
¢ AROM c-bit register
reset —|
a c l c i
q q
Fig. 6. SROM, R4+-AROM, and AROM+R.
(P} (P} (P} (P} (P} (P} (P}
SROM R NR R SROM
(or NR)
axom || —>| | Lo | |— Po—=]
Rule 0 Rule 1
Rule 2
NR NR R SROM R
(or NR
' o ' ' /
s sy is s s sy
S R S RS N R AR C A ey (P
NR \ R R R R R
Rule 3 / \ Rule 4 / \
NR NR / \ R
*.____.' ‘.___,y \\.__‘.' / \<.____.' <.____,'/ \ ol *.___‘.'/
Fig. 8. Rules to rewrite a circuit graph.
Rule I R+NR and NR+R have the output sequences (0, 0, MJdo], MJdi], ...), respectively and

<d0, dl, dg, d3, .. > and <0, dl, dz, d3, .. .>, respec-
tively. Also, NULL circuit has the output sequence

(do,d1,ds,ds,...). Thus, they are equivalent.
Rule 2 R+SROM and SROM+R have the output se-
quences (0, M][0], M][do], Mldi], ...) and

152

thus they are equivalent. On the other hand,
NR+SROM and SROM+NR have the output
sequences (0, M|d;], M[ds], MJds], ...) and
(Mldo], M[dy], M[d2], M[d3] ...) respectively and
thus they are equivalent.

Rule 3 The output sequences of the left-hand side of the
rule are <f(a1, bo, C()), f(ag, bl, Cl), f(ag, bg, 02),
. > and (g(al, b07 Co), g(ag, bl, Cl), g(ag, bg, 02),
..). Those of the right-hand side are {f (a1, bg,co),
f(az,b1,¢1), f(as, ba,ca), ...) and {(g(a1,bo,co),
g(as2,b1,¢1), g(as,be,c2), .. .). Thus, they are equiv-
alent.

Rule 4 The output sequences of the left-hand side of

the rule are <f(0, 0, 0) f(ao, bo, Co) f(al, bl, Cl)
) and (g(0,0,0), (CLo,bo,Co) g(al,bl,cl))

Those of the right-hand side are (0, f(ao,bo,co),

f(al, bl, Cl), .. > and <0, g(ao, bo, Co) (al, bl, Cl),
..). Thus, they are equivalent.

We are now in position to describe the rewriting algorithm.
Suppose that an input circuit graph has nodes with labels 7, O,
R, AROM, SROM, and CC. The following rewriting algorithm
generates a circuit graph equivalent to the original circuit
graph.

Find a minimum ¢ such that Rule i can be applied
to the current circuit graph. Rewrite the circuit
graph using such Rule i. This rewriting procedure
is repeated until no more rewriting is possible.

The readers should refer to Figure 9 for illustrating interim and
resulting circuit graphs obtained using our rewriting algorithm.
In this figure, nodes applied rules are highlighted.

Let us observe the behavior of our rewriting algorithm.
First, our rewriting algorithm repeats the applying Rule 0 to
all AROM nodes until all AROM nodes are rewritten into
SROM+NR. After that, NR nodes are moved toward the
output nodes using Rules 2 and 3. Similarly, R nodes are
moved toward the output nodes using Rules 2 and 4 whenever
possible. Also, adjacent pairs of R and NR are removed by
Rule 1. Thus, intuitively, all NR nodes in the resulting circuit
graph are moved and placed just before the output nodes.

For the purpose of clarifying the condition such that our
rewriting algorithm can generate NR-free circuit graph, we
define the potentiality of the nodes in a circuit graph. Suppose
that a node v of a circuit graph has k (> 0) incoming
edges such as (u1,v), (uz,v), ..., (ug,v). Let us define the
potentiality p(v) of a node v as follows:

o If vis I, then p(v) = 0.

o If v is O or SROM, then p(v) =

o If v is AROM or NR then p(v) =

o If v is R then p(v) = p(uy) + 1.

o If v is CC, then p(v) = min(p(u1), p(uz), . .., p(ur)).
The Figure 5 also shows the potentiality of each node.

We have the following theorem.

Theorem 1: All O nodes of a circuit graph have non-
negative potentiality, if and only if our rewriting algorithm
generates an AROM-free and NR-free circuit graph, equivalent
to the original circuit graph.

In other words, we can determine a fully synchronous circuit
that can be converted into an AROM-free circuit by evaluating
the potentiality of all O nodes of the corresponding circuit
graph. Also, the potentiality of all O nodes are non-negative,

1)

p(u
p(u1) —

153

our rewriting algorithm generates an AROM-free and NR-free
circuit graph, and the corresponding fully synchronous circuit
is AROM-free and equivalent to the original fully synchronous
circuit. For example, in Figure 9, the potentiality of the right
O node is negative. Hence, the resulting circuit graph has an
NR node and our rewriting algorithm fails to remove all NRs.

IV. PROOF OF THEOREM 1

The main purpose of this section is to show a proof of
Theorem 1. We will show several lemmas for a proof of
Theorem 1.

Let us observe how the potentiality of nodes is changed by
our rewriting algorithm. We focus the potentiality of successor
nodes. Let P and S denote the predecessor and successor
nodes for Rules 0, 1, and 2. Also, let Py, P», P3, and S;, Ss
be the three predecessor and two successor nodes in Rules 3
and 4. We compute the potentiality of each successor node
both before and after applying the rules as follows.

Rule 0 p(S) = p(P) — 1.

Rule 1 p(S) = p(P).

Rule 2 p(S) = p(P)+ 1 if R and p(S) = p(P) — 1 if NR.

Rule 3 p(51) = p(S>) = min(p(Py) — 1,p(P2), p(P3)) =
min(p(F), p(P) +1,p(Fs) +1) — L.

Rule 4 p(51) = p(52) = min(p(P1)+1,p(P2)+1,p(Ps) +
1) = min(p(P1), p(F2), p(P3)) + 1.

Thus, the potentiality of every successor node is never changed
by applying the rules. In every rule, O nodes can only be
successor nodes. Thus, we have,

Lemma 2: The potentiality of every O node of the resulting
circuit graph is the same as that of the corresponding O node
of the original circuit graph.

In Figure 9, the potentialities of the left and the right O nodes
are 0 and —1, respectively, and these values are never changed.

In a circuit graph, a segment be a directed path u;, us,

., uy such that, u; and wuy are either I, O, SROM, or CC,
and wus, ..., up_; are either R or NR. Note that, if k = 2
then it represents null segment with uy, us. We also have the
following lemma.

Lemma 3: Let u be an NR node and (u, v) be its outgoing
edge in the resulting circuit graph. Node v must be either NR
or O node. Also, all NR nodes must be in segments ending at
O node.

Proof: If v is an R, SROM, or CC node then Rules 1,
2, or 3 can be applied. Since no more rule can be applied to
the resulting circuit graph, v must be either NR or O nodes.
Since the successor of NR nodes must be NR or O nodes, all
NR nodes must be in segments ending at O node. [|

From Lemma 3, we will prove that all SROM and CC nodes
in the resulting circuit graph have zero potentiality.

Lemma 4: All SROM and CC nodes in the resulting circuit
graph have non-negative potentiality.

Proof: Since the resulting graph is AROM-free, nodes
follow NR nodes can have negative potentiality. Since no seg-
ment ending at SROM or CC has NR nodes, their potentiality
must be non-negative. [|

Similarly, we have the following lemma.

®

}

®

'

0 0

-©
-

(=}

®
[

0

O,
b

@o

}

0

®
¢

ONO

OO

(=)
S

I AROM I I AROM I | SROM | | SROM | | SROM | | SROM | | SROM | | SROM |
e e S 01 o A
Do B [8
@?\ gow I%'f/@l ﬂ /6?1% / =
[x] . [x] @ [x] ©) |E|
U IS NI IE D N R E D N
S o w0 me e

©, © o o o ©
o o o

-©
O

| SROM | | SROM |

{0
O E@

b L
€, [r]

0 0] 0 ;
| SROM | | SROM | | SROM | | SROM | | SROM | |SROM |
0 oo b o b oo
@0 2] ‘/@0 E/
Rule 3 @ Rule 1 @ 0 Rule 3
-1 — | — —

E
~
A/'_

-
N

M\@

@1

Fig. 9.

Et@

©,
}

@1

(=]

@[]

(=}

©

Lemma 5: All SROM and CC nodes in the resulting circuit
graph have non-positive potentiality.

Proof: We assume that the resulting circuit graph has
a SROM or CC node with positive potentiality, and show a
contradiction. Let v be a first SROM or CC node with negative
potentiality, that is, all SROM and CC nodes in all directed
paths incoming to v have non-positive potentiality and SROM
or CC node v has positive potentiality.

Case 1 v is an SROM node
Let (u,v) denote the incoming edge. If u is either R
or NR, then Rule 2 can be applied. Since no more
rule can be applied to the resulting circuit graph, it

@o

Interim and resulting circuit graphs obtained by our rewriting algorithm for a circuit graph.

A

N

©, ©, ®

SENG
— =)

—_

must be either I, SROM, or CC. If this is the case,
p(u) = 0 and thus, p(v) = 0, a contradiction.

Case 2 v is CC

154

Let (u1,v),(u2,v),...,(ug,v) (K > 1) denote
the incoming edges. From Lemma 3, none of
Uy, Us,...,u is an NR node. If all of them are R
nodes, then Rule 4 can be applied. Thus, at least one
of them is not an R node. It follows that at least
one of them is either I, SROM, or CC node. From
the assumption, the potentiality of such node is non-
positive, Hence, the potentiality of v is non-positive,
a contradiction.

data input

OO}
' |

AROM AROM

| AROM | | AROM |

R c|c) v '

(CC R
| | @\ E
o *) [@9_1
reset T @0 @ ;
data output @ 0

Fig. 10. A circuit almost equivalent to that of Figure 5 that can be converted
into an AROM-free circuit.

|

We are now in position to show the proof of Theorem 1.
From LLemma 4 and 5, all SROM and CC nodes in the resulting
circuit graph have zero potentiality. Hence, if the potentiality
of one of the O nodes in the resulting circuit graph is negative,
a segment ending at O node in the resulting graph should have
NR from Lemma 3. Similarly, the potentiality of all the O
nodes is non-negative, no segment ending at an output node
has NR in the resulting circuit graph. From Lemma 2, the
potentiality of O nodes does not change by our rewriting
algorithm. Thus, all output nodes of a circuit graph have
negative potentiality, if and only if our rewriting algorithm
generates the resulting circuit graph with NR nodes. This
completes the proof of Theorem 1.

From Theorem 1, it is not possible to have an equivalent
AROM-free circuit. However, we can modify a circuit such
that it can be converted into an equivalent AROM-free circuit.
For this purpose, we compute the potentiality of all O nodes in
the corresponding circuit graph. After that, we insert registers
just before O nodes with negative potentiality so that the
potentiality of the corresponding O nodes turns into a zero.
Since the potentiality of the corresponding O nodes now is
0, it can be converted into an equivalent AROM-free circuit
according to our Theorem 1. The readers should refer to the
Figure 10 for illustrating an example.

V. CONCLUSIONS

In this paper, we have presented a rewriting algorithm
and five rewriting rules to convert a sequential circuit with
AROM into an equivalent fully synchronous circuit with no
AROM for the current FPGA. Using our rewriting algorithm,
any sequential circuit with AROM can be converted into an

155

equivalent fully synchronous sequential circuit with no AROM
to support the modern FPGA architecture. As a future work,
we are now developing algorithm for circuits with feedback
loops. We also have a plan to present algorithm for a circuit
with ARAM, RAM with asynchronous read operations.

REFERENCES
[1

—_—

J. Bordim, Y. Ito, and K. Nakano. Accelerating the CKY parsing
using FPGAs. IEICE Transactions on Information and Systems,
E86-D(5):803-810, 2003.

J. Bordim, Y. Tto, and K. Nakano. Instant-specific solutions

to accelerate the CKY parsing for large context-free grammars.

Internation Journal on Foundations of Computer Science, pages

403-416, 2004.

S. S. C. Design of an fpga logic element for implementing

asynchronous null convention logic circuits. /IEEE Transactions

on very large scale integration (VLSI) system, 15(6), June 2007.

B. Gao. A globally asynchronous locally synchronous config-

urable array architecture for algorithm embeddings. PhD thesis,

December 1996.

N. Huot, H. Dubreuil, L. Fesquet, and M. Renaudin. Fpga

architecture for multi-style asynchronous logic. In Design,

Automation and Test in Europe Conference and Exhibition,

volume 1, pages 32-33, Los Alamitos, CA, USA, 2005. IEEE

Computer Society.

Y. Tto and K. Nakano. A hardware-software cooperative ap-

proach for the exhaustive verification of the collatz cojecture.

In Proc. of International Symposium on Parallel and Distributed

Processing with Applications, pages 63-70, 2009.

S. Jens. Asynchronous circuit design,

http://webee.technion.ac.il/courses/048878/book.pdf.

L. Lavagno and A. Sangiovanni-Vincentelli. Algorithms for syn-

thesis and testing of asynchronous circuits. Kluwer Academic,

1993.

K. Maheswaran. Implementing self-timed circuits in field

programmable gate arrays. Master’s Thesis, 1995.

[10] R. Manohar. Reconfigurable asynchronous logic. In Proceed-
ings of IEEE Custom Intregated Circuits Conference, pages 13—
20, 2006.

[11] K. Nakano and Y. Yamagishi.
with applications to the partial exhaustive search.
Transactions on Information and Systems, 2005.

[12] R. Payne. Self-timed field programmable gate array architec-
tures. PhD thesis, 1997.

[13] H. Scott, B. Steven, B. Gaetano, and E. Carl. An fpga for
implementing asynchronous circuits. IEEE Design and Test of
Computers, 11(3):60-69, 1994,

[14] L. Shota, K. Yoshiya, H. Masanori, and K. Michitaka. An
asynchronous field-programmable vlsi using ledr/4-phase-dual-
rail protocol converters. In The International Conference on
Engineering of Reconfigurable Systems and Algorithms (ERSA),
Monte Carlo Resort, Las Vegas, Nevada, USA, July 2009.

[15] J. Sparso and S. Furber. Principles of Asynchronous Circuit
Design. Kluwer Academic Publishers, Boston, 2001.

[16] J. Teifel and R. Manohar. Programmable asynchronous pipeline
arrays. In Proc. of the 13th Int. Conf. on Field Programmable
Logic and Applications, pages 345-354, Lisbon, Portugal,
September 2003.

[17] J. Teifel and R. Manohar. An asynchronous dataflow fpga

architecture. [EEE Transaction on Computers, 53(11):1376—

1392, 2004.

(2]

(3]

(4]

[5]

[6

—_

tutorial.

(7]
(8]

a

[91

Hardware n choose k counters
IEICE

