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Abstract—Recent Graphics Processing Units (GPUs), which
have many processing units, can be used for general purpose
parallel computation. To utilize the powerful computing ability,
GPUs are widely used for general purpose processing. Since
GPUs have very high memory bandwidth, the performance
of GPUs greatly depends on memory access. The main con-
tribution of this paper is to present a GPU implementation
of computing Euclidean Distance Map (EDM) with efficient
memory access. Given a 2-D binary image, EDM is a 2-D
array of the same size such that each element is storing the
Euclidean distance to the nearest black pixel. In the proposed
GPU implementation, we have considered many programming
issues of the GPU system such as coalescing access of global
memory, shared memory bank conflicts and partition camping.
In practice, we have implemented our parallel algorithm in
the following two modern GPU systems: Tesla C1060 and
GTX 480, respectively. The experimental results have shown
that, for an input binary image with size of 9216 × 9216, our
implementation can achieve a speedup factor of 52 over the
sequential algorithm implementation.

Keywords-Euclidean Distance Map; Proximate Points; GPU;
Coalescing Access;

I. INTRODUCTION

In many applications of image processing such as blurring
effects, skeletonizing and matching, it is essential to measure
distances between featured pixels and nonfeatured pixels.
For a 2-D binary image with size of n × n, treating
black pixels as featured pixels, Euclidean Distance Map
(EDM) assigns each pixel with the distance to the nearest
black pixel using Euclidean distance as underlying distance
metric. We refer reader to Figure 1 for an illustration of
Euclidean Distance Map. Assuming that points p and q
of the plane are represented by their Cartesian coordi-
nates (x(p), y(p)) and (x(q), y(q)), as usual, we denote
the Euclidean distance between the points p and q by
d(p, q) =

√
(x(p) − x(q))2 + (y(p) − y(q))2.

Many algorithms for computing EDM have been proposed
in the past, such as sequential algorithm [1], [2], [3], [4] and
parallel algorithm [5], [6], [7]. Recently, Chen et al. [8] have
proposed two parallel algorithms for EDM on Linear Array
with Reconfigurable Pipeline Bus System [9]. Their first
algorithm can computes EDM in O( log n log log n

log log log n ) time using
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Figure 1. Euclidean Distance Map
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Figure 2. Proximate intervals

n2 processors and second algorithm can compute EDM in
O(log n log log n) time using n2

log log n processors.
In practice, now many applications have employed emerg-

ing GPUs (Graphics Processing Unit) as real platforms to
achieve an efficient acceleration. In GPU implementation,
there are some programming issues of the GPU system such
as coalescing access of global memory, shared memory bank
conflicts and partition camping [10]. Coalescing is to hide
the access latency of the global memory. When sequential
threads access sequential and aligned values in the off-
chip global memory, the GPU will automatically combine
them into a single transaction. An on-chip shared memory
is divided into 16 equally-sized modules of 32-bit width,
called banks. In the on-chip shared memory, the successive
32-bit words are assigned to successive banks. To avoid
bank conflicts and achieve maximum throughput, concurrent
threads should access different banks. Another important
programming issue for global memory is that named as
partition camping. Actually the global memory is divided
into several partitions of 256-byte width.

In our previous paper [11], we have shown an optimal
parallel algorithm for computing Euclidean Distance Map
(EDM) of a 2-D binary image. Using proximate points
problem as preliminary foundation, we have proposed a sim-
ple but efficient parallel EDM algorithm which can achieve
O(n2

k ) time using k processors. To evaluate the performance
of the proposed algorithm, we have implemented it in a
Linux server with four Intel hexad-core processors and a
modern GPU system, respectively. The experimental results
have shown that, for an input binary image with size of
10000× 10000, the proposed parallel algorithm can achieve
18 times speedup in the multicore system, comparing with
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the performance of general sequential algorithm. Meanwhile,
for the same input image, the proposed parallel algorithm
can achieve 5 times speedup in that of GPU system. How-
ever, it is not enough to cope the above programing issues.
Therefore, the main contribution of this paper is to show a
GPU implementation of the proposed algorithm with more
efficient memory access. In GPU implementation, we have
considered many programming issues of the GPU system
such as coalescing access of global memory, shared memory
bank conflicts and partition camping. We have implemented
and evaluated our new parallel EDM algorithm in the
following two GPU systems, Tesla C1060 [12] and GTX
480 [13], respectively. The experimental results have shown
that, for an input binary image with size of 9216 × 9216,
our implementation can achieve a speedup factor of 52 over
the sequential algorithm implementation.

II. PROXIMATE POINTS PROBLEM

In this section, we review the proximate problem [6]
along with a number of geometric results that will lay
the foundation of our subsequent algorithms. Throughout,
we assume that a point p is represented by its Cartesian
coordinates (x(p), y(p)).

Consider a collection P = {p1, p2, ..., pn} of n points
sorted by x-coordinate, that is, such that x(p1) < x(p2) <
... < x(pn). We assume, without loss of generality, that
all the points in P have distinct x-coordinates and that all
of them lie above the x-axis. The reader should have no
difficulty to confirm that these assumptions are made for
convenience only and do not impact the complexity of our
algorithms.

Recall that for every point pi of P the locus of all the
points in the plane that are closer to pi than to any other
points in P is referred to as the Voronoi polygon associated
with pi and is denoted by V (i). The collection of all the
Voronoi polygons of points in P partitions the plane into the
Voronoi diagram of P (see [14], p. 204). Let Ii, (1 ≤ i ≤ n),
be the locus of all the points q on the x-axis for which
d(q, pi) ≤ d(q, pj) for all pj , (1 ≤ j ≤ n). In other words,
q ∈ Ii if and only if q belongs to the intersection of the x-
axis with V (i), as illustrated in Figure 2. In turn, this implies
that Ii must be an interval on the x-axis and that some of
the intervals Ii, (2 ≤ i ≤ n − 1), may be empty. A point
pi of P is termed a proximate point whenever the interval
Ii is nonempty. Thus, the Voronoi diagram of P partitions
the x-axis into proximate intervals. Since the points of P
are sorted by x-coordinate, the corresponding proximate
intervals are ordered, left to right, as I : I1, I2, ..., In.
A point q on the x-axis is said to be a boundary point
between pi and pj if q is equidistance to pi and pj , that
is, d(pi, q) = d(pj , q). It should be clear that p is boundary
point between proximate points pi and pj if and only if the
q is the intersection of the (closed) intervals Ii and Ij . To

summarize the previous discussion, we state the following
result;

Proposition 2.1: The following statements are satisfied:

1) Each Ii is an interval on the x-axis;
2) The intervals I1, I2, ..., In lie on x-axis in this

order, that is, for any nonempty Ii and Ij with
i < j, Ii lies to the left of Ij .

3) If the nonempty proximate intervals Ii and Ij are
adjacent, then the boundary point between pi and
pj separates Ii ∪ Ij into Ii and Ij .

Referring again to Figure 2, among the seven points, five
points p1, p2, p4, p6 and p7 are proximate points, while the
others are not. Note that the leftmost point p1 and the
rightmost point pn are always proximate points.

Given three points pi, pj, pk with i < j < k, we say that
pj is dominated by pi and pk whenever pj fails to be a
proximate point of the set consisting of these three points.
Clearly, pj is dominated by pi and pk if the boundary of
pi and pj is to the right of that of pj and pk. Since the
boundary of any two points can be computed in O(1) time,
the task of deciding for every triple (pi, pj , pk), whether pj

is dominated by pi and pk takes O(1) time using single
processor.

Consider a collection P = {p1, p2, ..., pn} of points in the
plane sorted by x-coordinate, and a point p to the right of
P , that is, such that x(p1) < x(p2) < ... < x(pn) < x(p).
We are interested in updating the proximate intervals of P
to reflect the addition of p to P , as illustrated in Figure 3.
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Figure 3. Addition of p to P = {p1, p2, p3, p4}

We assume, without loss of generality, that all points in
P are proximate points and let I1, I2, ..., In be the corre-
sponding proximate intervals. Further, let I ′1, I

′
2, ..., I

′
n, I ′p

be the updated proximate intervals of P ∪ {p}. Let pi

be a point such that I ′i and I ′p are adjacent. By point 3
in Proposition 2.1, the boundary point between pi and p
separates I ′i and I ′p. As a consequence, point 2 implies
that all the proximate intervals I ′i+1, ..., I

′
n must be empty.

Furthermore, the addition of p to P does not affect any of
the proximate intervals Ij , 1 ≤ j ≤ i. In other words, for all
1 ≤ j ≤ i, I ′j = Ij . Since I ′i+1, ..., I

′
n are empty, the points

pi+1, ..., pn are dominated by pi and p. Thus, every point
pj , (i < j ≤ n), is dominated by pj−1 and p; otherwise, the
boundary between pj−1 and p would be to the left of that of
that between pj and p. This would imply that the nonempty
interval between these two boundaries corresponds to I ′j , a
contradiction. To summarize, we have the following result:
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Lemma 2.2: There exists a unique points of pi of P such
that:

• The only proximate points of P ∪ {p} are
p1, p2, ..., pi, p.

• For 2 ≤ j ≤ i, the point pj is not dominated by pj−1

and p. Moreover, for 1 ≤ j ≤ i − 1, I ′j = Ij .
• For i < j ≤ n, the point pj is dominated by pj−1 and

p and the interval I ′j is empty.
• I ′i and I ′p are consecutive on the x-axis and are

separated by the boundary point between pi and p.

Let P = {p1, p2, ..., pn} be a collection of proximate
points sorted by x-coordinate and let p be a point to the left
of P , that is, such that x(p) < x(p1) < x(p2) < ... < x(pn).
For further reference, we now take note of the following
companion result to Lemma 2.2. The proof is identical and,
thus, omitted.

Lemma 2.3: There exists a unique points of pi of P such
that:

• The only proximate points of P ∪ {p} are
p, pi, pi+1, ..., pn.

• For i ≤ j ≤ n, the point pj is not dominated by p and
pj+1. Moreover, for i + 1 ≤ j ≤ n, I ′j = Ij .

• For 1 ≤ j < i, the point pj is dominated by p and pj+1

and the interval I ′j is empty.
• I ′p and I ′i are consecutive on the x-axis and are

separated by the boundary point between p and pi.

The unique point pi whose existence is guaranteed by
Lemma 2.2 is termed the contact point between P and p.
The second statement of Lemma 2.2 suggests that the task
of determining the unique contact point between P and a
point p to the right or the left of P reduces, essentially, to
binary search.

Now, suppose that the set P = {p1, p2, ..., p2n}, with
x(p1) < x(p2) < ... < x(p2n) is partitioned into two subsets
PL = {p1, p2, ..., pn} and PR = {pn+1, pn+2, ..., p2n}.
We are interested in updating the proximate intervals in
the process or merging PL and PR. For this purpose,
let I1, I2, ..., In and In+1, In+2, ..., I2n be the proximate
intervals of PL and PR, respectively. We assume, without
loss of generality, that all these proximate intervals are
nonempty. Let I ′1, I

′
2, ..., I

′
2n be the proximate intervals of

P = PL ∪ PR. We are now in a position to state and prove
the next result which turns out to be a key ingredient in our
algorithms.

Lemma 2.4: There exists a unique pair of proximate
points pi ∈ PL and pj ∈ PR such that

• The only proximate points in PL ∪ PR are
p1, p2, ..., pi, pj , ..., p2n.

• I ′i+1, ..., I
′
j−1 are empty, and I ′k = Ik for 1 ≤ k ≤ i−1

and j + 1 ≤ k ≤ 2n.
• The proximate intervals I ′i and I ′j are consecutive and

are separated by the boundary point between pi and
pj .

The proof has been shown in [15].
The points pi and pj whose existence is guaranteed by

Theorem 2.4 are termed the contact points between PL and
PR. We refer the reader to Figure 4 for an illustration. Here,
the contact points between PL = {p1, p2, p3, p4, p5} and
PR = {p6, p7, p8, p9, p10} are p4 and p8.
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(a) Proximate interval (b) Merge of two point sets

of each point in two sets and their contact points

Figure 4. Contact points between two sets of points

Next, we discuss a geometric property that enables the
computation of the contact points pi and pj between PL

and PR. For each point pk of PL, let qk denote the contact
point between pk and PR as specified by Lemma 2.3. We
have the following result.

Lemma 2.5: The point pk is not dominated by pk−1 and
qk if 2 ≤ k ≤ i, and dominated otherwise.
The proof has been shown in [15].

Lemma 2.5 suggests a simple, binary search-like, ap-
proach to finding the contact points pi and pj between two
sets PL and PR. In fact, using a similar idea, Breu et al. [1]
proposed a sequential algorithm that computes the proximate
points of an n-point planar set in O(n) time. The algorithm
in [1] uses a stack to store the proximate points found.

III. PARALLEL EUCLIDEAN DISTANCE MAP OF 2-D
BINARY IMAGE

A binary image I of size n×n is maintained in an array
bi,j , (1 ≤ i, j ≤ n). It is customary to refer to pixel (i, j)
as black if bi,j = 1 and as white if bi,j = 0. The rows
of the image will be numbered bottom up starting from 1.
Likewise, the columns will be numbered left to right, with
column 1 being the leftmost. In this notation, pixel b1,1

is in the south-west corner of the image, as illustrated in
Figure 5(a). In the figure, each square represents a pixel.
For this binary image, its final distance mapping array is
shown in Figure 5(b).

1,6 1,7 1,8

1,9

(8,1)

(1,8)

(8,8)

(1,1)

0 0 0 0 1 0 0 0

0 0 1 1 1.4 1 0 1

0 1 1.4 1 1 1.4 1 1.4

1 1.4 1 0 0 1 2 2.2

2 2.2 1.4 1 1 1.4 2.2 2

1 1.4 2 2 2 2.2 1.4 1

0 1 1 1 1.4 2 1 0

0 0 0 0 1 2 1 0

(8,1)

(1,8)

(8,8)

(1,1)

Euclidean 
distance map

(a)  Binary image (b)  Mapping array

Figure 5. A binary image and its mapping array
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The Voronoi map associates with every pixel in I the
closest black pixel to it (in the Euclidean metric). More
formally, the Voronoi map of I is a function v : I → I
such that, for every (i, j), (1 ≤ i, j ≤ n), v(i, j) = v(i′, j′)
if and only if

d((i, j), (i′, j′)) = min{d((i, j), (i′′, j′′)) | bi′′,j′′ = 1},

where d((i, j), (i′, j′)) =
√

(i − i′)2 + (j − j′)2 is the Eu-
clidean distance between pixels (i, j) and (i′, j′).

The Euclidean distance map of image I associates with
every pixel in I in the Euclidean distance to the closest black
pixel. Formally, the Euclidean distance map is a function m:
I → R such that for every (i, j), (1 ≤ i, j ≤ n), m(i, j) =
d((i, j), v(i, j)).

We now outline the basic idea of our algorithm for
computing the Euclidean distance map of image I . We begin
by determining, for every pixel in row j, (1 ≤ j ≤ n), the
nearest black pixel, if any, in the same column of subimage
of I . More precisely, with every pixel (i, j) we associate the
value

di,j = min{d((i, j), (i′, j′)) | bi′,j′ = 1, 1 ≤ j′ ≤ n}.

If bi′,j′ = 0 for every 1 ≤ j′ ≤ n, then let di,j = +∞. Next,
we construct an instance of the proximate points problem for
every row j, (1 ≤ j ≤ n), in the image I involving the set
Pj of points in the plane defined as Pj = {pi,j = (i, di,j) |
1 ≤ i ≤ n}.

Having solved, in parallel, all these instances of the prox-
imate points problem, we determine, for every proximate
point pi,j in Pj , its corresponding proximity interval Ii. With
j fixed, we determine, for every pixel (i, j) (that we perceive
as a point on the x-axis), the identity of the proximity
interval to which it belongs. This allows each pixel (i, j)
to determine the identity of the nearest pixel to it. The
same task is executed for all rows 1, 2, ..., n in parallel, to
determine, for every pixel (i, j) in row j, the nearest black
pixel. The details are spelled out in the following algorithm:
Algorithm Euclidean Distance Map(I)

Step 1. For each pixel (i, j), compute the distances
di,j = min{d((i, j), (i′, j′)) | bi′,j′ = 1, 1 ≤ j′ ≤ n} to
the nearest black pixel in the same column as (i, j) in the
subimage of I .
Step 2. For every j, (1 ≤ j ≤ n), let
Pj = {pi,j = (i, di,j) | 1 ≤ i ≤ n}. Compute the
proximate points E(Pj) of Pj .
Step 3. For every point p in E(Pj) determine its proximity
interval of Pj .
Step 4. For every i, (1 ≤ i ≤ n), determine the proximate
interval of Pj to which the point (i, 0) (corresponding to
pixel (i, j)) belongs.

We assume that there are k processors PE(1), PE(2),
..., PE(k) available. The parallel implementation of above
algorithm is shown in follow:

Step 1. Partition the input image I into k subimages
I1, I2, ..., Ik along with column wise. For every pixel of
each subimage Ii (1 ≤ i ≤ k), corresponding processor
PE(i) computes the distance to the nearest black pixel in the
same column. In real implementation, first, each processor
travels every column of corresponding subimage from up to
bottom to compute that distance, as illustrated in Figure 6(a)
(its original input image is shown in Fig 5). Second, each
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Figure 6. Process each column with two directions

processor again travels every column of corresponding
subimage from bottom to up to compute that distance, as
illustrated in Figure 6(b). Finally, each processor selects a
minimum value of calculated two distances as final value
of the distance. It is clear that the time complexity of this
step is O(n2/k).
Step 2. Again, we compute Euclidean distance map of
input image I along with row wise.
Step 2.1 Partition the input image into k subimages
I ′1, I

′
2, ..., I

′
k along with row wise. For every row of each

subimage I ′i (1 ≤ i ≤ k), each processor PE(i) (1 ≤ i ≤ k)
computes the proximate points using the theorem of
proximate points problem as foundation, as illustrated in
Figure 7 and Figure 8. In Figure 8, the Voronoi polygons
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Figure 7. Processing with row wise

correspond to 5th row (shaded row) of the image shown in
Fig 7. The obtained proximate points are saved in a stack. It
should be clear that each column has its own corresponding
stack. Therefore, in order to add a new proximate point
to the stack, we need to calculate boundary points of this
new point and existed proximate points which are kept in
the stack. Then according to locus of boundary points, we
decide which points need to be deleted from the stack.
Step 2.2 For every row of each subimage I ′i (1 ≤ i ≤ k),
each processor PE(i) determines proximate intervals of
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Figure 9. Proximate intervals

obtained proximate points by computing boundary point
of each pair of adjacent proximate points. The boundary
point of each pair of adjacent proximate points can be
obtained by calculating the intersection point of two lines,
one line is x-axis and another is the normal line of the line
which connects two adjacent proximate points. We refer
reader to Figure 9 for the illustration. Each pair of adjacent
proximate points can be obtained from the stack.
Step 2.3 According to the locus of boundary points obtained
from Step 2.2, each processor determines the closest black
pixel to each pixel of input image. The distance between a
given pixel and its closest black pixel is also calculated in
the obvious way.

It should be clear that, the whole Step 2 can be imple-
mented in O(n) time using n processors.

Theorem 3.1: For a given binary image I with the size of
n×n, Euclidean Distance Map of image I can be computed
in O(n) time using n processors.

Suppose that we have k processors (k < n). If this is
the case, a straightforward simulation of n processors by k
processors can achieve optimal slowdown. In other words,
each of the k processors performs the task of n

k processors
in our Euclidean Distance Map algorithm. For example, in
Step 1, the i-th processor (1 ≤ i ≤ k) computes the nearest
black pixel within the same column for rows from (i − 1) ·
n
k + 1-th to i · n

k . This can be done in O(n · n
k ) = O(n2

k )
time. Thus, we have,

Corollary 3.2: For a given binary image I with the size of
n×n, Euclidean Distance Map of image I can be computed
in O(n2

k ) time using k processors.

IV. COMPUTE UNIFIED DEVICE ARCHITECTURE

(CUDA)

Graphics Processing Units (GPUs) can achieve a high
computational throughput due to their large number of
processing cores and different memory spaces. All the
processing cores are organized into several streaming multi-
core processors. For fully utilizing all the processing cores
of a GPU, numerous threads are required. Compute Unified
Device Architecture (CUDA) [16] organizes these threads
into a large grid of thread blocks. Each thread block contains
a number of threads which can be executed on an assigned
streaming multi-core processor. Threads of a thread block
are organized into several warps and each warp contains 32
threads. At a time, only a half warp (or full warp) of a thread

block can be executed by the assigned streaming multi-core
processor concurrently . The grid will launch a segment of
codes, named a kernel, to occupy a GPU device at a time.
Actually, CUDA is a new parallel programming model and
instruction set architecture. CUDA comes with a software
environment that allows developers to use C-like high-level
programming language.

On the other hand, GPUs can provide different memory
spaces for different applications and each memory space has
its own advantages and drawbacks. In CUDA architecture,
each memory space has a corresponding specification. In
this paper we only introduce few of them shown as follows.

Global memory is a main device memory of GPUs and
which is off-chip memory. Therefore it has heavy access
latency to each processing core. Fortunately, CUDA provides
a technique known as coalescing [10] to hide the access
latency of the global memory. When 16 (or 32) sequential
threads access 16 (or 32) sequential and aligned values in the
global memory, the GPU will automatically combine them
into a single transaction. Another important programming
issue for global memory is that named as partition camping.
Actually the global memory is divided into several partitions
of 256-byte width. If several concurrent thread blocks access
through a same partition, it will cause the partition camping.
In order to avoid the partition camping, concurrent accesses
to global memory by all active thread blocks need to be
separated evenly amongst partitions. If several concurrent
blocks access through a same partition, it will cause the
partition camping.

Shared memory is a sort of on-chip memory and which
is located within each streaming multi-core processor. It has
almost no access latency and only visible to the thread block
which is executed by the corresponding streaming multi-
core processor. Just as global memory is divided into several
partitions, shared memory is also divided into 16 equally-
sized modules of 32-bit width, called banks. It means that, in
shared memory, the successive 32-bit words are assigned to
successive banks. To achieve maximum throughput, concur-
rent threads of a thread block should access different banks,
otherwise, bank conflicts will occur. In practice, the shared
memory can be used as a cache to hide the access latency
of the global memory.

V. OUR PREVIOUS IMPLEMENTATION OF EDM
ALGORITHM ON GPUS

In this section, we show our previous implementation of
EDM algorithm on GPUs [15].

A. Access Modes

As known, in general, a matrix is stored in a row-major
fashion in memory. In other words, the (i, j)-th element of
a matrix is arranged to the i ·w+ j-th element in an array in
the memory, where w is the width of the matrix as illustrated
in Figure 10.
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Figure 10. Arrangement of a 3 × 3 matrix into a memory

The key part of our Euclidean Distance Map algorithm
is Step 1 and Step 2. We will define several access modes
which affect the performance of our algorithm. Recall that
in Step 1, pixel values are read in column wise, and the
distances to the nearest black pixel are written in column
wise. Instead, we can write the distances to the nearest
black pixel in row wise. In other words, we can read the
pixel values in column wise (i.e. Vertical), or in row wise
(i.e. Horizontal) and write the distances in column wise (i.e.
Vertical) or in row wise (i.e. Horizontal). The readers should
refer to Figure 11 for illustrating the possible four access
modes of Step 1.
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Figure 11. Access modes for Step 1

Let di,j denote the resulting distances of Step 1. For each
access mode we can write di,j as follows:

VV (Vertical-Vertical)
di,j = min{|k − i| | bk,j = 1, 1 ≤ k ≤ n}

VH (Vertical-Horizontal)
dj,i = min{|k − i| | bk,j = 1, 1 ≤ k ≤ n}

HH (Horizontal-Horizontal)
di,j = min{|k − j| | bi,k = 1, 1 ≤ k ≤ n}

HV (Horizontal-Vertical)
dj,i = min{|k − j| | bi,k = 1, 1 ≤ k ≤ n}

Note that, for VH and HV access modes, the resulting values
stored in the two dimensional array is transposed.

In the same way, we can define four possible access modes
VV, VH, HH, HV for Step 2. For example, in VV mode, the
distances are read in column wise and the resulting values
of Euclidean Distance Map are written in column wise.

The readers should have no difficulty to confirm that
possible combinations of access modes for Steps 1 and 2
are VV-HH, HH-VV, VH-VH, and HV-HV, because the
access mode satisfies the following two conditions:

Condition 1: If the resulting values in Step 1 are stored
in a transposed array, those in Step 2 also must be trans-
posed. Otherwise, the resulting Euclidean Distance Map is

transposed.
Condition 2: The writing directions of Step 1 and Step 2

must be orthogonal.
Therefore, in the notation r1w1r2w2 of access modes, w1

and r2 must be distinct from Condition 1 and the number
of H in r1, w1, r2, and w2 must be even from Condition 2.
Therefore, the possible access modes are VV-HH, HH-VV,
VH-VH, and HV-HV.

B. Implementations with Different Access Modes

In our previous work [15], we have implemented our pre-
vious proposed parallel EDM algorithm with the above four
access modes. Also, we have evaluated our proposed parallel
EDM algorithm with Tesla C1060 [12] which consists of
240 Streaming Processor Cores and 4GB global memory.
The experimental result shown in [15], the performance
of VH-VH access mode was better than the other access
modes. This is because in VH-VH access mode, the GPU
implementation can benefit from coalescing access to the
global memory significantly.

VI. NEW IMPLEMENTATION OF EDM ALGORITHM ON

GPUS

In this section, we show a new implementation of EDM
Algorithm on GPUs.

1) New Access Mode with Efficient Memory Access: As
we see in above section, VH-VH access mode can obtain the
best performance of four access modes. Therefore it is clear
that coalescing access to global memory plays an important
role in our GPU implementations. However, VH-VH access
mode cannot fully benefit from coalescing access because its
memory writing does not support coalescing access. There-
fore, in this subsection, we show a new implementation of
the proposed algorithm which can fully utilize the coalescing
in each implementing step in memory read and write. We
call the access mode of the new implementation as VTV-VTV
access mode (VTV stands for Vertical-Transpose-Vertical).
To keep two conditions as shown in the previous section,
following operations are performed in each step; (i) An
input data is read from global memory with coalesced read.
(ii) The results are transposed with shared memory. (iii)
The transposed results are written into the global memory
with coalesced write. More specifically, in the new access
mode of Step 1, the 2-D array of the input image will be
read in column wise by each thread. After processing, the
results will be transposed using shared memory. Then the
transposed data is written into another array in column wise
by each thread as the results of Step 1 and the input data
of Step 2. In the new implementation of Step 2, the 2-D
extra array which contains the results of Step 1 will be read
in column wise by each thread. After reading data from
the 2-D extra array, the results of Step 2 will be transposed
using shared memory. Then the transposed results are written
into the extra array column by column by each thread. It
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is clear that, in VTV-VTV access mode, each step can be
implemented with full coalescing.

A. GPU implementation for VTV-VTV access mode

Here we use Tesla C1060 as the experimental system to
describe the new implementation of the proposed algorithm.
In Tesla C1060 supported CUDA architecture, the maximum
size of shared memory per thread block is 16 Kbytes. It
is clear that shared memory can contain up to 4096 32-bit
unsigned integers. Binary values of input image are stored
in an array named A in global memory. The size of input
image is n × n and n is integral multiple of 512.

We now show the new implementation of Step 1 of the
proposed parallel EDM algorithm. First we create a ker-
nel named Kernel UpBottom to implement the up-to-bottom
process of Step 1. The Kernel UpBottom will be launched
by a 1-D grid. Thread blocks of the grid is also set as
one dimensional. The number of available threads in a
thread block is configured as 512 (maximum number of
available threads). It means that the number of thread blocks
is n/512. Each thread block allocate a 2-D array with
size of 512 × (4096/512) in the shared memory. Now we
partition the input image into n/512 subimages along with
column wise and assign each thread block to each subimage.
Each thread of a thread block processes each column of
corresponding subimage. We further divide each subimage
into n/(4096/512) tiles along with row wise and copy each
tile into the shared memory array orderly using threads of
corresponding thread block. The copy must be performed in
coalescing. The width of each tile is 512 and the height is
4096/512.

To simplify the description, we use two indices i and
i + 1 to designate two successive pixels in a column, and
another two indices j and j +1 to designate two successive
tiles in a subimage. First, elements of tilej are copied to the
shared memory array by corresponding thread block with
the coalescing. Each thread of the thread block travels each
corresponding column of tilej , which is stored in shared
memory, from up to bottom to compute the distance value
of each pixel. The computed distance values also are kept
in the shared memory array. Namely, the computed distance
value of a pixel will cover the value of the pixel in the shared
memory array. After all distance values are computed, the
corresponding thread block copy them from shared memory
to an extra array (located in global memory ) named B. In
a column of the input image, the distance value of pixeli+1

must depend on the distance value of pixeli. Therefore, the
distance values of first row of tilej+1 must depend on the
distance values of last row of tilej . For each column of
tilej , its corresponding thread will use a register to keep
the distance value of last pixel. Now let the thread block
copy tilej+1 to the shared memory array with the coalescing.
For each column of tilej+1 , each thread uses the value of
register to compute the distance value of first pixel. Same

to the computation of the distance values of tilej , we can
compute the distance values of other pixels of tilej+1 from
up to bottom. For each column of tilej+1, each thread also
uses the register to keep the distance value of last pixel.
In the same way, the distance values of other tiles can be
computed. The implementation of the up-to-bottom process
is finished.

The implementation of the bottom-to-up process is similar
with the implementation of the up-to-bottom process. The
computed distance values of the bottom-to-up process are
stored in another extra array named C. In real implemen-
tation, the bottom-to-up process is also implemented in
Kernel UpBottom.

Now we need to select minimum values from correspond-
ing elements of two extra arrays B and C as final result of
Step 1 and store the selected minimum values into array
A. Here, in order to write the selected minimum values
into array A with coalescing, we use shared memory to
implement a simple transpose and, after the transpose, the
selected minimum values can be easily written into array A
with coalescing. The details of the implementation are given
below.

We create a new kernel named Kernel MinSelec Transpose
to implement the selection of minimum values. The Ker-
nel MinSelec Transpose will be launched by a 2-D grid with
(n/32)× (n/32) thread blocks. Each thread block is set as
two dimensional and the number of available threads in a
thread block is configured as 32× 4. A 2-D array with size
of 32×32 need to be allocated in shared memory. It is clear
that, in each extra array, the size of each tile is 32×32. Each
thread block will be assigned to each corresponding tile. All
threads of a thread block read corresponding tile of extra
arrays B and C row by row and select the minimum values,
then write the selected minimum values into the shared
memory array column by column. All threads of each thread
block again read the values of the shared memory array row
by row and write them into a tile of array A in coalescing.
We refer the reader to Figure 12 for an illustration. In the
figure, Ti represents a thread and each arrow represents data
access of each thread. In this case, the selected minimum
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Figure 12. VTV access mode in Step 1 with coalescing access
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values are written into array A with coalescing. Since there
is no performance penalty for noncontiguous access patterns
in shared memory.

However, in above implementation, the use of shared
memory will result in another problem, shared memory bank
conflicts. As given above, the size of shared memory array
is 32 × 32. It means one column of this array is mapped
into the same bank of shared memory. Since 32 is integral
multiple of 16 and there are 16 banks in shared memory of
Tesla C1060 system. When threads of a thread block access
to a column of the shared memory array, the bank conflicts
will occur. A simple method to free this shared memory
bank conflicts is add a new column to the shared memory
array. As shown in Figure 13, after adding a new column
to the shared memory array, elements of each column are
mapped into different banks.
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Now we consider the partition camping of global memory.
In Tesla C1060 system, global memory is divided into 8
partitions of 256-byte width and all data in strides of 2048
bytes will map into the same partition. Therefore in each
extra array, all elements which belong to same column will
be mapped into a single partition. In our implementation,
each thread block will be assigned to each tile of an extra
array according to general Cartesian coordinate interpreta-
tion, as shown in Figure 14. In the figure, Bi,j represents the
assigned thread block of each tile. The figure also shows that,
when the selected minimum values are written into array A,
the several concurrent thread blocks need to access columns
of the array A which are located in the same partition of
global memory. It will result in the partition camping.

In order to avoid the partition camping, we can use
Diagonal coordinate to interpret the coordinate of each tile.
More details about the partition camping, the readers can
find in the reference paper [17].

Now we show the new implementation of Step 2 of the
proposed parallel EDM algorithm. From the description of
the parallel EDM algorithm we know that, each column of
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the array A needs a stack to keep the corresponding proxi-
mate points. We allocate a 2-D array named Stacks in global
memory. Each column of the 2-D array is used as the stack
for each corresponding column of the array A. We create a
new kernel named Kernel BoundaryPoint to implement Step 2
of the proposed algorithm. The Kernel BoundaryPoint will be
launched by a 1-D grid and thread blocks of the grid is also
set as one dimensional. The number of available threads in
a thread block is configured as 512. It means the number
of thread blocks is n/512. Each thread block allocate a 2-D
array with size of 512× (4096/512) in shared memory. The
array A is also partitioned into n/512 partitions and each
partition is divided into n/(4096/512) tiles. Each thread
block will be assigned to each corresponding partition. Each
tile of a partition will be copied into the shared memory
array in order by threads of the assigned thread block. It
is clear that the copy is implemented in coalescing. Each
thread of a thread block uses the data of shared memory to
operate on the corresponding stack to obtain the proximate
points. Since each stack is kept in the corresponding column
of array Stacks, therefore, if the sizes of several stacks are
same, the access to stacks by the corresponding threads also
can benefit from the part coalescing.

Creating the stack for each column of the array A to
keep the proximate points, boundary points of each pair
of adjacent proximate points need to be obtained. We
store the obtained boundary points into a 2-D array named
BoundaryArray. The space of the array BoundaryArray
is allocated from global memory. Each column of array
BoundaryArray is correspond to each column of the array
Stacks. If we use push-pop operations to obtain each pair
of proximate points from a stack, it just can benefit from the
part coalescing. To fully utilize the coalescing, we take each
stack as a 1-D array and access it from bottom position to
obtain each pair of the proximate points. Obviously, bound-
ary points kept in one column of the array BoundaryArray
are obtained for one row of the input image. By comparing
x coordinate of each pixel and boundary points, the closest
black pixel to the pixel can be obtained easily. Now we
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Table I
PERFORMANCE OF IMPLEMENTATION WITH VH-VH AND VTV-VTV

ACCESS MODE ON DIFFERENT GPU SYSTEMS (n=9216)

(a) Tesla C1060
CPU VH-VH access mode VTV-VTV access mode

Time[ms] Time[ms] Speed-up Time[ms] Speed-up
Step1 1712.00 145.37 11.77 38.97 43.92
Step2 6957.13 794.54 8.75 413.49 16.82
Total 8669.13 939.91 9.22 452.46 19.16

(b) GTX480
CPU VH-VH access mode VTV-VTV access mode

Time[ms] Time[ms] Speed-up Time[ms] Speed-up
Step1 1712.00 86.01 19.90 19.67 87.05
Step2 6957.13 241.11 28.81 145.91 47.68
Total 8669.13 327.45 26.47 165.58 52.36

assume that the pixeli+1 and pixeli are successive two
pixels of a row in the input image. From the proximate
point theorem we can easy to know that, x coordinate of
the closest black pixel of pixeli must be smaller than x
coordinate of the closest black pixel of pixeli+1. It means
that each element of array BoundaryArray just need to
be visited once. This can reduce the access times of global
memory from O(n2) to O(n). In final, the distance value of
each pixel is calculated and the result is stored to array A.

Table I shows that the performance of the new imple-
mentation on the different GPU systems. For processing the
image with size of 9216 × 9216, our new implementation
using VTV-VTV access mode can achieve 19 and 52 times
speedup on Tesla C1060 and GTX 480 system respectively
over the performance of the sequential algorithm imple-
mentation. The experimental results also show that, even
including data transfer time between CPU and GPU, our
new implementation also can achieve about 10 and 30 times
speedup on Tesla C1060 and GTX 480 system respectively.

VII. CONCLUSIONS

In this paper, we have proposed a simple parallel al-
gorithm for the EDM and shown an intuitive GPU im-
plementation of the proposed algorithm. In that of GPU
implementation, we have considered many programming
issues of the GPU system such as coalescing access of
global memory, shared memory bank conflicts and partition
camping. We have implemented our parallel algorithm in the
following two modern GPU systems: Tesla C1060 and GTX
480, respectively. The experimental results have shown that,
for an input binary image with size of 9216 × 9216, our
implementation can achieve a speedup factor of 52 over the
sequential algorithm implementation.
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