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Abstract—The bulk execution of a sequential algorithm is to
execute it for many different inputs in turn or at the same time.
It is known that the bulk execution of an oblivious sequential
algorithm can be implemented to run efficiently on a GPU.
The bulk execution supports fine grained bitwise parallelism,
allowing it to achieve high acceleration over a straightforward
sequential computation. The main contribution of this work is
to present a Bitwise Parallel Bulk Computation (BPBC) to ac-
celerate the Smith-Waterman Algorithm (SWA). More precisely,
the dynamic programming for the SWA repeatedly performs the
same computation O(mn) times. Thus, our idea is to convert this
computation into a circuit simulation using the BPBC technique
to compute multiple instances simultaneously. The proposed
BPBC technique for the SWA has been implemented on the GPU
and CPU. Experimental results show that the proposed BPBC for
SWA accelerates the computation by over 447 times as compared
to a single CPU implementation.

Index Terms—Smith-Waterman, GPU, parallel algorithms,
bulk computation, bitwise operations;

I. INTRODUCTION

The GPU (Graphics Processing Unit) is a specialized circuit

designed to accelerate computation for building and manip-

ulating images [1], [2], [3]. Latest GPUs are designed for

general purpose computing and can perform computation in

applications traditionally handled by the CPU. Hence, GPUs

have recently attracted the attention of many application devel-

opers [1], [4], [5], [6]. NVIDIA provides a parallel computing

architecture called CUDA (Compute Unified Device Architec-

ture) [7], the computing engine for NVIDIA GPUs. CUDA

gives developers access to the virtual instruction set and

memory of the parallel computational elements in NVIDIA

GPUs. In many cases, GPUs are more efficient than multicore

processors [8], since they have hundreds of processor cores

and very high memory bandwidth.

CUDA uses two types of memories in the NVIDIA GPUs:

the shared memory and the global memory [7]. The shared

memory is an extremely fast on-chip memory with lower ca-

pacity, say, 16-48 Kbytes. The global memory is implemented

as an off-chip DRAM, it has a large capacity (currently 1.5-

12Gbytes) but its access latency is long. The efficient usage

of the shared memory and the global memory is the key

element for CUDA developers to accelerate applications using

GPUs. In particular, we need to consider bank conflict of the

shared memory access and coalescing of the global memory

access [5], [8], [9]. The address space of the shared memory

is mapped into several physical memory banks. If two or more

threads access the same memory banks at the same time, the

access requests are processed one by one. Hence, to maximize

the memory access performance, threads of CUDA should

access distinct memory banks to avoid the bank conflicts of

the memory accesses. To maximize the bandwidth between the

GPU and the DRAM chips, consecutive addresses of the global

memory must be accessed at the same time. Thus, CUDA

threads should perform coalesced access when they access the

global memory.

A sequential algorithm is oblivious if an address accessed at

each time unit is independent of the input [10]. For example,

the prefix-sums of an array b of size n can be computed by

executing b[i] ← b[i] + b[i − 1] for all i (1 ≤ i ≤ n − 1)

in turn. This prefix-sum algorithm is oblivious because the

address accessed at each time unit is independent of the values

stored in b. The bulk execution of a sequential algorithm is to

execute it for many different inputs in turn or at the same time.

For example, suppose that we have p arrays b0, b1, . . . , bp−1

of size n each. We can compute the prefix-sums of each bj
(0 ≤ j ≤ p − 1) by executing the prefix-sum algorithm on

a single CPU in turn or on a parallel computer in parallel.

The bulk execution has many applications. For example, the

conventional FFT algorithm [11] for n points running in

O(n logn) time is oblivious. In practical signal processing,

an input stream is equally partitioned into many blocks, and

the FFT algorithm is executed for each block in turn or

in parallel. This is exactly the bulk execution of the FFT

algorithm. In our previous paper [10], we have introduced

the bulk execution of sequential algorithms and show that

they can be implemented in the GPU very efficiently if they

are oblivious. In [12], we have also developed a conversion

tool C2CU, which automatically generates an efficient CUDA

program for the bulk computation from an oblivious sequential

C language program. Quite surprisingly, the bulk computation

can achieve speed-up factor of more than 100, even if it does

not use the shared memory of the GPU.



In our previous papers [13], [14], we have introduced

a novel technique, the Bitwise Parallel Bulk Computation

(BPBC) technique. The bulk execution for oblivious algo-

rithms presented in our previous papers [10], [12] is wordwise

in the sense that each of data is stored in a word such as a 32-

bit integer. On the other hand, the BPBC technique shown

in [13], [14] supports ultimate fine grained bitwise paral-

lelism and thus can achieve very high acceleration over the

straightforward sequential computation. The BPBC technique

simulates a combinational logic circuit for a lot of instances at

the same time. More formally, let f be a function computed

by a combinational logic circuit or a Boolean formula and

X1, X2, . . . , XM be the M inputs. By the BPBC technique

f(X1), f(X2), . . ., f(XM ) can be computed very efficiently.

The idea of the BPBC technique is

• to store data bits of each input instance in a particular bit

of words of data, say 32-bit integers, and

• to simulate the combinational logic circuit for 32 input

vectors at the same time by bitwise logic operations

supported by computing devices such as CPUs and GPUs.

In [13], we showed an efficient simulation of the Conway’s

Game of Life [15], a well-known cellular automaton, using

the BPBC technique. The next state of each cell in a cellular

automaton is computed by simulating a combinational logic

circuit. Thus, a state of each cell is stored in a bit of a 32-bit

integer, and the combinational logic circuit to compute the next

state is simulated by bitwise logic operations. We also showed

that the CKY parsing of [14] can be done very efficiently by

the BPBC technique. It is know that the CKY parsing can be

done by repeatedly evaluating the same combinational circuit

many times [16], [17]. The BPBC technique for the CKY

parsing of [14] evaluate this circuit by bitwise logic operations.

Dynamic programming is a key technique for solving com-

plex problems which takes exponential time by straightfor-

ward algorithms. The idea of the dynamic programing is to

partition a problem into subproblems, solve them and store

their solutions in appropriate data structures. Their solutions

are combined to obtain the best solution of the problem.

Since subproblems can be solved in parallel, several dynamic

programming based parallel algorithms for the matrix chain

product problem [18], the optimal polygon triangulation [5],

the approximate string matching problem [19], [20] have been

implemented in the GPU. Likewise, several GPU implemen-

tation for accelerating the Smith-Waterman algorithm have

been proposed in the literature [21], [22], [23]. However, these

implementations are wordwise. The main contribution of this

paper is to present a GPU implementation for the Smith-

Waterman using the BPBC technique.

The Smith-Waterman Algorithm (SWA) [24] employs dy-

namic to identify homologous regions between sequences

by searching for optimal local alignments. Suppose that a

sequence string X and a sequence string Y with length m

and n (m ≤ n), respectively, are given. The SWA computes

the similarity between any pairs of sequences X and Y

in O(mn) time. The SWA is well-known for its accuracy

and for being fairly demanding in time. Hence, a large

number of development and optimizations to speed-up the

SWA computation have been proposed in the literature [21],

[22]. In [21], the authors propose a mechanism to accelerate

the SWA for database search on a cluster of GPUs. Among

their contributions, the authors proposed a memory allocation

scheme and a data reuse scheme. The first scheme aims at

reducing data transfers between the CPU and GPU as well

as to reduce the amount of on-chip memory necessary for

computing the SWA. The second scheme aims at improving

data parallelism, which is achieved by “packing” the string

elements. For further details, we refer the reader to [21]. In

[22], the authors propose the incremental speculative traceback

strategy to provide the alignment of very long DNA sequences

in multi-GPU platforms using the exact SWA. This paper dis-

tinguishes from the aforementioned work as it explores bitwise

arithmetic operations to speed-up the SWA computation. Also,

the use of BPBC allows us to compute multiple input instances

simultaneously. We expect that the proposed scheme can be

used to enhance other Smith-Waterman strategies to further

accelerate its computation.

The main contribution of this paper is to apply the BPBC

technique to the Smith-Waterman for DNA strands each of

which can be represented as a sequence of four bases A (ade-

nine), G (guanine), C (cytosine), and T (thymine). In other

words, we focus on the Smith-Waterman of strings of 2-bit

characters and use the BPBC technique to accelerate this task

Basically, the dynamic programming for the SWA repeatedly

performs the same computation O(mn) times [25]. Our idea

is to convert this computation into circuit simulation. By the

BPBC technique, circuit simulation for multiple instances can

be done at the same time. The BPBC technique for the SWA

has been implemented on the GPU and CPU. Experimental

results show that the proposed BPBC for SWA accelerates the

computation by over 293 times as compared to a single CPU

implementation.

The remainder of this paper is organized as follows. Section

II presents the BPBC technique applied to a straightfor-

ward string matching algorithm. Section III presents a brief

overview of the Smith-Waterman Algorithm and Section IV

shows the details of the proposed BPBC technique applied

to the SW algorithm. Section V shows the details of the

BPBC GPU implementation while Section VI presents the

experimental results. Finally, Section VII concludes this work.

II. THE BPBC TECHNIQUE

This section introduces the Bitwise Parallel Bulk Com-

putation (BPBC) technique using a straightforward string

matching as a simple example. Let X = x0x1 · · ·xm−1 and

Y = y0y1 · · · yn−1 be two strings of length m and n each

such that m≪ n. The string matching is a task to find j such

that x0x1 · · ·xm−1 = yjyj+1 · · · yj+n−1. A straightforward

algorithm shown below can find such j in O(mn) time.

[Straightforward string matching]

for j ← 0 to n−m do



d[j]← 0;

for i← 0 to m− 1 do

if(xi 6= yi+j) d[j]← 1

It should be clear that d[j] = 0 if x0x1 · · ·xm−1 =
yjyj+1 · · · yj+n−1. For example, for input strings X =
ATTCG and Y = AAATTCGGGA, the resulting values

of d is 110111. Since there are a number of more efficient

algorithms for computing the string matching [11], [26], the

reader may think that it makes no sense to accelerate this

inefficient, straightforward, algorithm. However, we use it as

a simple example to understand how the BPBC technique can

be applied. Furthermore, the approximate string matching that

we will show later is an extension of the straightforward string

matching.

Suppose that the input strings are DNA strands with

four bases A (adenine), G (guanine), C (cytosine), and T

(thymine). In other words, strings are sequences of characters

in {A,G,C, T }, each of which can be encoded by 2 bits. For

example, we can define a 2-bit encoding such that A = 00,

G = 10, C = 11, and T = 01. Usually, string matching

algorithms are implemented as wordwise format where each

character is stored in an 8-bit or 32-bit word. If 8-bit words are

used, only 2 bits of a word can be non-zero and the remaining

6 bits are always zero. Such wordwise format wastes memory

space and memory bandwidth. We may use packed format

in which four 2-bit characters are stored in an 8-bit word.

However, reading and writing 2-bit characters needs messy

bitwise operations for 8-bit words. Although the packed format

can reduce the memory space, and it does not reduce memory

bandwidth. The BPBC technique uses the bit-transpose format

where a 32-bit word stores 32-bits of 32 instances [27]. Using

the BPBC technique, the computation for 32 instances can be

done in parallel.

Suppose that we have 32 pairs of DNA strands Xk and Yk

(0 ≤ k ≤ 31) with length m and n each such that m≪ n. The

BPBC technique uses the bit-transpose format, arrays XH ,

XL, Y H , and Y L of 32-bit words of length m, m, n and n

each defined as follows. Let xk,i (0 ≤ k ≤ 31, 0 ≤ i ≤ m−1)

denote the i-th character of Xk, and let xH
k,ix

L
k,i be two

bits of each xk,i. Also, let XH
i = xH

31,ix
H
30,i · · ·x

H
0,i and

XL
i = xL

31,ix
L
30,i · · ·x

L
0,i (0 ≤ i ≤ m − 1) be 32-bit words.

Similarly, let yk,j = yHk,jy
L
k,j (0 ≤ k ≤ 31, 0 ≤ j ≤ n− 1) be

the j-th character of Yk and let Y H
j = yH31,jy

H
30,j · · · y

H
0,j and

Y L
i = yL31,iy

L
30,i · · · y

L
0,j (0 ≤ i ≤ n − 1) be 32-bit words.

We have four input sequences XH = XH
0 XH

1 · · ·X
H
m−1,

XL = XL
0 X

L
1 · · ·X

L
m−1, Y H = Y H

0 Y H
1 · · ·Y

H
n−1, and Y L =

Y L
0 Y L

1 · · ·Y
L
n−1 in bit-transpose format.

We can execute the straightforward string matching for 32
pairs of Xk and Yk (0 ≤ i ≤ 31). Let d[0], d[1], . . . , d[m− n]
be 32-bit words, if inputs are given as bit-transpose format.

The straightforward string matching for 32 pairs can be

performed by the BPBC technique as follows:

[BPBC straightforward string matching]

for j ← 0 to n−m do

d[j]← 0;

for i← 0 to m− 1 do

d[j]← d[j] ∨ (xH
i ⊕ yHi+j) ∨ (xL

i ⊕ yLi+j)

The k-bit of the resulting 32-bit of (xH
i ⊕ yHi+j)∨ (x

L
i ⊕ yLi+j)

is 0 if xk,i = yk,i+j . Thus, when the BPBC straightforward

string matching terminates, the k-th bit of d[j] = 0 is 0

if xk,ixk,i+1 · · ·xk,i+m−1 = yjyj+1 · · · yj+n−1. The running

time of the BPBC straightforward string matching is also

O(mn). However, it can compute the string matching for 32
pairs of strings at the same time.

For the reader’s benefits, we will show how the BPBC

straight forward string matching works using 4-bit words. If

this is the case, the string matching is executed for 4 inputs.

Suppose that we have 4 pairs of strings as follows:

X0 = ATCGA Y0 = AATCGACA

X1 = TCGAC Y1 = AATCGACA

X2 = AAAAA Y2 = AAAAAAAA

X3 = TTTTT Y3 = AATTTTTT
These strings are converted to 4-bit words in the bit-transpose

format as follows:
XH

0 = 0000 XL
0 = 1010 Y H

0 = 0000 Y L
0 = 0000

XH
1 = 0010 XL

1 = 1011 Y H
1 = 0000 Y L

1 = 0000
XH

2 = 0011 XL
2 = 1001 Y H

2 = 0000 Y L
2 = 1011

XH
3 = 0001 XL

3 = 1000 Y H
3 = 0011 Y L

3 = 1011
XH

4 = 0010 XL
4 = 1010 Y H

4 = 0011 Y L
4 = 1000

Y H
5 = 0000 Y L

5 = 1000
Y H
6 = 0011 Y L

6 = 1011
Y H
7 = 0000 Y L

7 = 1000
By executing the BPBC straightforward string matching, we

have the following result:

d[0] = 0100
d[1] = 0101
d[2] = 1110
d[3] = 1100

From the value in d’s columns, one can observe the positions

of matching. For instance, the resulting values of d for X0

and Y0 is 0100.

To use the BPBC technique, we need to convert inputs into

the bit-transpose format. This can be done by transpose of a

bit matrix. We show the first characters of 32 DNA strands

of X , x0,0x1,0 . . . x31,0 are converted into the bit-transpose

format. The other characters can be converted in the same

way. We assume that these characters are stored in 32 32-bit

words A[0], A[1], . . . , A[31]. Let ai,j (0 ≤ i, j ≤ 31) denote

the j-th of A[i]. In other words, A[i] = ai,31ai,30 · · ·ai,0 for

all i. After the bit transpose, each A[i] stores a31,ia30,i · · · a0,i.
A straightforward bit-by-bit exchanging is very costly. How-

ever, we can perform transpose very efficiently using bit matrix

transpose technique shown in Subsection 7.3 of [27]. For

simplicity, we show how an 8 × 8 bit matrix stored in eight

8-bit words A[0], A[1], . . . , A[7]. The idea is to repeat swap

operations for square blocks as illustrated in Figure 1. It should

be clear that bit transpose for an 8× 8 matrix can be done in

three steps.

Let us evaluate the total number operations necessary to

perform bit transpose. We use the following function “swap”
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Fig. 1. Bit transpose for an 8× 8 matrix

that exchanges bits of two words A and B such that bits in b

specifies the bits to be exchanged for each of k bits.

swap(A,B, k, b)

C ← ((A >> k) ∧ b)⊕ (B ∧ b);
A← A⊕ (C << k); B ← B ⊕ C;

Using swap function, bit matrix transpose can be done by

the following function:

[Bit transpose of 8 × 8 bit matrix]

bit-transpose(A)

swap(A[0], A[4], 4, 00001111); swap(A[1], A[5], 4, 00001111);

swap(A[2], A[6], 4, 00001111); swap(A[3], A[7], 4, 00001111);

swap(A[0], A[2], 2, 00110011); swap(A[1], A[3], 2, 00110011);

swap(A[4], A[6], 2, 00110011); swap(A[5], A[7], 2, 00110011);

swap(A[0], A[1], 1, 01010101); swap(A[2], A[3], 1, 01010101);

swap(A[4], A[5], 1, 01010101); swap(A[6], A[7], 1, 01010101);

Let us evaluate the total number of operations necessary

to perform bit transpose. Each swap operation performs 7
operations including bit shift, bitwise AND, and bitwise XOR.

Since swap operation is performed 4 × 3 = 12 times, bit

transpose of an 8 × 8 bit matrix performs 84 operations. It

should be clear that swap operation is performed 16× 5 = 80
times for bit transpose of a 32× 32 matrix. Thus, we have,

Lemma 1: A 32× 32 bit matrix can be transposed by 560

operations.

If the value stored in every A[i] is small, we can reduce the

number of operations. For example, every A[i] stores a 2-bit

number if bit transpose is used for string matching of DNA

strands. Suppose that eight 8-bit words A[0], A[1], . . . , A[7]
store 2-bit numbers. In other words, ai,j = 0 for all j (2 ≤
j ≤ 7). After bit transpose, 2-bit number are stored in A[0]
and A[1]. Thus, we can reduce the total number of operations.

We use the following function “copy” to implement transpose

for this case.

copy(A,B, k, b)

A← (A ∧ b) ∨ ((B ∧ b) << k);

Clearly, this function performs 4 operations. Using copy

function, bit transpose of eight 4-bit saturation numbers stored

in eight 8-bit words can be done as follows:

bit-transpose(A)

copy(A[0], A[4], 4, 00001111); copy(A[1], A[5], 4, 00001111);

copy(A[2], A[6], 4, 00001111); copy(A[3], A[7], 4, 00001111);

copy(A[0], A[2], 2, 00110011); copy(A[1], A[3], 2, 00110011);

swap(A[0], A[1], 1, 01010101);

Since copy function performed 6 times and swap function

performed once, the total number of operations is 6 × 4 +
1× 7 = 31.

We can apply this technique to a 32× 32 bit matrix stored

in 32 32-bit words. Table I summarizes the number of swap

and copy functions called in each of the five steps and the

total number of operations for inputs with s-bit numbers. For

preprocessing of the BPBC straightforward string matching,



TABLE I
THE NUMBER OF OPERATIONS PERFORMED FOR BIT TRANSPOSE OF A 32× 32 BIT MATRIX

Step 1 2 3 4 5 total total
swap/copy swap copy swap copy swap copy swap copy swap copy swap copy operations

s = 32 16 - 16 - 16 - 16 - 16 - 80 - 560
s = 16 - 16 8 - 8 - 8 - 8 - 16 40 272
s = 8 - 16 - 8 4 - 4 - 4 - 12 24 180
s = 7 - 16 - 8 4 - 4 - 3 1 11 25 177
s = 6 - 16 - 8 4 - 2 2 2 2 8 28 168
s = 5 - 16 - 8 4 - 2 2 2 1 8 27 164
s = 4 - 16 - 8 - 4 2 - 2 - 4 28 140
s = 3 - 16 - 8 - 4 - 2 1 1 1 31 131
s = 2 - 16 - 8 - 4 - 2 1 - 1 30 127

we use bit transpose with 2-bit numbers, which performs only

127 operations.

It should be clear that “bit-untranspose” can be done by

executing operations performed by bit transpose backwards.

III. SMITH-WATERMAN ALGORITHM

The main purpose of this section is to present a brief

overview of the Smith-Waterman Algorithm (SWA). Please

see [24] for further details.

Sequence alignment is an important problem in bioinfor-

matics as it allows the analyses of evolutionary relationships

and the extraction of structural information from sequences

of DNA, RNA, or proteins. The Smith-Waterman algorithm is

a “local-alignment” method based on dynamic programming.

Unlike the global alignment problem, where entire strings

are to be matched, local alignment problem identifies highly

similar substrings. For this reason, local alignment is the

preferred choice for biological applications.

Given a sequence X = x1x2 · · ·xm of length m and a

sequence Y = y1y2 · · · yn of length n, the SWA computes the

similarity between any pairs of elements in these sequences.

For this purpose, the SWA uses a scoring matrix d of size

m×n. For each element d[i][j], (0 ≤ i < m, 0 ≤ j < n), the

scoring matrix is computed based on the following recurrence:

d[i][j] = max















0,
d[i − 1][j]− gap,

d[i][j − 1]− gap,

d[i − 1][j − 1] + w(xi, yj),

where d[i][j] represents the optimal cost for substring X

and Y , the gap is the cost for creating a gap between

the sequences being evaluated and w(xi, yj) represent the

mismatching/matching cost, defined as:

w(xi, yj) =

{

c1 if xi = yj ,

−c2 if xi 6= yj .

The scoring matrix is composed only of non-negative values

and has the effect of stopping considering regions of high

dissimilarity between the sequences. Using the above recur-

rence, all values of matrix d can be computed by a sequential

algorithm as follows.

[Sequential algorithm for the SWA]

for j ← −1 to n− 1 do d[−1][j]← 0

for i← 0 to m− 1 do d[i][−1]← 0
for j ← 0 to n− 1 do

for i← 0 to m− 1 do

d[i][j]← max(0, d[i][j − 1]− gap,

d[i− 1][j]− gap,

d[i− 1][j − 1] + w(xi, yj))
Function w(xi, yj)

if (xi 6= yi) return c2 else return c1

Table II shows the values of d for strings X = TACTG and

Y = GAACTGA. In this example, c1 = 2 and c1 = −1 and

gap = −1. The boldfaced values show the local alignment

with highest score, which can be obtained by finding the

highest score in matrix d and traceback along its diagonal.

From the table, we can see that the SWA of X and Y finds the

highest values of d for subsequences x1x2x3x4 and y2y3y4y5.

When there is a gap in the sequences, the values in d line up

vertically or horizontally. The SWA often uses a traceback

matrix to record the direction of the alignment from one cell

to another along the path. In what follows, we restrict our

attention to the scoring matrix, as the traceback matrix can

computed along with the scoring matrix. Alternatively, when

multiple instances are being evaluated, those with higher score

could be selected for computing traceback matrices.

TABLE II
THE VALUES OF MATRIX d FOR THE SWA

G A A C T G A

0 0 0 0 0 0 0 0
T 0 0 0 0 0 2 1 0
A 0 0 2 2 1 1 1 3
C 0 0 1 1 4 3 2 2
T 0 0 0 0 3 6 5 4
G 0 2 1 0 2 5 8 7

In this work, the proposed BPBC technique is used identify

the input strings in which the maximum value of the scoring

matrix is larger than a given threshold τ . In other words, BPBC

technique is used to find the longest match between the two

input sequences X and Y . Once such strings are identified, a

detailed matching can be computed by a conventional SWA on

the CPU, where the score and traceback matrices can be used

to identify similar regions between them. For instance, in the

example of Table II, the maximum value of the scoring matrix

is 8, which is shown in the bottom-most line of the matrix.



Clearly, if τ < 8, the input strings in the above example would

be selected for further evaluation.

Next, we will parallelize the sequential algorithm. The idea

is to compute every row from left to right in parallel. The value

of d[i][j] is computed only after d[i− 1][j] is obtained. Thus,

we compute values of d[0][t], d[1][t−1], . . . , d[m−1][t−m+1]
at the same time. This parallel computation is performed for

t = 0 to n+m−2. The details of the parallel SWA are spelled

out as follows:

[Parallel algorithm for the SWA]

for j ← −1 to n− 1 do in parallel d[−1][j]← 0
for i← 0 to m− 1 do in parallel d[i][−1]← 0
for t← 0 to n+m− 2 do

for i← 0 to m− 1 do in parallel

j ← t− i+ 1;

if(1 ≤ j ≤ n)

d[i][j]← max(0, d[i][j − 1]− gap,

d[i− 1][j]− gap,

d[i− 1][j − 1] + w(xi, yj))
Function w(xi, yj)

if (xi 6= yi) return c2 else return c1

The reader should refer to Table III showing the values of t

when each element of d is computed. The values are computed

from top-left to right-bottom.

TABLE III
THE VALUES OF t WHEN EACH ELEMENT OF d IS COMPUTED

G A A C T G A

- - - - - - - -
A - 1 2 3 4 5 6 7
C - 2 3 4 5 6 7 8
C - 3 4 5 6 7 8 9
T - 4 5 6 7 8 9 10
G - 5 6 7 8 9 10 11

IV. BPBC TECHNIQUE APPLIED FOR SWA

The main purpose of this section is to use the BPBC

technique to accelerate the Smith-Waterman algorithm. In

what follows, let l be the number of bits necessary to encode

the characters of the input strings. For example, a DNA strand

with four basis A (adenine), G (guanine), C (cytosine), and

T (thymine) can be encoded with ǫ = 2 bits. Let s denote the

number of bits necessary to hold the maximum value of the

scoring matrix. Clearly, for m ≪ n, the maximum value in

matrix d occurs when there is a sequence matching. In this

case, s needs at most ⌈log2(c1 ·m)⌉ bits.

A. Bitwise arithmetic for SWA

We begin by presenting the comparison algorithm, which

computes p such that p = 0 if A < B and p = 1 if A > B.

Note that p can take any value if neither A < B nor A > B.

The following function greaterthan(A,B) returns such p.

[Compare Function]

greaterthan(A,B)

p← a0 ∧ b0;

for i← 1 to s− 1 do

p← (bi ∧ p) ∨ (ai ∧ (bi ⊕ p));
return p;

Basically, p stores the borrow of each bit when subtraction

A − B is computed from the least significant bit. In other

words, p = 1 if bi + p > ai, that is,

• bi = p = 1 or

• ai = 0 and either bi = 1 or p = 1

Thus, the borrow from the next bit is computed by evaluating

(bi ∧ p) ∨ (ai ∧ (bi ⊕ p)).
Using greaterthan(A,B), we can compute

Q = qs−1qs−2 · · · q0 such that Q is the maximum of A

and B. The following function maxB(A,B) computes and

returns such Q.

[Maximum Function]

maxB(A,B)
p← greaterthan(A,B);
for i← 0 to s− 1 do

qi ← (ai ∧ p) ∨ (bi ∧ p);
return Q;

Since greaterthan(A,B) performs 3 + 5(s − 1) = 5s − 2
operations and maxB(A,B) performs 4s operations, we have,

Lemma 2: maxB(A,B) performs 9s− 2 operations.

Next, we present the addition algorithm addB(A,B), which

computes the sum of two s-bit binary values A and B and

stores its value on the return variable Q.

[Addition Function]

addB(A,B)
p← q0 ← a0 ⊕ b0;

for i← 1 to s− 1 do

qi ← (ai ⊕ bi ⊕ p);
p← (ai ∧ (bi ⊕ p)) ∨ (bi ∧ p);

return Q;

Since addB(A,B) algorithm performs 1+6(s−1) = 6s−5
operations, we have,

Lemma 3: addB(A,B) performs 6s− 5 operations.

Next, we present the saturation subtraction algorithm

SSubB(A,B), which computes the return value Q = max(A−
B, 0). The SSubB is defined as follows:

[Saturation Subtraction Fuction]

SSubB(A,B)

q0 ← a0 ⊕ b0;

p← a0 ∧ b0;

for i← 1 to s− 1 do

qi ← (ai ⊕ bi ⊕ p);
p← (ai ∧ (bi ⊕ p)) ∨ (bi ∧ p);

for i← 0 to s− 1 do

qi ← qi ∧ p;

return Q;

Since SSubB(A,B) algorithm performs 3+7(s−1)+2s=
9s− 4 operations, we have:

Lemma 4: SSubB(A,B) performs 9s− 4 operations.



Finally, we present the matchingB(C, x, y) algorithm,

which computes Q = C + w(x, y). Recall form the parallel

SWA that the evaluation of function w checks whether x

equals to y or not. The matchingB(C, x, y) algorithm com-

putes both C + c1 and C + c2. The algorithm uses a flag e

to check if x 6= y. If so, the algorithm returns Q = C + c2,

otherwise it returns Q = C + c1. The details of the matching
algorithm are presented below:

[Matching Function]

matchingB(C, x, y)
R← add(C, c1);
T ← SSub(C, c2);
e← 0;

for i← 0 to ǫ− 1 do

e← e ∨ (xi ⊕ yi);
for i← 0 to s− 1 do

qi ← (ri ∧ e) ∨ (ti ∧ e);
return Q;

The matchingB(C, x, y) algorithm calls addB(C, c1) and

SSubB(C, c2) algorithms, which requires 6s − 5 + 9s− 4 =
15s−9 operations. In addition, it uses 4s+2ǫ < 6s operations

to execute the for-loops. Thus, we have:

Lemma 5: matchingB(C, x, y) can be computed using at

most 21s− 9 operations.

For the computation of the Smith-Waterman algorithm, we

will evaluate the function SW(A,B,C, x, y) = max(0, A −
gap,B − gap, C + w(x, y) as follows:

[SW Function]

SW(A,B,C, x, y)
T ← maxB(A,B);
U ← SSubB(T, gap);
T ← matchingB(C, x, y);
T ← maxB(T, U);
return T ;

Note that maxB, SSubB and matchingB return non-negative

values. Hence, it suffices to compute the maximum between

temporary values of T and U to obtain the final value, which

is stored in variable T . The computation of SW (A,B,C, x, y)
calls the maxB function twice, SSubB and matchingB func-

tions once. Thus, we have:

Theorem 6: SW(A,B,C, x, y) performs 48s − 18 opera-

tions.

B. The BPBC technique for the SWA

We use the BPBC technique to perform the Smith-Waterman

on 32 input sequences in parallel. As before, we consider the

input to be 32 pairs of DNA strands Xk and Yk (0 ≤ k ≤ 31)

with length m and n each such that m ≪ n. Let xk,i (0 ≤
k ≤ 31, 0 ≤ i ≤ m − 1) denote the i-th character of Xk and

xH
k,ix

L
k,i be two bits of xk,i. Let XH

i = xH
31,ix

H
30,i · · ·x

H
0,i and

XL
i = xL

31,ix
L
30,i · · ·x

L
0,i (0 ≤ i ≤ m − 1) be 32-bit words.

Similarly, let yk,j = yHk,jy
L
k,j (0 ≤ k ≤ 31, 0 ≤ j ≤ n − 1)

be the j-th character of Yk and let Y H
j = yH31,jy

H
30,j · · · y

H
0,j

and Y L
i = yL31,iy

L
30,i · · · y

L
0,j (0 ≤ i ≤ n− 1) be 32-bit words.

Let Dk (0 ≤ k ≤ 31) denote the table d of size (m + 1) ×
(n+ 1) for the computation of SWA(Xk, Yk) and Dk[i][j] be

the (i, j) element of Dk. To apply the BPBC technique, let

Dl[i][j] = Dl
31[i][j]D

l
30[i][j] · · ·D

l
0[i][j] (0 ≤ i ≤ m− 1, 0 ≤

j ≤ n− 1, 0 ≤ l ≤ s− 1) be a 32-bit word corresponding to

the l-th bits of (i, j) element of 32 tables.

Let 132 denote consecutive 32 1’s in binary, that is, 232−1.

Also, let gap, denote the gap cost in the input sequences,

c1 be the matching cost and c2 be the mismatching cost. The

sequential BPBC technique for the Smith-Waterman algorithm

uses the aforementioned SW function. The details of the

sequential SWA are spelled out as follows:

[BPBC sequential for SWA]

for j ← 0 to n− 1 do

for h← 0 to s− 1 do

Dh[−1][j]← 0;

for i← 0 to m− 1 do

for h← 0 to s− 1 do

Dh[i][−1]← 0;

for i← 0 to m do

for j ← 0 to n do

D[i][j]← SW(D[i− 1][j],
D[i][j − 1], D[i− 1][j − 1], x, y);

The parallel BPBC technique for the Smith-Waterman al-

gorithm can be defined similarly as follows:

[BPBC parallel for SWA]

for j ← 0 to n− 1 do in parallel

for h← 0 to s− 1 do

Dh[−1][j]← 0;

for i← 0 to m− 1 do in parallel

for h← 0 to s− 1 do

Dh[i][−1]← 0;

for t← 0 to n+m− 2 do

for i← 0 to m− 1 do in parallel

j ← t− i+ 1;

if(0 ≤ j ≤ n− 1)

D[i][j]← SW(D[i− 1][j],
D[i][j − 1], D[i− 1][j − 1], x, y);

Note that the sequential and parallel SWAs using the BPBC

technique require the input arrays to be bit-transpose. Clearly,

we can use bit transpose for 2-bit numbers shown in Section II

to convert input strings into XH , XL, YH and YL.

V. GPU IMPLEMENTATION OF THE BPBC PARALLEL FOR

SWA

This section presents a GPU implementation of the BPBC

for the Smith-Waterman algorithm. We assume that the pairs

of input strings Xk and Yk, (0 ≤ k ≤ 31) with length m

and n each, are stored in the main memory of the host PC.

The resulting values of the SWA(Xk, Yk), that is, maximum

score is computed and then transferred back to the host PC.

We require that the input strings and the resulting values to be

wordwise format, that is, the value of each element is stored



in a word of memory. Note that most applications consider

the input strings to be in wordwise format.

Our GPU implementation using the BPBC technique

consists of the following steps:

Step 1: All pairs of input strings Xk and Yk in wordwise

format are copied to the global memory of the GPU.

Step 2: All input strings are bit transposed to convert them

in bit transposed format. The resulting input strings in bit

transposed format are stored in the global memory.

Step 3: SWA(Xk, Yk) are computed by the BPBC parallel

SWA, and the resulting values are written in the global

memory in bit transpose format.

Step 4: The resulting values of SWA(Xk, Yk) are bit-

untranspose to convert them in wordwise format.

Step 5: The maximum score of the SWA(Xk, Yk), in

wordwise format, are transferred to the host PC.

Steps 1 and 5 can be realized using the cudaMemcpy

function. One CUDA kernel is invoked for each Step 2,

3, and 4. In Step 2, each thread performs bit transpose

for 32 characters. We use CUDA blocks of 1024 threads

each to maximize occupancy. Similarly, Step 4 performs bit-

untranspose by a CUDA kernel call with CUDA blocks of

1024 threads each. Step 3 calls a CUDA kernel of CUDA

blocks with m threads each to compute SWA(Xk, Yk) for 32

pairs of Xk and Yk, where m is the length of Xk. Each CUDA

kernel executes the BPBC parallel for SWA. Each thread i

(0 ≤ i ≤ m − 1) computes all elements in the i-th row of

32 tables from left to right. More specifically, each thread i

performs the following operations to compute d[i][t − i + 1]
using three values d[i−1][t−i], d[i−1][t−i+1], and d[i][t−i]
in each t-th iteration:

1) If t = 0 then read xk,j from the global memory.

2) Read yk,t−i+1 from the global memory.

3) Compute d[i][t−i+1] from d[i−1][t−i], d[i−1][t−i+1],
and d[i][t − i] and store it in a local register Rk,i =
maxB(d[i][t− i+ 1], Rk,i).

4) Send d[i][t − i + 1] to thread i + 1 and receive d[i −
1][t− i+ 2] from thread i− 1.

5) If j = n− 1, then send the value Rk,i to thread i+1. If

n − 2, receive Rk,i−1 from thread i − 1 and computes

Rk,i = maxB(Rk,i, Rk,i−1). When t = n + m − 2,

the bottom-most thread writes the value Rk,m−1 to the

global memory.

Figure 2 illustrates the computation of value d[i][t− i+ 1]
by thread i. When the bottom-most thread reaches the bottom-

right conner, it holds the maxB{Rk,0, . . . , Rk,m−1} and writes

it to the global memory. The communication among the active

threads can be performed in a way similar to that proposed

in [20]. More precisely, shuffle operations can be employed to

transfers values among threads in the same warp, thus reducing

the number of read and write operations to the shared memory.

We use two registers to store each xk,i and yk,t−i+1 of the

32 pairs of inputs. Since xk,i is fixed for each thread i, it is

sufficient to read it once. Also, we use s 32-bit registers each

to store d[i][t− i + 1], d[i − 1][t− i], d[i − 1][t− i + 1], and

d[i][t − i] of 32 tables. Thus, each thread uses 4s + 4 32-

bit registers to store these values. For sending d[i][t − i + 1]
and receiving d[i − 1][t − i + 2], data transfer is necessary.

We use the shared memory of a CUDA block (or streaming

multiprocessor) for this purpose. For example, thread i writes

d[i][t− i + 1] in the shared memory and thread i + 1 read it

for sending d[i][t− i + 1] to thread i+ 1.

i

t − i + 1

i− 1

t − i

Fig. 2. The computation of d[i][t− i+ 1] by thread i

VI. EXPERIMENTAL RESULTS

The main purpose of this section is to show the performance

of algorithms for SWA.

We have evaluated the running time for the SWA for 32K

(= 32768) pairs with pattern strings of a fixed length of m =
128 and data strings of length n = 1024, 2048, . . . , 65536.

To see the potentiality of the BPBC technique, we have

implemented both the conventional wordwise implementation

and the proposed bitwise implementation. We have used an

Intel Core i7-6700 (3.6GHz) and NVIDIA GeForce GTX

TITAN X. GeForce GTX TITAN X has 28 streaming mul-

tiprocessors with 128 cores each. Sequential algorithms are

executed on a single thread running on the Intel Core i7-

6700. We may accelerate these sequential algorithms using

multiple threads and/or SIMD instructions. However, these

acceleration techniques for Core i7 CPU are out of scope

of this work as our goal is not to compare the capability of

NVIDIA GPU and Intel Core i7 CPU. The speedup factors

of GPU implementations over CPU implementations shown

in our experiments are merely for reference purpose.

Table IV summarizes the running time for the Smith-

Waterman Algorithm. In the table, the columns “W2B” and

“B2W” represent the time taken to perform the bit-transpose

and bit-untranspose of the input and resulting values, respec-

tively. Recall that in this work we are interested in computing

the maximum score of the input strings. The “SWA” column

refers to the time to compute the Smith-Waterman Algorithm.

In GPU implementations, “H2G” (Host PC to GPU transfer

time for input strings) and “G2H” (GPU to Host PC transfer

time for resulting values) are evaluated. Recall that the size

of data to be bit-transposed and bit-untransposed is 2(n+m)
bits and ⌈log2(c1 ·m)⌉ bits, respectively. Therefore, when n

is larger, the time of W2B is longer. On the other hand, the

time of B2W is slightly larger or almost the same in CPU



TABLE IV
THE RUNNING TIME IN MILLISECONDS FOR THE SWA FOR 32K PAIRS

CPU GPU
n W2B SWA B2W Total H2G W2B SWA B2W G2H Total

1024 153.89 10990.03 0.15 11144.07 5.51 0.14 6.91 0.01 0.08 12.66
2048 306.70 21918.45 0.16 22225.32 10.60 0.22 12.61 0.01 0.08 23.52

Bitwise 4096 715.70 45065.72 0.15 45781.57 19.01 0.32 24.17 0.01 0.07 43.59
32-bits 8192 1451.89 90114.62 0.21 91566.72 38.00 0.56 48.29 0.01 0.07 86.94

16384 3063.70 180065.17 0.18 183129.05 79.54 1.02 96.56 0.01 0.08 177.21
32768 5907.22 357122.10 0.26 363030.58 153.31 1.85 196.03 0.01 0.08 351.27
65536 8924.32 720876.85 0.27 729800.04 299.47 3.35 392.52 0.01 0.08 695.42

1024 232.54 5434.08 0.09 5666.71 5.71 2.76 10.72 0.01 0.08 19.28
2048 471.38 10871.87 0.11 11343.36 10.81 5.13 20.47 0.01 0.08 36.51

Bitwise 4096 944.04 21894.50 0.13 22838.67 19.61 9.84 38.43 0.01 0.08 67.97
64-bits 8192 2051.98 43544.63 0.14 45596.74 37.89 19.22 75.44 0.01 0.07 132.64

16384 3890.75 86937.86 0.17 90828.78 76.21 37.76 150.08 0.01 0.08 264.14
32768 6593.45 174271.58 0.23 180865.26 151.97 75.33 301.07 0.01 0.08 528.46
65536 8973.66 348896.24 0.24 357870.14 297.54 150.59 605.80 0.01 0.09 1054.04

1024 - 6803.99 - 6803.99 5.78 - 30.66 - 0.08 36.51
2048 - 13590.92 - 13590.92 10.46 - 52.66 - 0.07 63.20

Wordwise 4096 - 27169.32 - 27169.32 20.22 - 111.62 - 0.07 131.91
32-bits 8192 - 54358.14 - 54358.14 39.83 - 203.41 - 0.08 243.32

16384 - 108680.38 - 108680.38 78.52 - 446.47 - 0.08 525.07
32768 - 217621.17 - 217621.17 156.89 - 835.81 - 0.08 992.78
65536 - 435637.82 - 435637.82 315.53 - 1861.36 - 0.07 2176.96

TABLE V
THE THROUGHPUT IN GCUPS AND SPEED-UP FACTORS FOR THE SWA USING BPBC FOR 32K PAIRS

n CPU GPU Speed-up

1024 0.76 1877.40 447.6
2048 0.76 2022.85 482.3
4096 0.75 2197.58 523.9
8192 0.75 2199.75 524.5

16384 0.76 2149.79 512.5
32768 0.76 2159.60 514.9
65536 0.77 2158.43 514.6

and GPU implementations. Also, we can see that, even if

data transfer time between host PC and GPU is included,

the parallel computation using the GPU is faster than the

sequential computation using the CPU. In fact, with n = 1024
the GPU bitwise implementation accelerates the SWA by 293
and 880 times using, respectively, 64-bits and 32-bits. As the

size of n increases, the bitwise GPU implementation provides

further acceleration of the SWA. With n = 65526, the GPU

bitwise implementation accelerates the SWA by 339 and 1049
times using, respectively, 64-bits and 32-bits. This represents

an improvement of nearly 15% and 19%, respectively for

the bitwise implementation using 64-bits and 32 bits. As

for the the conventional CPU implementation of the SWA

using wordsize of 32-bits, the GPU implementation provides

acceleration surpassing 186 times. Compared to the wordwise

CPU implementation, the bitwise implementation with 64-bits

reduces the running time by ≈ 20% on average.

Table V shows the throughput in GCUPS (billion Cell

Updates Per Second), which is one of the performance metrics

often used in bioinformatics. The table shows the speed-

up factors for the SWA using BPBC for 32K pairs when

64-bits and 32-bits are used in the CPU implementation

and the GPU implementation, respectively, which is the best

wordsize selected in each implementation. According to the

table, the performance of our GPU implementation reaches

at most 2022 GCUPS. Munekawa et al. [21] shows that a

peak performance of their GPU implementation of SWA using

GeForce GTX 280 is 8.32 GCUPS. Although the utilized

GPU and scoring computation are different, the performance

of our GPU implementation is incomparably higher than

that of the existing GPU implementation. Furthermore, the

GPU implementation runs 447 to 524 times faster than the

sequential CPU implementation. Thus, the proposed BPBC

technique of for the SWA is suitable to the GPU acceleration.

VII. CONCLUSION

This work presented a Bitwise Parallel Bulk Computa-

tion (BPBC) to accelerate the Smith-Waterman Algorithm

(SWA). More precisely, this work explores bitwise arithmetic

operations to speed-up the SWA computation. Our idea is

to convert the dynamic programming computation for the

SWA into circuit simulation and use the BPBC technique

to compute multiple instances simultaneously. The proposed

BPBC technique for the SWA has been implemented on both

GPU and CPU. Experimental results show that the proposed

BPBC for SWA accelerates the computation by over 293 times

as compared to a single CPU implementation. We believe that

the proposed BPBC can be coupled with other SWA strategies



to further accelerate its computation. As a future work, we plan

to explore such alternatives.
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