The International Journal of Parallel, Emergent and Distributed Systems
Vol. 00, No. 00, Month 2011, 1-15

RESEARCH ARTICLE

A Character Art Generator using the Local Exhaustive Search,
with GPU acceleration

Yuji Takeuchi*, Koji Nakano®*, Daisuke Takafuji*, Yasuaki Ito*

aDepartment of Information Engineering, Hiroshima University
Kagamiyama 1-4-1, Higashi Hiroshima, 739-8527 Japan
(Received 00 Month 200z; in final form 00 Month 200z)

An ASCII art is a matrix of ASCII code characters that reproduces an original gray-scale
image. A JIS art is an ASCII art that uses JIS Kanji code characters instead of ASCII code
characters. They are commonly used to represent pseudo gray-scale images in text based mes-
sages. Since automatic generation of high quality ASCII/JIS art images is very hard, they are
usually produced by hand. The main contribution of this paper is to propose a new technique
to generate an ASCII/JIS art that reproduces the original tone and the details of an input
gray-scale image. Our new technique is inspired by the local exhaustive search to optimize
binary images for printing based on the characteristic of the human visual system. Although
it can generate high quality ASCII/JIS art images, a lot of computing time is necessary for
the local exhaustive search. Hence, we have implemented our new technique in a GPU to
accelerate the computation. The experimental results shows that the GPU implementation
can achieve a speedup factor up to 89.56 over the conventional CPU implementation.

Keywords: ASCII art, local exhaustive search, human visual system, GPU, parallel
computing

1. Introduction

An ASCII art is a matrix of ASCII code characters reproducing an original image.
A JIS art is an ASCII art that uses JIS Kanji code characters instead of ASCII
code characters. ASCII/JIS arts are commonly used to show pseudo gray-scale
images on devices or environment that can only display characters. ASCII arts
have a long history, and exist before the computers have been developed. One of
the most famous examples of ASCII arts represents the tail of a rat, published in
“Alice’s Adventures in Wonderland” [1]. As Internet becomes popular, ASCII arts
have been used in various situations, such as the contents of e-mails and bulletin
boards on the Web. The main purpose of treating ASCII arts is to print easier, or to
communicate as alternative of graphics in the situations which the communication
of graphics is impossible.

ASCII/JIS arts can be roughly classified into two major categories: the tone-
based ASCII art and the structure-based ASCII art [2]. In the tone-based ASCII
art, an original gray-scale image is converted into a matrix of characters so that
the intensity level is reproduced (Fig. 2). Usually, the original gray-scale image is
partitioned into blocks of a character size, and a character is assigned to each block
such that the intensity level is preserved. On the other hand, the structure-based
ASCII art is generated by converting an original gray-scale image into a matrix

*Corresponding author. Email: nakano@cs.hiroshima-u.ac.jp

ISSN: 1744-5760 print/ISSN 1744-5779 online
© 2011 Taylor & Francis

DOI: 10.1080/17445760.YYYY.CATSid
http://www.informaworld.com

2 Yuji Takeuchi et al.

-

2 fan

aég = . i;gkhg g O e :‘H'-"_ E - i

Bey R§9sFIfE 358 ST S ?.g 5

Eifﬁgg?igiiﬁigga.sfgégiiiig RPLEENS L IR
i EE!R usséggiﬁ‘ Eii%ii""‘

Figure 1. ASCII art representing the tail of a rat (from [1])

of characters so that the shapes of the original image is reproduced (Fig. 3). A
character is assigned to each block such that the shape of the block is preserved.

EAAAAAR S £ SS88
AT + R 2L e
AR -GS E S
AIAAAIE 2 B R R R
SR E G E, R R
BB 3 B) B ki i 2 e
ki B B0 Ef1 B 0 S AR
5, B E3 B B S R i B
[EHEE 3 B S R S AT
AT o e R S i]
S8R+ BB ERE R B T
+ 4+ ot + - RAES B
HET A2+ TS b A T
+ + TR RSB AT T
+ T + R S AT 7]
Ech 7 ERE R B ekl [T
b B B A o B o 1 AT
EHE 5 SR TR T T
5 5 SR B T B BRG]
gt R A B
Rt 5 RS 0 A B
I P B P) B8 1)) R
I S e e]
REREI] B8 2
52 7] /8 B8) B ER R 6 e 4
AR B ol
SEGEANHEAE 8+ + +
TEREAN RS+ -+
Tata Al AR -
fata AT E e 7+
B SO Bl
HEESREEEL A + + 1EHE
HHEBE S+ +1EH
REEREGE /5 FH
SHAGEGE S EEARAR
SHESEE + + THEAR
YT
SRR A e e
+EHe At Tia D
++ B ET TR AR

An original gray-scaleimage The tone-based ASCI|I art

Figure 2. The tone-based ASCII art

Anoriginal image The structure-based A Cl | art

Figure 3. The structure-based ASCII art (from [2])

The main contribution of this paper is to propose a new method for generating
ASCII/JIS art images which can maintain the smooth changes of intensity levels
and the shapes in an original gray-scale images. The resulting ASCII/JIS art by
our method is essentially the tone-based ASCII art, but it also has a flavor of the
structure-based ASCII art. Our new approach is inspired by digital halftoning [3,
4] of gray-scale images into binary images for printing. In particular, it uses a

A Character Art Generator using the Local Ezhaustive Search, with GPU acceleration 3

technique of the local exhaustive search [5, 6] for digital halftoning, which can
generate a binary image that preserves the details and the intensity levels of an
original input gray-scale image. It is known that the direct binary search [7] can
generate high quality binary images that reproduces the details and the tones of
original gray-scale images. Later, the direct binary search is extended to the local
exhaustive search [5, 6], which can generate better binary images. Our new method
for ASCII/JIS art generation uses the local exhaustive search, and can reproduces
the details and the tones of original gray-scale images.

In a conventional method for generating a tone-based ASCII art, a character is
selected for each block of an original image such that the average intensity level is
preserved. In other words, a character with the most similar intensity level of the
corresponding block in an original image is selected. For example, a free software
“Text artist” [8] uses this approach. Though this method is very simple and can
be implemented easily, the details and the intensity level of an original image is
not reproduced well. In [9], intensity level of an original image is reproduced by
adjusting the space of characters. However, the details of the original image are not
reproduced. In [10], ASCII art generation for original binary images was shown.
This method works well for binary images, but cannot handle gray-scale images.

Our new approach first initializes a matrix of characters by the conventional
tone-based ASCII art generation. After that, characters are repeatedly replaced
by the best character among all available characters. To select the best character,
a matrix of characters is blurred using the Gaussian filter and the pixel-wise dif-
ference of the blurred image and the original image is computed as an error. The
best character is selected so that the total error is minimized. This replacement is
repeated until no more improvement is possible. The resulting matrix of characters
reproduces the original gray-scale image very well, because the error of the blurred
matrix of characters and the original gray-scale image is small and the Gaussian
filter approximates the human visual system. However, compared with a known
approach, our approach requires enormous amount of computation to search the
best character image among all characters.

The GPU (Graphics Processing Unit), is a specialized circuit designed to accel-
erate computation for building and manipulating images [11-15]. Although GPUs
are optimized and designed for graphics computing, latest GPUs support more
general operations for general purpose computing. Hence, GPUs have recently at-
tracted the attention of many application developers [11, 16-19]. NVIDIA provides
a parallel computing architecture called CUDA (Compute Unified Device Archi-
tecture) [20], the computing engine for NVIDIA GPUs. CUDA gives developers
access to the virtual instruction set and memory of the parallel computational el-
ements in NVIDIA GPUs. In many cases, GPUs are more efficient than multicore
processors [12], since they have hundreds of processor cores and very high memory
bandwidth. To accelerate our new approach, we have parallelized the replacing pro-
cess so that the replacement is performed for multiple blocks in parallel. We have
implemented our method in a CUDA-enabled GPU and evaluated the performance
on NVIDIA GeForce GTX 780 Ti. For ASCII art generation for an original image
of size 1024 x 1024 using 95 ASCII code characters, our GPU implementation runs
in 0.0517s, while the Intel CPU (Xeon E5-2430, 2.2GHz) implementation runs in
2.952s. Further, if we use 7310 JIS Kanji code characters, our GPU implementation
for JIS art runs in only 0.7149s, while the CPU implementation runs in 64.03s. If
this is the case, the GPU implementation can achieve a speedup factor 89.56 over
the conventional CPU implementation. In a preliminary version of this paper [21]
presented as a conference paper, we have presented the basic idea of ASCII/JIS art
generation using the local exhaustive search, and showed experimental results on

4 Yuji Takeuchi et al.

GeForce GTX 680. In this extended journal version, we optimize the search range,
a parameter of the local exhaustive search, to balance the quality ASCII/JIS art
images with the computing time on the latest GPU, GeForce GTX 780 Ti.

This paper is organized as follows. Section 2 explains a conventional method
for generating the tone-based ASCII/JIS art. In Section 3, we show outline of our
new method based on the local exhaustive search for the tone-based ASCII/JIS
art. We then go on to show an algorithm and an implementation of our method
for generating the tone-based ASCII/JIS art using the local exhaustive search in
Section 4. In Section 5, we show how we have implemented our method in the
GPU to accelerate the computation. Section 6 compares the resulting ASCII/JIS
art images of the convention method and our method, and shows the computing
time. Section 7 concludes our work.

2. A conventional method for the tone-based ASCII/JIS art generation

This section describes a conventional method for the tone-based ASCII/JIS art
generation. The idea is to partition an original image into blocks of the same size as
characters. Each block is assigned a character such that each character reproduces
the intensity level of the corresponding block.

Figure 4. An example of the bitmap image of a character

Before showing the conventional algorithm, we review how each character is
displayed as a bitmap image. Figure 4 shows an example of the bitmap image of a
character. The bitmap image is a binary image with pixels 0 (black) or 1 (white).
The bitmap image of Figure 4 is of size 16 x 16. It has 60 black pixels and 196
white pixels out of 256 pixels. Hence, we can think that the intensity level of the
character is 320 = 0.765625. Let c(i,5) (0 < i,j < k — 1) denote a pixel value (0
or 1) at position (i,7) of character ¢ of bitmap size k£ x k. We can compute the
intensity level I(c) of ¢ as follows:

Suppose that a gray-scale image A = (a;;) of size n x n is given, where a;;
denotes the intensity level at position (4,7)(0 < 7,5 < n — 1) taking a real value in
the range [0, 1]. The real value corresponds to the intensity level of each pixel, and
0 and 1 correspond to black and white, respectively. Let us partition the gray-scale
image into 2 x % blocks of size k x k each. Let Ay j (0 <4',5' < & — 1) denote a

A Character Art Generator using the Local Ezhaustive Search, with GPU acceleration 5

block with k% pixels a;j (%7 <i<%-({'+1) -1, 27/ <j<P-(j'+1)—1). Tt
should be clear that the average intensity I(A; ;) of each block Ay j is:

)1 30" +1)-

I(As) = Z z . M

Let C be a set of available characters. The conventional algorithm for the tone-
based ASCII/JIS art image selects a character for each block such that the intensity
level of a character is closest to the average intensity of the block. Let B’ = (b’)
be an ASCII/JIS art such that each b}, ; is a character in C. We determine each
character b; ; so that:

by ji = arg ICIélél |I(Ag) — I(c)].

However, the distribution of the intensity levels of a character set C may be
biased in the sense that it does not have characters with intensity levels close to 0
or 1. For example, a usual character set has no character with 1 white pixel and
k? —1 black pixels. Thus, the error [I(A; /) —I(c)| can be too large if A ; is close
to 0 or 1. To resolve this problem, we adjust the intensity levels of an original image
A = (a;;) as follows. Let H and L be the highest intensity level max{I(c) | c € C'}
and and the lowest intensity level min{I(c) | ¢ € C}, respectively. We adjust the
intensity level of each pixel a; ; such that

Qjj < G j (H — L) + L. (2)

Clearly, the intensity level of each pixel takes a value in the range [L, H], and thus,
the average intensity level of each block A; ;- is always in [L, H].

3. Our algorithm using the local exhaustive search

A new algorithm for generating an ASCII/JIS art using the local exhaustive search
is presented in this section.

We use a Gaussian filter that approximates the characteristic of the human visual
system. Let G = (gp,4) denote a Gaussian filter, i.e. a 2-dimensional symmetric
matrix of size (2w + 1) x (2w + 1), where each non-negative real number gy,
(—w < p,q < w) is determined by a 2-dimensional Gaussian distribution such that
their sum is 1. In other words,

2%+4d?

Gpgq =8-€ 2° (3)

where o is a parameter of the Gaussian distribution and s is a fixed real number

to satisfy wagpngw Ipg = 1.
Suppose that an ASCII/JIS art B’ = (b}, ;) consists of 7 x 7 characters such that

each b}, ; is a character in C. Let b}, ; (=, y) denote the 1ntens1ty level of character
by, ;. at position (z,y). We can construct a binary image B = (b; ;) of size n x n
from B’ as follows:

bij = b;/k,j/k(i mod k, j mod k), (4)

6 Yuji Takeuchi et al.

where b; ; is the intensity level of B at position (z,y). In other words, B is the
resulting image obtained by rendering the ASCII/JIS art B’. We can obtain a
blurred image R = (r; ;) of B using the Gaussian filter G' as follows:

Tij = § : 9p.qbi+p,j+q
—w<p,q<w

The idea of our ASCII/JIS art generation is to find an ASCII/JIS art B such
that the blurred image R is very similar to the original image A. We define the
error of R with respect to A as the sum of difference of the intensity levels as
follows:

Error(A, R) = Z laij —rij 2
0<i,j<n—1

(5)

The goal of our method is to find the best ASCII/JIS art B* so that
B* = arg Irgn{Error(A, R) |
B is an ASCII/JIS art using a character set C'}.

Since it is a very hard problem to find the optimal ASCII/JIS art B*, we use
the approximation technique by the local exhaustive search. The outline of our
algorithm that computes an ASCII/JIS art of an original gray-scale image A using
a character set C' is as follows:

[ASCII/JIS art generation by the local exhaustive search]

Step 1: Initialization

We generate an ASCII/JIS art B using the conventional algorithm for the tone-
based ASCII/JIS art generation.

Step 2: The local exhaustive search

We pick an element b, ; in B’ one by one from the top-left corner to the bottom-
;",j”
which minimizes the total error over all characters in C, and replace b, ' by such
c. This replacement procedure by the raster scan order is repeated until one round
of raster scan order search from the top-left corner to the bottom-right corner does
not replace characters and the error is not improved.

Step 3: Output

Compute a bitmap image B of the ASCII/JIS art B’ and output it.

The reader should refer to Figure 5 illustrating the raster scan order local exhaus-
tive search in Step 2. Note that this algorithm may not find the optimal ASCII/JIS
art B*. However, it can find a good approximation of the optimal ASCII/JIS art.

right corner in the raster scan order. We select a replacement character of b

4. Implementation of ASCII/JIS art generation using the local exhaustive
search

This section shows how each step of our new approach is implemented.

Again, let k x k be the size of characters in C. We can partition all characters in
C into k% +1 groups Cy, C1,. .., Cg: such that each C, (0 < u < k?) has characters
with v white pixels and k? —u black pixels. Clearly, the intensity levels of characters
inC, (0<u<k?)is %zfu)'o = 7z. We assume that, for each character c in
C, the blurred image ¢? of the bitmap of ¢ is computed in advance. The blurred

A Character Art Generator using the Local Ezhaustive Search, with GPU acceleration 7

\

\

\
\
%

\
\
Y

Figure 5. Step 2: the raster scan order local exhaustive search

image ¢ has (k + 2w) x (k 4+ 2w) pixels such that

czg,j = Z IpaCitpte (—w <1, <k+w—1).
—w<p,q<w

In Step 1, we first adjust the intensity level of every pixel in an original gray-scale
image A = (ai ;) using formula (2). After that, we compute the average intensity
level I(A; j) of each block A; j using formula (1). For each block A; ;/, we pick
a character in C), at random, where u satisfies

1
k2 ~ Z'! U 7. (6)

We can generate an ASCII/JIS art B' = (b}, ;) by choosing the picked character
for A j as a character of b}, -,. Also, from B’ = (b} ;1), we can generate a bitmap
image B (b; ;) by formula (]4

In Step 2, we first compute the blurred image R = (r;;) of the bitmap image
B = (b;;) by computing formula (3). We compute the error matrix F = (e; ;) such
that

€ij = Qij — Tij-

Clearly, the total error is the sum of |e; ;|? from formula (5). In Step 2, we need
to find a replacement character c of b, i+ that minimizes the total error. Clearly,
it is sufficient to compute the total error of the affected region that includes the
block b, ;o as illustrated in Figure 6. The affected region is a region of the image B
such that the Gaussian filter for the bitmap image of b;-,,j, affects the pixel values
of the blurred image. More specifically, the affected region of b, o 18 a set Ajr i of
positions in the image such that

Air g ={(,5) |7k —w <i < (@ + Dk +w -1,
J k- w<j <G+ Dk+w—1}
Since the size of the Gaussian filter is (2w+1) X (2w—+1), that of the affected region

is (k42w) x (k+2w). To find a replacement character ¢, we compute e; ; < €; +cf,j
in pixels in the affected region. Note that, after this computation, we can think that

8 Yuji Takeuchi et al.

b;, ., is a character with each pixel having intensity level 0. After that, we compute

the total error for each character ¢ in C by evaluating the following formula
Moo el (7)

(4,7) € Ai jv

We evaluate this formula for all characters in C', and replace b;,,j, by ¢ with the
minimum total error. In other words, we execute the following operation:

! .92
by jr argnélcr} | Z leij — i jI° (8)
(4,5) € A jv
k42w =22
) Qw+1=7
k=16
block b}, ;.
/

] .
afected region

/

Figure 6. The affected region of a block B;, I

To accelerate the local exhaustive search, we use two ideas: (1) replacement map,
and (2) partial search. We first explain the idea of the replacement map. In Step 2,
a round of the raster scan order search is repeated. It is possible that a region
of an ASCII/JIS art is fixed in an earlier round, and no character in the region
are not replaced until Step 2 terminates. Hence, it makes sense to perform the
local exhaustive search for which characters might be replaced. For the purpose of
determining if characters might be replaced, we use a replacement map M = (my ;)
of size ¥ x 7. Before a round of the raster scan order search, all values in M is
initialized by 0. We set m; j; = 1 if the operation in formula (8) replaces character
b, jr» that is, the right-hand side of formula (8) is not equal to b, - Clearly, at the
end of the round, m; ; = 1 if bZ, ., has been replaced in this round. Further, the
affected region in which a character might be replaced in next round consists of
(¢',7") such that m; ; or its neighbor takes value 1. Figure 7 illustrates an example
of a replacement map and the affected region. In the next round, it is sufficient to
perform the operation in formula (8) for the affected region.

The second idea, the partial search is used to reduce the computation of the
right-hand side of formula (8). The intensity level of the right-hand side is close

A Character Art Generator using the Local Ezhaustive Search, with GPU acceleration 9

0100 |0 [0 (0|0 |0 |O |O
010({0[0J0 |0 |0 JO |0 |0
010 ({0040 |1 {00 |0 |0
0101{0 0|00 [0]O [0 |O
010(0J0|1{11]0]0 |00
010 (0 [0 [0 {0 |OJO |0 |0
010 (1[0 J0 {0 [0 |0 |O |O
040 {0 00O |0 JO |0 [0 |O
0{0(0(0]0O|O]0 |1 |1]1
0100 (0|0 |00 |0 |O |O

Figure 7. The replacement map in an affected region

to I (bg,’j,) with high probability, because it should be rare that the intensity level
changes a lot by the local exhaustive search. Thus, it is not necessary to find the
minimum over all characters in C'. It is sufficient to evaluate the values of formula
(7) for characters ¢ in C such that I(c) is close to I(bj ;). More specifically, we
perform the following operation:

by ji 4 arg grencp Z leij — ¢l 2, 9)

(4,7) € Ap jr

where C' = Cy_s UCy_s11 U---UCyys for some appropriate fixed positive integer
s, and v is an integer such that

U_% / U+%
7”7_7’) kZ

Note that (b}, ;) = 7= and thus C’ includes characters with the intensity level close
to I(b; ;). We call such value s the search range of the local exhaustive search.

We have determined the appropriate value of the search range for the local ex-
haustive search by experiments using the CPU. Let the average error be Ermzi(fl’m
for the error Error(A, R) defined in (5). Figure 8 shows the average error and the
computing time for generating ASCII/JIS art images of Lena gray-scale image in
Figure 2 of size 1024 x 1024 using the conventional method, the local exhaustive
search with search range from 0 to 20, and the local exhaustive search with full
search (i.e. with unlimited search range). Clearly, the local exhaustive search with
larger search range takes a longer time but smaller average error. In particular,
the computing time is almost proportional to the search range. Thus, we have the
trade-off between the computing time and the average error. Since the average er-
ror with search range 5 is almost the same as the local exhaustive search for full
range, we have determined that the local exhaustive with search range 5 is good
enough to obtain the same quality ASCII/JIS art images as the full search. From
the graphs in Figure 8, the local exhaustive search with search range 5 is 7.7 times
and 3.0 times faster than the full search for JIS Kanji code characters and ASCII
code characters, respectively.

Step 3 just computes a bitmap image B = (b;;) by formula (4) from the
ASCIL/JIS art B' = (b}, ;). This can be done in an obvious way.

10 Yuji Takeuchi et al.

0.11 500
0.1 1 400
Average Error Computing Time (in seconds)
0.09 1 300
0.08 1 200
0‘07 | T T T T T T T T T T T : i 100
0.06 . ! ! ! 0
0 5 10 15 20 I
conventional method partial search full search
(1) JIS Kanji code characters
0.11 T T T T T 10
0.1rf 18
Average Error Computing Time (in seconds)
0.09 16
0.08 14
0.07 1 12
—+—— }
0.06 0

0 5 10 15 20 I
conventional method partial search full search

(2) ASCII Code characters

Figure 8. The average error and the computing time of ASCII/JIS art generation

5. GPU Implementation

Our GPU implementation of the local exhaustive search for generating an
ASCII/JIS art is shown in this section.

We briefly explain CUDA architecture that we will use. NVIDIA provides a
parallel computing architecture called CUDA on NVIDIA GPUs. CUDA uses two
types of memories in the NVIDIA GPUs: the global memory and the shared mem-
ory [20]. The global memory is implemented as an off-chip DRAM of the GPU,
and has large capacity, say, 1.5-6 Gbytes, but its access latency is very long. The
shared memory is an extremely fast on-chip memory with lower capacity, say, 16-48
Kbytes. Figure 9 illustrates the CUDA hardware architecture.

CUDA parallel programming model has a hierarchy of thread groups called grid,
block and thread. A single grid is organized by multiple blocks, each of which has
equal number of threads. The blocks are allocated to streaming multiprocessors
such that all threads in a block are executed by the same streaming multiprocessor

A Character Art Generator using the Local Ezhaustive Search, with GPU acceleration 11

streaming streaming streaming streaming
multiprocessor multiprocessor multiprocessor multiprocessor

shared shared shared shared
memory memory memory memory

global memory

Figure 9. CUDA hardware architecture

in parallel. All threads can access to the global memory. However, threads in a
block can access to the shared memory of the streaming multiprocessor to which the
block is allocated. Since blocks are arranged to multiple streaming multiprocessors,
threads in different blocks cannot share data in the shared memories.

We are now in a position to explain how we implement three steps of our
ASCII/JIS art generation using the local exhaustive search. We assume that the
adjusted image of an original image A is stored in the global memory in advance,
and the implementation writes the resulting ASCII/JIS art image B’ in the global
memory. Further, we assume that the bitmap image of all characters in C' and the
blurred image of every character are also stored in the global memory.

To implement Step 1, Z—z CUDA blocks are invoked one for each block A; ; of an
image A. Let B(7',j") (0 <4',5' < 2 —1) denote a CUDA block assigned to a block
Ay j. Each CUDA block B(#,j') is responsible for computing the error matrix
E = (e;;) of the corresponding block using the shared memory. For this purpose,
B(i', ') copies pixel values in A of the affected region A; ;- in the shared memory.
After that, each CUDA block B(i',j") computes the average intensity level I(A; ;)
by computing formula (7), and selects a character ¢ in C,, satisfying formula (6).
Finally, the error matrix E = (e; ;) of the corresponding block is computed from
the blurred image of ¢ and pixel values in A of the affected region A; ;.. The error
matrix F of the resulting block is copied to the global memory.

In Step 2, the local exhaustive search to evaluate formula (9) is performed in par-
allel using multiple CUDA blocks. However, the local exhaustive search for adjacent
blocks cannot be executed in parallel, because the application of the Gaussian filter
to adjacent blocks affects each other. Thus, we partition blocks into four groups
such that
Group 1: even columns and even rows,

Group 2: odd columns and even rows,

Group 3: even columns and odd rows, and

Group 4: odd columns and odd rows.

The reader should refer to Figure 10 illustrating the groups. We use 4,%: CUDA
blocks, and perform the local exhaustive search in all blocks of each group. Note
that, if k& > 2w then the Gaussian filter of two blocks in a group never affect each
other, where the bitmap image of a character is k x k£ and the size of the Gaussian
filter is (2w 4+ 1) x (2w + 1). In other words, the affected regions illustrated in
Figure 6 of a particular group do not overlap each other. Actually, in our experi-
ment, we choose k = 16 and w = 3. Step 2 performs the local exhaustive search for
Group 1, Group 2, Group 3, and Group 4, in turn. A CUDA block is invoked for
each block of a group. The CUDA block copies the error matrix corresponding to

12 Yuji Takeuchi et al.

the affected region in the global memory to the shared memory. After that, each
CUDA block evaluates the right-hand side of formula (9) to find the replacement
character. Finally, the error matrix £ = (e; ;) of the corresponding block is com-
puted and the error matrix E of the resulting block is copied to the global memory
in the same way as Step 1.

To implement Step 3, one CUDA block is used to generate a block of the bitmap
image B = (b;,;) by formula (4) from the ASCII/JIS art B' = (b}, ;). This can be
done in an obvious way.

Figure 10. Groups of blocks

Table 1. Computing time (in seconds) for generating ASCII/JIS art images by the conventional method
JIS art generation

Image size 256 x 256 512 x 512 1024 x 1024

Intel CPU | 0.8619 x 1073 | 3.441 x 103 | 14.14 x 1073

NVIDIA GPU | 1.457 x 103 | 1.844 x 1073 | 2.391 x 1073

Speed-up 0.5915 1.866 5.913
ASCIT art generation
Image size 256 x 256 512 x 512 1024 x 1024

Intel CPU 0.8989 x 10 3 | 3.560 x 10 5 | 14.21 x 10 3
NVIDIA GPU | 1.562 x 10™3 | 1.969 x 1073 | 2.615 x 1073
Speed-up 0.5754 1.808 5.434

6. Experimental results

In this section, we will show the resulting images and the computing time.

We have used Lena gray-scale images in Figure 2 of size 256 x 256, 512 x 512,
and 1024 x 1024. We use a set of 7310 characters in the JIS Kanji code with
16 x 16 pixels and a set of 95 characters in the ASCII code with 16 x 8 pixels. A
Gaussian filter of size 7 x 7 with parameter o = 2.0 is used. Figure 11 shows the
resulting ASCII art images generated using JIS Kanji code characters from Lena
gray-scale image of size 1024 x 1024. Also, Figure 12 shows the resulting ASCII/JIS
art images generated using ASCII code characters. As we have shown in Section 4,

A Character Art Generator using the Local Ezhaustive Search, with GPU acceleration 13

Table 2. Computing time (in seconds) for generating ASCII/JIS art images by our method using the LES with
search range 5

JIS art generation
Image size 256 x 256 512 x 512 1024 x 1024

Intel CPU 4.009 16.10 64.03
NVIDIA GPU | 94.69 x 1073 | 226.1 x 1073 | 714.9 x 103
Speed-up 42.33 71.20 89.56

ASCII art generation
Image size 256 x 256 012 x 512 1024 x 1024

Intel CPU 0.1701 0.7179 2.952
NVIDIA GPU | 7.984 x 103 | 17.66 x 1072 | 51.70 x 1073
Speed-up 21.30 40.65 57.09

Table 3. Data transfer time (in seconds) between a Host PC to a GPU

Image size 256 x 256 512 x 512 1024 x 1024
Host PC+GPU | 0.08291 x 102 | 0.2069 x 10 3 | 0.7143 x 103
Host PC— GPU | 0.08729 x 1073 | 0.2515 x 102 | 0.8073 x 1073

the search range of the local exhaustive search should be 5 to balance the running
time and the quality of resulting images. Hence, we have executed the conventional
method and our method using the local exhaustive search with search range 5. The
resulting ASCII/JIS art images by our method can reproduce the details and the
tones of the original Lena image, and the quality is much better than those by
the conventional method. In particular, the edges of images are sharper.Figure 13
shows the blurred images of ASCII/JIS art images shown in Figures 11 and 12,
which are obtained by the same parameter o = 2.0. We can think that these images
are projected in human retina. The readers should have no difficulty to confirm
that blurred images obtained by our method are very similar to the original gray
scale image. Also, we can verify the goodness of our method by evaluating the SNR
of the blurred images. The SNR of the blurred images by the conventional method
for the image of size 1024 x 1024 are 15.3dB and 17.8dB for JIS and ASCII art
images, respectively, while those by our method is 19.0dB and 21.3dB, respectively.

We have evaluated the computing time for generating the ASCII/JIS art images.
We have used a Intel PC using Xeon E5-2430 running in 2.2GHz to evaluate the
implementation by sequential algorithms. We also used NVIDIA GeForce GTX
780 Ti, which has 2880 processing cores in 15 SMX units [21]. Table 1 shows
the computing time for generating the ASCII/JIS art images by the conventional
method. Also, Table 2 shows the computing time for generating the ASCII/JIS
art images by our method using the local exhaustive search with search range 5.
Our method using the local exhaustive search takes much more time than the
conventional method. However, by using the GPU, the computing time can be
reduced by a factor of 21.30-89.56. Our method takes 2.952s for the Lena image
of size 1024 x 1024 using the ASCII code. The computing time can be reduced to
51.7ms using the GPU. Even if the JIS Kanji code is used, the computing time
is 0.7149s by the GPU acceleration. This computing time is acceptable for most
applications of amusement purpose. Table 3 shows the data transfer time between
a Host PC and the global memory of the GPU. We can confirm that the data
transfer time is negligible, because the computation of ASCII/JIS art generation
is costly.

14 REFERENCES

7. Conclusions

The main contribution of this paper is to propose a new technique to generate an
ASCII art image that reproduces the original tone and the details of input gray-
scale images. We have presented a new technique using the local exhaustive search
to optimize binary images for printing based on the characteristic of the human
visual system. The resulting ASCII art images by our new method can reproduce
the details and the tones of original gray-scale images. To accelerate ASCII art
generation by our method, we have implemented it in the GPU. The experimental
results show that the GPU implementation can achieve a speedup factor up to
89.56 over the conventional CPU implementation.

References

[1] L. Carroll, Alice’s Adventures in Wonderland, Macmillan, 1865.

[2] X. Xu, L. Zhang, and T.T. Wong, Structure-based ASCII art, ACM Transac-
tions on Graphics (SIGGRAPH 2010 issue) 29 (2010), pp. 52:1-52:9.

[3] D.L. Lau and G.R. Arce, Modern Digital Halftoning, Marcel Dekker, 2001.

[4] D. Knuth, Digital halftones by dot diffusion, ACM Trans. Graphics 6-4 (1987),
pp. 245-273.

[5] Y. Ito and K. Nakano, FM screening by the local exhaustive search with hard-
ware acceleration, International Journal on Foundations of Computer Science
16 (2005), pp. 89-104.

[6] Y. Ito and K. Nakano, A new FM screening method to generate cluster-dot
binary images using the local exhaustive search with FPGA acceleration, In-
ternational Journal on Foundations of Computer Science 19 (2008), pp. 1373~
1386.

[7] M. Analoui and J. Allebach, Model-based halftoning by direct binary search, in
Proc. SPIE/IS&T Symposium on Electronic Imaging Science and Technology,
Vol. 1666, SPIE, 1992, pp. 96-108.

[8] IROMSOFT, Tezt artist URL http://www.hm.h555.net/irom/.

[9] Y. Furuta, J. Mitani, and Y. Fukui, A method for generating ascii-art images
from a character sequence by adjusting the kerning, Tech. rep., IPSJ, 2010.

[10] P.D. O’Grady and S.T. Rickard, Automatic ASCII art conversion of binary
images using non-negative constraints, in Proc. of the Irish Signal and Systems
Conference, Institute of Engineering and Technology, 2008, pp. 186-191.

[11] W.W. Hwu, GPU Computing Gems Emerald Edition, Morgan Kaufmann,
2011.

[12] D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano, Implementations of a
parallel algorithm for computing Fuclidean distance map in multicore proces-
sors and GPUs, International Journal of Networking and Computing 1 (2011),
pp. 260-276.

[13] K. Ogawa, Y. Ito, and K. Nakano, Efficient Canny Edge Detection Using a
GPU, in Proc. of International Conference on Networking and Computing,
Nov., IEEE CS Press, 2010, pp. 279-280.

[14] A. Uchida, Y. Ito, and K. Nakano, Fast and Accurate Template Matching
using Pizel Rearrangement on the GPU, in Proc. of International Conference
on Networking and Computing, Dec., IEEE CS Press, 2011, pp. 153-159.

[15] Y. Ito, K. Ogawa, and K. Nakano, Fast Ellipse Detection Algorithm using
Hough Transform on the GPU, in Proc. of International Conference on Net-
working and Computing, Dec., IEEE CS Press, 2011, pp. 313-319.

[16] A. Uchida, Y. Ito, and K. Nakano, An Efficient GPU Implementation of Ant

[17]

[18]

[19]

[20]

21]

REFERENCES 15

Colony Optimization for the Traveling Salesman Problem, in Proc. of Interna-
tional Conference on Networking and Computing, Dec., IEEE CS Press, 2012,
pp. 94-102.

A. Kasagi, K. Nakano, and Y. Ito, Offline permutation algorithms on the
discrete memory machine with performance evaluation on the GPU, IEICE
Transactions on Information and Systems Vol. E96-D (2013), pp. 2617-2625.
A. Kasagi, K. Nakano, and Y. Ito, An Optimal Offline Permutation Algorithm
on the Hierarchical Memory Machine, with the GPU implementation, in Proc.
of International Conference on Parallel Processing, Oct., IKEE CS Press, 2013,
pp. 1-10.

D. Man, K. Nakano, and Y. Ito, The Approzimate String Matching on the
Hierarchical Memory Machine, with Performance Evaluation, in Proc. of In-
ternational Symposium on Embedded Multicore/Many-core System-on-Chip,
Sept., IEEE CS Press, 2013, pp. 79-84.

NVIDIA Corporation, NVIDIA CUDA C programming guide version 5.0
(2012).

NVIDIA Corporation, NVIDIA next generation CUDA compute architecture:
Kepler GK110 whitepaper (2013).

16 REFERENCES

=

=
H:

Rt
U=

it
fpung S

(1) JIS art by conventional method
SEeEils e 0 e :

(2) JIS art by our method

Figure 11. The resulting JIS art images using JIS Kanji code characters

REFERENCES

NWWM%JM'"T':WEEEMW
h Sk ! EEN) |L'IMIEEEEEG&UJM

Pt
FAE) mlmm
SV veluid v RIEEESIE WM s
] i P
i3 T
e e o] o e s
R

e bl PO

Lt P
7?2%07 J101=) x'J rrr| ré ana
Wﬂmftlucuc]gl(!wlf |udri zh JawdE]
{Jchl(Nwm-M{-
? Yee| :J‘IIH(H::yZJy"olm:w-
+r/

wzzuf zznzzTal. MR Hoolak e Saaad
; zzzezol | v/ vl jio> M3W§§£§
el
itk

[:uc'lmﬂm{r

t”c yc] 'I (W\ﬁ MMM 72 cexranlef

701 hw:mwﬂc
v f oot a| sl VNI e
Lz oz {ev! | Cr ENMEE ZNMMRRMMAE AL Ceosrstesrsstapal

i]I!;E%E&M:Wm?béﬂm

Arreapgand
MNPNWI OLijrin
z3hd /L

MGz | Ll
| s*ﬁl’J:YWMMWME%WWM‘FWWM r4; iFWEERGEHE CEE IR

1) ASCII art by conventional method
recceceSEERSEABARREASEIRI0, 8000 A1 55211 0 IJ:LI!0:&B&O!w!bSS:&BME%B&EEGstU}:{D:S::B:G
EB‘BEEEEEEEEEEEBZEEEEEEEEEO

ug&?ium%s gé oG
RSBB&EEEEEEEEEEEEEEEEEEEEEED[::::l::h‘\\‘h\" EE0 v::::::::::::::: SSEIJ]S
55

(3553
i EEEEEEEEEZEEED]! "’)S'Gt("[’ﬁ) Jiceds
J&EEEBSIE]B?EW l.l)S]UJS]#JHW!.:‘/KH.))(«(

%?%W!%”i ng é?ﬁ&&ﬁ»'%ﬁ it <<;<<<<

=, E éTé ?? S'SJ'S °.r‘f°.lg($'$)>‘7>(«-’:<«<-:< el
%II‘]?EK&EEBECS[U#S}gJES)ES%UiSS(UE"d’?(D 2_;39] 121057 i
2 lr]

LT
A
19723530050
Gegiiedaied:
D (4444444484t
(40400egedieds

= D}?&S[U]
EEDGZ0ZS55 115555320 DIU%S"M‘/ 5

DS TED
PEET
wmswwsmssmmns(m Y4444 444 - IBERBRESERS %maamumm

(2) ASCII art by our method

Figure 12. The resulting ASCII art images using ASCII code characters

17

18

REFERENCES

(4) ASCII ar

Figure 13. Blurred images of ASCII/JIS art images

