
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.5 MAY 2003
803

PAPER Special Issue on Reconfigurable Computing

Accelerating the CKY Parsing Using FPGAs∗

Jacir L. BORDIM†, Yasuaki ITO†, Student Members, and Koji NAKANO†, Regular Member

SUMMARY The main contribution of this paper is to
present an FPGA-based implementation of an instance-specific
hardware which accelerates the CKY (Cocke-Kasami-Younger)
parsing for context-free grammars. Given a context-free gram-
mar G and a string x, the CKY parsing determines whether G
derives x. We have developed a hardware generator that creates
a Verilog HDL source to perform the CKY parsing for any given
context-free grammar G. The generated source is embedded in an
FPGA using the design software provided by the FPGA vendor.
We evaluated the instance-specific hardware, generated by our
hardware generator, using a timing analyzer and tested it using
the Altera FPGAs. The generated hardware attains a speed-
up factor of approximately 750 over the software CKY parsing
algorithm.
key words: CKY parsing, FPGAs, reconfigurable architectures,
reconfigurable computing

1. Introduction

An FPGA (Field Programmable Gate Array) is a pro-
grammable VLSI in which a hardware designed by users
can be embedded instantly. Typical FPGAs consist of
an array of programmable logic elements, distributed
memory blocks, and programmable interconnections
between them. The logic block usually contains ei-
ther a two-input logic function or a 4-to-1 multiplexer
and several flip-flops. The distributed memory block
is usually a dual-port RAM on which a word of data
for possibly distinct addresses can be read/written at
the same time. The user’s hardware logic design can
be embedded into the FPGAs using the design tools
supplied by the FPGA vendor. Using design tools sup-
plied by FPGA vendors, a hardware logic designed by
users can be embedded into the FPGAs. Our goal is
to use the FPGAs to accelerate useful computations.
In particular, the challenge is to develop FPGA-based
solutions which are faster and more efficient than tra-
ditional software approaches.

Our approach to accelerate computations using the
FPGAs is inspired by the notion of partial computa-
tion [10]. Let f(x, y) be a function to be evaluated in
order to solve a given problem. Note that such a func-

Manuscript received September 6, 2002.
Manuscript revised November 18, 2002.

†The authors are with the School of Information Sci-
ence, Japan Advanced Institute of Science and Technology,
Ishikawa-ken, 923–1292 Japan.

∗Work supported in part by the Ministry of Education,
Science, Sports, and Culture, Government of Japan, Grant-
in-Aid for Exploratory Research (14658090).

tion might be repeatedly evaluated only for a fixed x.
When this is the case, the computation of f(x, y) can
be simplified by evaluating an instance-specific function
fx such that fx(y) = f(x, y). Our novel idea is to build
a hardware that is optimized to compute fx(y) for a
fixed x and various y. More specifically, our goal is to
present an FPGA-based instance-specific solution for
problems that involves a function evaluation for f(x, y)
satisfying the following properties:

1. The value of a fixed instance x depends on the
instance of the problem, and

2. The value of f(x, y) is repeatedly evaluated for var-
ious y to solve the problem.

The main contribution of this paper is to present
an instance-specific hardware which accelerates the
parsing for context-free grammars [12] using the FPGA-
based approach described above. Let f(G,x) be a func-
tion such thatG is a context-free grammar, x is a string,
and f(G,x) returns a Boolean value such that f(G,x)
returns TRUE iff G derives x. It is well-known that
the CKY(Cocke-Kasami-Younger) parsing [1] computes
f(G,x) in O(n3) time, where n is the length of x [1].
The parsing of context-free languages has many ap-
plication in various areas including natural language
processing [5], [14], compiler construction [1], informat-
ics [13], among others.

Several studies have been devoted to accelerate the
parsing of context-free languages [4], [9], [11], [14]. It has
been shown that the parsing for a string of length n can
be done in O((log n)2) time using n6 processors on the
PRAM [9]. Also, using the mesh-connected processor
arrays, the parsing can be done in O(n2) time using
n processors as well as in O(n) time using n2 proces-
sors [11]. Since these parallel algorithms need at least
n processors, they are unrealistic for large n. Ciressan
et al. [6], [7] have presented a hardware for the CKY
parsing for a restricted class of context-free grammar
and have tested it using FPGA. However, the hardware
design and the control algorithm are essentially the
same as those on the mesh-connected processors [11],
and they are not instance-specific.

For the purpose of instance-specific solution for
parsing context-free languages, we present a hardware
generator that produces a Verilog HDL source that per-
forms the CKY parsing for any given context-free gram-
mar G. The key ingredient of the produced design is a

804
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.5 MAY 2003

Fig. 1 Our hardware parsing system.

hardware component to compute a binary operator ⊗G

such that 2N × 2N → 2N , where N is the set of non-
terminal symbols in G. More specifically, let U and V
be a set of non-terminals in G that derive strings α and
β, respectively. The operator U ⊗G V returns the set
of non-terminals that derive αβ (i.e. the concatenation
of α and β). The CKY parsing algorithm repeats the
evaluation of ⊗G for O(n3) times. The details of ⊗G

will be explained in Sect. 2. Our hardware generator
provides two types of hardware. The first hardware
has one component for computing ⊗G. The second one
has two or more components to further accelerate the
table algorithm for the CKY parsing.

The generated Verilog HDL source is compiled us-
ing the Altera Quartus II design tool [3], and the object
file obtained is downloaded into the Altera APEX20K
series FPGAs [2]. The programmed FPGA compute
fG(x), i.e. determines if G derives x for a given string x.
Figure 1 illustrates our hardware CKY parsing system.
Given strings x1, x2, x3, . . . by the host PC, the FPGA
computes and returns fG(x1), fG(x2), fG(x3), . . . to the
host.

From the theoretical point of view, our instance-
specific solution is much faster than the software so-
lutions. To clarify how our solution accelerates the
CKY parsing, we provide the following two software
approaches as counterparts:

Naive algorithm: Computes ⊗G by checking all p
production rules in O(p) time. The CKY parsing
using the naive algorithm runs in O(n3p) time.

Table algorithm: Computes ⊗G by looking up (b
c)

2

tables of 22b words with bbits in O((b
c)

2) time,
where b is the number of non-terminal symbols in
G. Although c can take any integer, in practice, c
does not exceed 16, possibly c <= 8. The CKY pars-
ing using the table algorithm runs in O(n3(b

c)
2)

time.

Our instance-specific solution evaluates ⊗G in O(log b)
time and the CKY parsing using this approach runs in
O(n3 log b) time. Since b <= p always hold, our solu-
tion is faster than these software approaches from the
theoretical point of view.

We have evaluated the performance of our

instance-specific solution using the timing analyzer of
Quartus II and tested it using an APEX20K series
FPGA. In order to evaluate the performance of our
instance-specific solution, we also have implemented
the above software solutions and measured the perfor-
mance using a Pentium4-based PC. The timing analysis
results show that our instance-specific hardware attains
up to 750 speed-up factor over the software solutions.
Thus, we strongly believe that our approach for parsing
context-free languages is a promising solution.

This paper is organized as follows: Sect. 2 briefly
describes the CKY parsing scheme and presents two ef-
ficient software implementations. In Sect. 3, we present
the details of our instance-specific hardware for the
CKY parsing. Section 4 evaluates the performance of
our instance-specific hardware and the software solu-
tions for the CKY parsing, and compare them. Finally,
Sect. 5 concludes this work.

2. The CKY Parsing and Software Solutions

This section briefly describe the CKY parsing and
presents two software solutions. Let G = (N,Σ, P, S)
denote a context-free grammar such that N is a set of
non-terminal symbols, Σ is a set of terminal symbols,
P is a set of production rules, and S (∈ N) is the start
symbol. A context-free grammar is said to be a Chom-
sky Normal Form (CNF), if every production rule in P
is in either form A→ BC or A→ a, where A, B, and C
are non-terminal symbols and a is a terminal symbol.

We are interested in the parsing problem for a
context-free grammar with CNF. More specifically, for
a given CNF context-free grammar G and a string x
over Σ, the parsing problem asks to determine if the
start symbol S derives x. For example, let Gexample =
(N,Σ, P, S) be a grammar such that N = {S,A,B},
Σ = {a, b}, and P = {S → AB,S → BA,S →
SS,A → AB,B → BA,A → a,B → b}. The context-
free grammar G derives abaab, because S derives it as
follows:

S⇒AB⇒ABA⇒ABAA⇒ABAAB⇒· · ·⇒abaab.
We are going to explain the CKY parsing scheme

that determines whetherG derives x for a CNF context-
free grammar G and a string x. Let x = x1x2 · · ·xn be
a string of length n, where each xi (1 <= i <= n) is in Σ.
Let T [i, j] (1 <= i <= j <= n) denote a subset of N such
that every A in T [i, j] derives a substring xixi+1 · · ·xj .
The idea of the CKY parsing is to compute every T [i, j]
using the following relations:

T [i, i] = {A | (A→ xi) ∈ P}

T [i, j] =
j−1⋃

k=i

{A | (A→ BC) ∈ P,B ∈ T [i, k], and

C ∈ T [k + 1, j]}
A two-dimensional array T is called the CKY table.

BORDIM et al.: ACCELERATING THE CKY PARSING USING FPGAS
805

Fig. 2 The CKY table for Gexample and abaab.

A grammar G generates a string x iff S is in T [1, n]. Let
⊗G denote a binary operator 2N × 2N → 2N such that
U ⊗G V = {A | (A → BC) ∈ P,B ∈ U, and C ∈
V }. The details of the CKY parsing are spelled out as
follows:

CKY parsing
1. T [i, i]← {A | (A→ xi) ∈ P} for every i (1 <= i <= n)
2. T [i, j]← ∅ for every i and j (1 <= i < j <= n)
3. for j ← 2 to n do
4. for i← j − 1 downto 1 do
5. for k ← i to j − 1 do
6. T [i, j]← T [i, j]⋃(T [i, k]⊗G T [k + 1, j])

The first two lines initialize the CKY table, and the
next four lines compute the CKY table. Figure 2 il-
lustrates the CKY table for Gexample and the string
abaab. Since S ∈ T [1, 5], one can see that Gexample

derives abaab.
Clearly, the last four lines are dominant in the

CKY parsing. Let t be the computing time necessary
to perform an iteration of the line 6. Then, line 6 is
executed for

n−1∑

j=2

j−1∑

i=1

j−1∑

k=i

t= t
n−1∑

j=2

j−1∑

i=1

(j − i)= 1
6
t(n3 − 3n2 + 2n)

times. Let us evaluate the computing time t necessary
to perform line 6, i.e., necessary to evaluate the binary
operator⊗G. We will present two approaches that com-
pute U⊗GV by sequential (software) algorithms for any
given U and V .

In the first approach, named naive algorithm, it is
checked whether B ∈ U and C ∈ V for every produc-
tion rule A → BC in P . Clearly, using a reasonable
data structure, this can be done in O(1) time. Hence,
U ⊗G V can be evaluated in O(p) time, where p is
the number of production rules in P that has the form
A → BC. Thus, the first approach enables us to per-
form the CKY parsing in O(n3p) time.

Suppose that N has b non-terminal symbols, and
let N = {N1, N2, . . . , Nb}. The second approach that
we call table algorithm uses a huge look-up table that
stores the values of U ⊗G V for every pair U and
V . For a given U (∈ 2N), let u1u2 · · ·ub be the b-
bit vector such that ui = 1 iff Ni ∈ U for every i
(1 <= i <= b). Similarly, let v1v2 · · · vb be the b-bit
vector for V (∈ 2N). For the purpose of computing
U ⊗G V , we use a look-up table of 22b × b in memory
(i.e., the address and the data are 2b bits and b bits,
respectively). The u1u2 · · ·ubv1v2 · · · vb-th entry of the
table stores w1w2 · · ·wb, where w1w2 · · ·wb is the b-bit
vector representation of W = U ⊗G V . Clearly, if such
table is available, U ⊗G V can be computed in O(1)
time. However, the table can be too large even if b is
not large. If P has b = 64 non-terminal symbols, then
the table must have 22·64×64 = 2134 ≈ 1040 bits, which
is exceedingly large.

We will modify the table algorithm to reduce the
table size. Let us partition N into equal-sized subsets
such that N i = {Nc(i−1)+1, Nc(i−1)+2, . . . , Nci}, (1 <=
i <=

b
c). In other words, the set N is partitioned into

b
c subsets with each subset containing c non-terminals.
Recall that c can take any integer larger than zero,
however, in practice it does not exceed 16. We use (b

c)
2

binary operators ⊗i,j
G (1 <= i, j <=

b
c) such that

• ⊗i,j
G is 2Ni × 2Nj → 2N , and

• (U ∩N i)⊗i,j
G (V ∩N j) = {A | (A→ BC) ∈ P,B ∈

U ∩N i, and C ∈ V ∩N j}.
It is easy to see that,

U ⊗G V =
⋃

1<=i,j<=(b
c)2

(U ∩N i)⊗i,j
G (V ∩N j).

Thus, by evaluating ⊗i,j
G for every pair i and j, we

can compute ⊗G. As before, ⊗i,j
G can be computed by

looking up a table of size 22c × b. Hence, ⊗G can be
computed in O((b

c)
2) time by looking up (b

c)
2 tables.

The total size of the tables is b3

c2 22c bits. If b = 64 and
c = 8, then the tables should have 228 = 256Mbits,
which is feasible. However, we need to look up the
table for (b

c)
2 = 64 times. Note that the size of the

tables and the number of times needed to be looked up
are independent of the number p of production rules.
Thus, the second approach is more efficient for large p.

3. Our Instance-Specific Hardware for the
CKY Parsing

This section is devoted to show our instance-specific
hardware for the CKY parsing. We first accelerate the
evaluation of ⊗G by building a circuit for computing
⊗G in an FPGA. We then go on to show the hardware
details to build this circuit.

Recall that each U and V (∈ 2N) are represented

806
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.5 MAY 2003

by b-bit binary vectors u1u2 · · ·ub and v1v2 · · · vb,
respectively. Our goal is to compute the vector
w1w2 · · ·wb, which represents W = U ⊗G V . For a
particular wk, we are going to show how wk is com-
puted. Let Nk → Ni1Nj1 , Nk → Ni2Nj2 , . . ., and
Nk → NisNjs be the production rules in P whose non-
terminal in the left-hand side is Nk. Then, wk is com-
puted by the following formula:

wk = (ui1 ∧ vj1) ∨ (ui2 ∧ vj2) ∨ · · · ∨ (uis ∧ vjs).

The task of our hardware generator is to read
the production rules in P , which are stored in a text
file, and generate a module to compute the vector
w1w2 · · ·wb. Based on the production rules, our hard-
ware generator creates the necessary code to compute
each entry wk. A module in Verilog-HDL is analogue to
a procedure in a high-level language, such as C/Pascal,
and can be “called” from the main module. The main
module comprehend a number of functions, whose tasks
are, among others, to control memory access and the
FPGA-PC interface. An example of the code created
by our hardware generator is shown below.

1 module comp(u,v,w);
2 input [3:1] u,v;
3 output [3:1] w;
4
5 assign w[1] = (u[2] & v[3])
6 | (u[3] & v[2])
7 | (u[1] & v[1]);
8 assign w[2] = (u[2] & v[3]);
9 assign w[3] = (u[3] & v[2]);
10 endmodule

The first line defines the module name and the pa-
rameters received and returned by the module. The
parameters are explicit defined as shown in lines 2 and
3. Each entry of the output vector is computed in lines
5 trough 9, which are computed according to the pro-
duction rules in P . The circuit of the above module
is shown in Fig. 3. As shown above, wk can be com-
puted by a combinatorial circuit using s AND-gates
and s − 1 OR-gates with fan-in 2. Furthermore, the
depth of the circuit (or the maximum number of gates
over all paths in the circuit) is �log(s − 1)�+ 1. Since
we have p production rules of the type A → BC in P ,
then w1w2 · · ·wb can be computed by a circuit with p
AND-gates and p − b OR-gates. Because s <= b

2 al-
ways hold, the depth of the circuit is no more than
�log(b2 − 1)�+ 1 <= 2 log b+ 1. Thus, the CKY parsing
can be done in O(n3 log b) time using this circuit. Fig-
ure 3 illustrates a circuit for ⊗Gexample . Since Gexample

has 5 production rules and 3 non-terminal symbols, the
circuit has 5 AND gates and 5− 3 = 2 OR gates.

The sequential algorithms we have shown in Sect. 2
take O(p) time or O((b

c)
2) time to evaluate ⊗G. On the

Fig. 3 The circuit for computing ⊗Gexample .

Fig. 4 A hardware implementation for the CKY parsing.

other hand, our circuit for ⊗G has the delay time pro-
portional to O(log b). Since b <= p <= b

3 always holds,
the circuit for ⊗G is faster than the sequential algo-
rithms from the theoretical point of view. In what fol-
lows, we are going to show the implementation details
of our instance-specific hardware. Our first hardware
implementation of the CKY parsing uses the following
basic components:

– a b-bit n2-word (dual-port) memory;
– a b-bit n-word (dual-port) memory;
– a CKY circuit for ⊗G;
– an array of b OR gates; and
– a b-bit register.

Figure 4 illustrates our first implementation for
the CKY parsing. The b-bit n2-word memory stores
the CKY table. The input, T [1, 1], T [2, 2], . . . , T [n, n]
is supplied to the b-bit n2-word memory. The b-bit
n-word memory stores a row of the CKY table that
is being processed. In other words, it stores the j-th
row T [1, j], T [2, j], . . . of the CKY table, where j is the
variable appearing in line 3 of the CKY parsing. The
b-bit register stores the current value of T [i, j], which
is computed in line 6 of the CKY parsing. The array
of b OR gates is used to compute “

⋃
” in line 6. The

b-bit n2-word memory supplies the b-bit vector repre-
senting T [i, k] to the CKY circuit. Similarly, the b-bit
n-word memory outputs the b-bit vector for T [k+1, j].

BORDIM et al.: ACCELERATING THE CKY PARSING USING FPGAS
807

Fig. 5 Partitioning the CKY table.

The CKY circuit receives them and computes the b-bit
vector for T [i, k]⊗GT [k+1, j]. Using this hardware im-
plementation, line 6 of the CKY parsing is computed
in a clock cycle. Thus, the CKY parsing can be done
in n3 clock cycles. Furthermore, in a real implemen-
tation, a clock cycle is proportional to O(log b). Thus,
the computing time is O(n3 log b).

We are going to parallelize the CKY parsing us-
ing two or more CKY circuits. For this purpose, we
partition the CKY table into m subtables S(0), S(1),
. . . , S(m − 1) such that S(l) is storing T [i, j] satisfy-
ing (j − i) mod m = l. Figure 5 illustrates the par-
titioning scheme of the CKY table into four subta-
bles. Clearly, for any m consecutive elements T [i, k],
T [i, k+ 1], . . . , T [i, k+m− 1] in a column of the CKY
table, these elements are stored in distinct subtables.
Thus, the consecutive m elements can be accessed in
the same time if each subtable is stored in a mem-
ory bank. This fact allows us to parallelize the CKY
parsing using m CKY circuits. In order to evaluate
the performance of the above approaches, we have im-
plemented the instance-specific hardware CKY parser
using a single CKY circuit (single-circuit), two CKY
circuits (double-circuit), and four CKY circuits (quad-
circuit).

Our parallel implementation of the CKY parsing
uses the following basic components:

– m (dual-port) memory banks of b-bit n2

m words;
– m (dual-port) memory banks of b-bit n

m words;
– m CKY circuits for ⊗G;
– m arrays of b OR gates; and
– a b-bit register.

Figure 6 illustrates our parallel implementation for the
CKY parsing. The m memory banks of b-bit n2

m words
are used to store m subtables, one bank for each sub-
table. Also, the m memory banks of b-bit n

m words
store a row of the CKY table that is currently being
processed. When T [i, j] is computed, these m memory
banks are storing the j-th row T [1, j], T [2, j], . . . , T [j, j]
of the CKY table. More precisely, T [l + 1, j], T [l +
m + 1, j], T [l + 2m + 1, j], . . . are stored in the l-th
bank (0 <= l <= m). Thus, m evaluations of ⊗G,
say, T [1, 1]⊗G T [2, j], T [1, 2]⊗G T [3, j], . . . , T [1,m]⊗G

T [m + 1, j], can be evaluated in a clock cycle because
T [1, 1], T [2, j], T [1, 2], T [3, j], . . . , T [1,m], T [m+1, j] are

Fig. 6 Our parallel implementation of the CKY parsing for
m = 4.

stored in distinct memory banks. This allows us to ac-
celerate the CKY parsing by a factor of m. Thus, the
computing time for the CKY parsing is O(n3 log b

m) for
m <= n.

4. Performance Evaluation

We have evaluated the performance of our instance-
specific solution using the timing analyzer of Quartus II
and tested it using the APEX20K series FPGA(EP20K-
400EBC652-1X, typical 400Kgates with 200Kbits em-
bedded memory and 16K logic elements). In order to
evaluate the performance of our instance-specific solu-
tion, we have implemented two software solutions and
measured the performance on a 1.7GHz Pentium4-PC
with 2GB of available memory using Linux OS (Kernel
2.4.9). More specifically, we first evaluate the perfor-
mance of both software and hardware solutions to com-
pute the function ⊗G. Next, we show the performance
evaluation for the CKY parsing algorithm.

Figure 7 (a) shows the running time of our hard-
ware and software implementations to compute the
function ⊗G. Note that a word of data on a Pentium-
based PC is 32-bit. Thus, we have implemented the
32-bit vector using a single word and the 64-bit vec-
tor using two words. As a consequence, the two word
implementation for the 64-bit vector adds an overhead
which makes it slower than the 32-bit vector solution.
Recall that the naive algorithm checks whether or not
B ∈ U and C ∈ V for every production rule A → BC
in P . Hence, the computing time of the naive algorithm
is proportional to the number of production rules.

As for the table algorithm, the computing time
obeys a more regular pattern since the running time
does not depend on the number of rules but rather it
depends on the number of times it has to access the
tables. Recall that the table algorithm has to perform
(b

c)
2 table look-ups for b non-terminal symbols to com-

808
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.5 MAY 2003

Fig. 7 (a) Computing time to evaluate ⊗G. (b) Computing time of the CKY algorithm
with b = 32 and n = 32. (c) Computing time of the CKY algorithm with b = 64 and
n = 32.

pute ⊗G. Thus, by increasing the value of b, the run-
ning time of the table algorithm also increases. As ex-
pected, for small values of p, the running time of the
naive algorithm beats the table algorithm. However, as
the number of p increases, the table algorithm is much
faster than the naive algorithm.

In computing the function ⊗G, our hardware im-
plementation attained a speed-up of nearly 1,000 over
the table algorithm, using 64-bit vector approach. A
speed-up of nearly 100 is observed using 32-bit vector
approach. Comparing the results with the naive algo-
rithm, the gain is even more apparent: for p = 16,384,
our hardware implementation attained a speed-up of
nearly 22,000 over the naive algorithm using 64-bit vec-
tor approach, and a speed-up of nearly 7,300 using 32-
bit vector approach. Since the running time of our
hardware implementation is independent of the num-
ber of encoding bits, the 32-bit vector and the 64-bit
vector approaches have nearly the same running time.

Figure 7 (b) shows the computing time of the CKY
algorithm for b = 32 and n = 32 (where n represents
the length of the input string). The figure shows the
computing time for the sequential algorithms as well
as for the hardware implementation. We have imple-

mented the CKY algorithm in hardware using single-,
double-, and quad-circuit and plotted the running times
of both hardware and software approaches. The soft-
ware solutions have followed the same pattern observed
in Fig. 7 (a). This is due to the fact that a good portion
of the computation time is spent evaluating ⊗G. Our
hardware implementation for single-circuit also follows
from the previous figure. One can see that the double-
and quad-circuit approaches indeed accelerate the CKY
parsing as we have predicted in Sect. 3.

Figure 7 (c) shows the computing time of the CKY
algorithm for b = 64 and n = 32. We observed that
the running time follows the same pattern of the CKY
algorithm for b = 32 and n = 32. As mentioned be-
fore, the 64-bit vector approach adds an extra overhead
to the software solutions which does not occur on the
hardware implementations. As a result, we observe a
degradation on the running time of the software solu-
tions. The number of logic elements necessary to com-
pute p = 2,048, using a quad-circuit, is nearly 9,600.
For p = 4,096, the number of logic elements necessary
to build the quad-circuit surpasses the overall number
of logic elements provided by our FPGA. Because of
this, we have been able to implement the quad-circuit

BORDIM et al.: ACCELERATING THE CKY PARSING USING FPGAS
809

Fig. 8 (a), (b) Number of logic blocks used to compute the CKY algorithm with b = 32
and b = 64, respectively. (c), (d) Frequency (in MHz) for b = 32 and b = 64, respectively.

Table 1 Speed-up of the CKY hardware approach over the
CKY table algorithm.

b = 32, l = 32 b = 64, l = 32
p Single Double Quad Single Double Quad

32 25 33 44 – – –
64 25 35 50 304 419 611

128 29 34 51 395 519 731
256 30 35 53 441 577 730
512 37 46 64 454 552 736

1024 38 48 66 413 513 742
2048 36 45 60 362 475 600
4096 26 34 41 326 418 –
8196 18 22 37 314 348 –

for p up to 2,048.
Table 1 shows the speed-up of the CKY algorithm

over the table algorithm (software approach). The com-
puting time of each algorithm can be seen in the pre-
vious figures. For b = 32 and n = 32, our hard-
ware approach achieved speed-up of nearly: 40 using
a single-circuit; 50 using a double-circuit; and 70 using
a quad-circuit. Our results are even more appealing
for b = 64 and n = 32. In this case, our hardware
approach achieved a speed-up of nearly: 460 using a
single-circuit; 580 using a double-circuit; and 750 using
a quad-circuit. Thus, from the above results, we ar-
gue that our hardware approach is indeed a promising
solution to solve the CKY parsing.

Figure 8 shows the number of logic blocks, and

the frequency (in MHz) for the single-, double-, and
quad-circuit. As expected, the number of logic blocks
increase along with the number of production rules
and the number of non-terminal symbols (Figs. 8 (a)
and (b)). As discussed earlier, the number of logic
block necessary to build the quad-circuit to compute
p = 4,096 with b = 64 surpasses the number of logic
blocks provided by our FPGA. Hence, we only plotted
values up to p = 2,048 for the quad-circuit with b = 64.
As can be observed in Figs. 8 (c) and (d), the frequency
decreases as the number of production rules increases.
This is due to the fact that an increase in the number
of production rules reflects in an increase in the depth
of the circuit, which in turns decreases the frequency,
since the circuit takes longer to complete each cycle.
Needless to say that this has a direct impact in the
computing time of the CKY algorithm.

5. Concluding Remarks

The main contribution of this work was to present
an FPGA-based implementation of an instance-specific
hardware that accelerates the CKY parsing for context-
free grammars.

We have evaluated the performance of our
instance-specific solution using the timing analyzer
of Quartus II and tested it using a APEX20K se-
ries FPGA. In order to evaluate the performance of

810
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.5 MAY 2003

our instance-specific solution we implemented two soft-
ware solutions and measured the performance using a
Pentium4-based PC. The timing analysis results show
that our instance-specific hardware attains up to 750
speed-up factor over the software solutions.

References

[1] A.V. Aho and J.D. Ullman, The Theory of Parsing Trans-
lation and Compiling, Prentice Hall, 1972.

[2] Altera Corporation, APEX 20K Devices: System-on-
a-Programmable-Chip Solutions, http://www.altera.com/
products/devices/apex/apx-index.html.

[3] Altera Corporation, Quartus II: system-on-a-programmable
chip software, http://www.altera.com/products/software/
quartus2/qts-index.html

[4] J. Chang, O. Ibarra, and M. Palis, “Parallel parsing on
a one-way array of finite-state machines,” IEEE Trans.
Comput., vol.C-36, no.1, pp.64–75, 1987.

[5] E. Charniak, Statistical Language Learning, MIT Press,
Cambridge, Massachusetts, 1993.

[6] C. Ciressan, E. Sanchez, M. Rajman, and J.-C. Chappelier,
“An FPGA-based coprocessor for the parsing of context-
free grammars,” Proc. IEEE Symposium on Field-
Programmable Custom Computing Machines, 2000.

[7] C. Ciressan, E. Sanchez, M. Rajman, and J.-C. Chappelier,
“An FPGA-based syntactic parser for real-life almost unre-
stricted context-free grammars,” Proc. International Con-
ference on Field Programmable Logic and Applications
(FPL), pp.590–594, 2001.

[8] Y. Futamura, K. Nogi, and A. Takano, “Essence of general-
ized partial computation,” Theoretical Computer Science,
vol.90, pp.61–79, 1991.

[9] A. Gibbons and W. Rytter, Efficient Parallel Algorithms,
Cambridge University Press, 1988.

[10] N.D. Jones, C.K. Gomard, and P. Sestoft, Partial Evalu-
ation and Automatic Program Generation, Prentice Hall,
1993.

[11] S.R. Kosaraju, “Speed of recognition of context-free lan-
guages by array automata,” SIAM J. Computers, vol.4,
pp.331–340, 1975.

[12] J.C. Martin, Introduction to languages and the theory of
computation, 2nd ed., McGraw Hill, 1996.

[13] Y. Sakakibara, M. Brown, R. Hughey, I.S. Mian,
K. Sjölander, R.C. Underwood, and D. Haussler, “Stochas-
tic context-free grammars for tRNA modeling,” Nucleic
Acids Research, vol.22, pp.5112–5120, 1994.

[14] M.P. van Lohuizen, “Survey on parallel context-free parsing
techniques,” Technical Report IMPACT-NLI-1997-1, Delft
University of Technology, 1997.

Jacir Luiz Bordim received the
B.E. degree from Passo Fundo University,
Brazil in 1994, and M.E. from Nagoya In-
stitute of Technology, Japan, in 2000. He
is currently working towards a Ph.D. de-
gree at Japan Advanced Institute of Sci-
ence and Technology. His research inter-
ests include parallel algorithms, reconfig-
urable architectures, and mobile comput-
ing.

Yasuaki Ito received the B.E. de-
gree from Nagoya Institute of Technology,
Japan, in 2001. He is currently work-
ing towards a M.E. degree at Japan Ad-
vanced Institute of Science and Technol-
ogy. His research interests include recon-
figurable architectures and computational
complexity.

Koji Nakano received the BE, ME
and Ph.D. degrees from Osaka University,
Japan in 1987, 1989, and 1992 respec-
tively. In 1992–1995, he was a Research
Scientist at the Advanced Research Labo-
ratory, Hitachi Ltd. He had worked at the
Department of Electrical and Computer
Engineering, Nagoya Institute of Technol-
ogy until 2001. He is currently an As-
sociate Professor with the School of In-
formation Science, Japan Advanced Insti-

tute of Science and Technology. His research interests includes
mobile computing, hardware algorithms, reconfigurable comput-
ing, parallel algorithms and architectures, computational com-
plexity, and graph theory.

