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The main contribution of this paper is to present an efficient parallel sorting “psort”
compatible with the standard qsort. Our parallel sorting “psort” is implemented such
that its interface is compatible with “qsort” in C Standard Library. Therefore, any
application program that uses standard “qsort” can be accelerated by simply replacing
“qsort” call by our “psort”. Also, “psort” uses standard “qsort” as a subroutine for local
sequential sorting. So, if the performance of “qsort” is improved by anyone in the open
source community, then that of our “psort” is also automatically improved.

To evaluate the performance of our “psort”, we have implemented our parallel sorting
in a Linux server with four Intel hexad-core processors (i.e. twenty four processor cores).
The experimental results show that our “psort” is approximately 11 times faster than
standard “qsort” using 24 processors.
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1. Introduction

Recently, software performance has improved rapidly, primarily driven by the

growth in processing power. However, we can no longer follow Moore’s law for per-

formance improvements. Fundamental physical limitations such as the size of the

transistor and power constraints have now required a radical change in commodity

microprocessor architecture to multicore designs. Multicore processors which have
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two or more processing cores are now ubiquitous in home computing. Moreover, we

will be able to use much more processing cores in the near future.

It is no doubt that sorting is one of the most important tasks in computer

engineering, such as database operations, image processing, statistical methodology

and so on. Hence, many sequential sorting algorithms and parallel sorting algorithms

have been studied in the past [1, 2].

To speedup the sorting, multiprocessors are employed for parallel sorting. In

[4, 5], bitonic sort has been presented. Bitonic sort is one of the earliest paral-

lel sorting algorithms and is executed using a comparator-based sorting network.

Parallel radix sort [6, 8, 9], parallel Merge sort [3, 21], parallel quick sort [10], and

column sort [7] have been devised. These parallel sorting algorithms are based on

existing sequential ones. Helman and JáJá have presented generalized parallel sort-

ing for SMPs (Symmetric Multiple Processor) [11]. They estimated memory access

and showed the complexity of the algorithm using a computational model. However,

since it is a theoretical model, the model was not practical for the modern computer

architecture.

Many investigations show that modern shared-memory computer architectures

with multiple cores can perform high performance on sorting. The first parallel sort

algorithm for shared memory MIMD (multiple-instruction-multiple-data ) multi-

processors that has a near linear speedup is exhibited in [12]. An efficient multi-

threaded implementation of MergeSort on current multi-core architecture is shown

in [13]. The loading balance is an important issue on the parallel computing. There-

fore a load-balanced scheme for parallelizing quicksort using the hyperthreading

technology is proposed in [14].

Lately, emerging GPUs (Graphic Processing Unit) and Cell processors have been

used to achieve an efficient acceleration of sorting works. Several implementations

of bitonic sort on GPU have been proposed in [15, 16]. In [17], a GPU-based parallel

sorting algorithm that is a hybrid method of bucket sort merge sort has been devised.

On the other hand, parallel bitonic sort has also been implemented with SIMD

(Single Instruction Multiple Data) operations on the Cell processor [18]. Another

Cell-processor-based parallel sorting algorithm, AA-Sort, has been exhibited in [19].

AA-Sort is implemented by combining combsort and mergesort.

The main contribution of this paper is to present an efficient parallel sorting

compatible with “qsort” in C Standard Library. Therefore, any application program

that uses standard “qsort” can be accelerated by simply replacing “qsort” call by

our “psort”. More specifically, suppose that an array of integers is sorted using

“qsort” in an application program. What we need to do for accelerating the sorting

is to replace library call “qsort” by our “psort” simply as follows:

qsort(data, num data, sizeof(int), comp);

↓

psort(data, num data, sizeof(int), comp);
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Also, our “psort” uses standard “qsort” as a subroutine for local sequential

sorting. So, if the performance of “qsort” is improved by anyone in the community,

then that of our “psort” is also automatically improved. Further, since standard

“qsort” is maintained by the community, we can minimize the bugs and security

holes of our “psort” compared with the case that we use an original sequential local

sorting developed by ourselves.

In our previous paper, we have shown a parallel sorting algorithm for multi-

core processors [20]. This parallel sorting algorithm implemented on the multicore

processors. The experimental results have shown that for random 64-bit unsigned

integer numbers, this parallel sorting algorithm is approximately 11 times faster

than sequential sorting using 24 processors. For general purpose, however, it should

be able to sort any kind of objects such as floating point numbers and strings. The

advantage of our approach is to replace sequential sort with our efficient parallel

sorting with less work and without skills of parallel programming.

The key idea of our parallel sorting is to select samples appropriately, and use

samples in the samples as pivots to partition the input keys into groups. We have

implemented and evaluated our algorithm in a Linux server with four Intel hexad-

core processors. The results have shown that our parallel sorting algorithm is 11

times faster than sequential sorting. From the experimental results, we discuss how

many samples are appropriate for efficient multicore sorting.

The paper is organized as follows. In Section 2, we present an idea of our parallel

sorting algorithm for multicore processors. Section 3 shows an implementation of

parallel sorting for multicore processors. Section 4 shows an improved parallel sort-

ing algorithm. In Section 5, we reports experimental results performed on multicore

processors. We conclude in the last section.

2. Sorting by Sampling

The main purpose of this section is to show an idea of our sorting algorithm for

multicore processors.

Let A = 〈a0, a1, . . . , an−1〉 be a sequence of keys stored in a memory to be sorted.

The outline of our sorting algorithm for p processors is as follows:

Step 1 Select p threshold values d0, d1, . . . , dp−1 such that d0 is the minimum key

in A.

Step 2 Partition A into p groups A0, A1, . . . , Ap−1 using threshold values such that

Ai = {x ∈ A | di ≤ x < di+1}, where dp = +∞.

Step 3 Sort keys in each group Ai using one processor per group independently.

Let A = 〈a0, a1, . . . , an−1〉 be a sequence of keys stored in a memory. We first

assume that every ai is distinct. Later, we consider the case that some of the keys

are the same. We partition A into p blocks Bi (0 ≤ i ≤ p− 1) of the same size such

that Bi = 〈ai·n
p
, ai·n

p
+1, . . . , a(i+1)·n

p
−1〉. Suppose that each block Bi (0 ≤ i ≤ p−1)

is sorted independently, and Bi = 〈bi,0, bi,1, . . . , bi,n
p
−1〉 denotes the sorted sequence
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thus obtained. In other words, bi,0 < bi,1 < · · · < bi,n
p
−1 holds. For an arbitrary

integer k > 0, we further partition each sorted block Bi (0 ≤ i ≤ p− 1) into pk sub-

blocksBi,0, Bi,1, . . . , Bi,pk−1 such thatBi,j = 〈bi,j· n

p2k
, bi,j· n

p2k
+1, . . . , bi,(j+1)· n

p2k
−1〉.

Clearly, each Bi,j has n
p2k

keys. Let Ci denote the sequence of keys obtained

by picking the minimum key from each of the sub-blocks Bi,0, Bi,1, . . . , Bi,pk−1.

In other words, Ci = 〈bi,0· n

p2k
, bi,1· n

p2k
, . . . , bi,(pk−1)· n

p2k
〉. Let C denote the com-

bined sequence of C0, C1, . . . , Cp−1. Since each Ci has pk keys, C has p2k keys.

Let 〈c0, c1, . . . , cp2k−1〉 denote the sorted sequence of C. In other words, c0 <

c1 < · · · < cp2k−1 holds. We pick every pk keys from sorted sequence C. Let

D = 〈d0, d1, . . . , dp−1〉 be the sequence thus obtained. In other words, di = ci·pk
(0 ≤ i ≤ p− 1) holds. We use keys in D as threshold values to partition keys in A.

Let Ai (0 ≤ i ≤ p−1) denote a set of values such that Ai = {x ∈ A | di ≤ x < di+1},

where dp = +∞. By sorting keys in each Ai independently, we can obtain the sorted

sequence of A.

small large

B0

B1

B2

B3

n/p keys
n/p2k keys

C

p2k keys

d0 d1 d2 d3

pk keys

A0 A1 A2 A3

D0 D1 D2 D3

Fig. 1. Illustrating the sorting algorithm using threshold values.

Quite surprising, we can prove that the number of keys in Ai is well balanced

if all the keys are distinct as follows. Let Di = {x ∈ C | di ≤ x < di+1} =

{ci·pk, ci·pk+1, . . . , c(i+1)·pk−1}. Clearly, each Di has pk keys.

Further, let Di,j = Bi ∩ Dj and Ai,j = Bi ∩ Aj . Here, Di,j denotes a set of

keys (we can call them samples) which are larger than or equal to dj and smaller

than dj+1. Those keys also exist in block Bi. Differently, Ai,j denotes a collection of

input values which are larger than or equal to dj and smaller than dj+1, they also

exist in block Bi. In other words, Di,j denotes a set of samples, and Ai,j denotes a

set of input values.

For example, in Figure 1, |D0,1| = 0, |D1,1| = 4, |D2,1| = 2, and |D3,1| = 2.

From the figure, it is easy to see that if |Di,j | = 0 then |Ai,j | ≤
n

p2k
− 1 holds. For

example, in the figure, since |D0,1| = 0, we can guarantee that |A0,1| ≤
n

p2k
− 1.
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Similarly, if |Di,j | = 1 then |Ai,j | ≤ 2 n
p2k

− 1 holds. In general, we have

|Ai,j | ≤ (|Di,j |+ 1)
n

p2k
− 1.

Thus, we can compute the upper bound of the number of keys in Aj as follows:

|Aj | =

p−1∑

i=0

|Ai,j |

≤

p−1∑

i=0

((|Di,j |+ 1)
n

p2k
− 1)

= (pk + p)
n

p2k
− p

=
n

p
+

n

pk
− p. (1)

Thus, we have the following important lemma.

Lemma 1. Each Aj (0 ≤ j ≤ p− 1) has no more than n
p
+ n

pk
− p keys if all the

input keys are distinct.

Note that, if A is equally partitioned into p groups, each of them has n
p

keys.

It follows that, Aj may have at most n
pk

− p additional keys, and the number of

additional keys decreases as k increases.

Let us consider the case that all the keys may not be distinct. For example,

suppose that the input is binary, that is, n/2 keys are 0 and the remaining n/2 keys

are 1. Clearly, k threshold values are also either 0 or 1. Thus, one of the groups has

all 0-keys and another group has all 1-keys. All the other groups are empty. Hence,

Lemma 1 does not hold. To partition the input keys into equal-sized groups even if

all the keys are not distinct, we use lexicographical order comparison to compare

two keys. We define lexicographical order <l between two keys ai and aj in A as

follows:

ai <l aj if ai < aj or (ai = aj and i < j).

It should be clear that for any two keys ai and aj , exactly one of ai <l aj and

aj <l ai holds. We use the relation <l instead of < when we partition the input

keys into groups. Then, since all the keys are distinct in terms of the relation <l,

we have,

Lemma 2. Each Aj (0 ≤ j ≤ p − 1) has no more than n
p
+ n

pk
− p keys even if

input keys are not distinct.

3. Parallel Sorting Algorithm

This section shows an implementation of parallel sorting for multicore processors.

Let P (i) (0 ≤ i ≤ p − 1) denote a processor i. We assume that the input n keys
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are stored in array A, and the parallel sorting algorithm stores the sorted n keys in

array R. The details of the parallel sorting algorithm are spelled out as follows:

Step 1.1 Partition A into p groups B0, B1, . . ., Bp−1 and sort each group Bi

(0 ≤ i ≤ p− 1) using P (i).

Step 1.2 We use an array of size p2k to store C. Each P (i) picks every n
p2k

keys

in Bi and copy them to the array for C in an obvious way.

Step 1.3 P (0) sorts keys in C. We use the relation <l to sort keys in C. Since keys

in each C0, C1, . . ., Cp−1 are sorted, this can be done by merge sort. Pick

every pk keys in C.

It should be clear that, the picked keys are threshold values d0, d1, . . ., dp−1.

Step 2.1 Let si,j (0 ≤ i, j ≤ p − 1) be the minimum index of a key in Bi sat-

isfying bi,si,j ≥ dj . Clearly, Ai,j = {bi,si,j , bi,si,j+1, . . . , bi,si,j+1−1} holds,

where si,p = n
p
. Each P (i) (0 ≤ i ≤ p − 1) computes the values of

si,0, si,1, . . . , si,p−1 using the obvious binary search. We use the relation

<l to for the binary search.

Step 2.2 Clearly, Ai,j has si,j+1 − si,j keys. Each P (j) (0 ≤ j ≤ p− 1) computes

|A0,j | + |A1,j | + · · · + |Ap−1,j |, which is equal to |Aj |. After that, P (0)

computes the prefix sums αj = |A0|+ |A1|+ · · ·+ |Aj | for each j (0 ≤ j ≤

n− 1).

Step 2.3 Let Rj be a subset of array R such that Rj consists of |Aj | keys from

αj-th key of R. Each P (j) (0 ≤ j ≤ p− 1) copies keys in Aj to Rj .

Finally, we sort each Rj as follows:

Step 3 Each P (j) (0 ≤ j ≤ p − 1) sort sub-array Rj independently. Note that,

Rj consists of A0,j , A1,j , . . ., Ap−1,j . Also, each Ai,j is sorted. Hence, the

sorting of Rj can be done by merging A0,j , A1,j , . . ., Ap−1,j .

Let us evaluate the computing time necessary to perform each step. In Step 1.1,

each processor performs the sorting of n
p

keys. This can be done in O(n
p
log n

p
)

time using the heap sort, and in expected O(n
p
log n

p
) time using the quick sort.

In Step 1.2, each processor performs the copy of pk keys, and thus, it takes O(pk)

time. In Step 1.3, P (0) performs the merging of p sorted sequences of pk keys

each, which can be done in O(p2k log p) time. Therefore, Step 1 can be done in

O(n
p
log n

p
+ p2k log p) time.

In Step 2.1, each processor performs p binary searches on n
p
keys. Hence, Step 2.1

can be done in O(p log n
p
) time. In Step 2.2, the sum and the prefix sums of p

integers are computed, which takes O(p) time. In Step 2.3, P (j) performs the copy

operation of |Aj | keys, which takes O(|Aj |) time. From Lemma 2, we can guarantee

that Step 2.3 can be done in O(n
p
+ n

pk
− p) time. Therefore Step 2 can be done in

O(n
p
+ p log n

p
) time.

In Step 3, each P (j) performs merge sort of p sorted sequences of totally |Aj |

keys, which can be done in O(|Aj | log p) time. From Lemma 2, we can guarantee
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that the computing time is no more than O(n log p

p
+ n log p

pk
) time.

Finally we have

Theorem 3. Sorting of n keys can be done in O(n
p
(log n

p
+log p)+p2k log p+p log n

p
)

time using p processors.

Note that, if p � n and k � n, then the computing time is O(n logn

p
). Since the

sequential sorting takes O(n logn) time, our algorithm achieves the speed up of

factor p using p processors. Therefore, our parallel sorting algorithm is optimal.

4. Multicore Sorting Compatible with qsort

The main purpose of this section is to show an idea of our multicore sorting com-

patible with “qsort”. Standard qsort function is an implementation of the quick sort

algorithm provided in C Standard Library. The contents of the array are sorted in

ascending order according to a user-supplied comparison function. The interface of

“qsort” is shown, as follows.

void qsort(void *base, size t nmemb, size t size,

int(*compar)(const void *, const void *));

The interface of “qsort” consists of four arguments:

*base : a pointer to the first entry in array to be sorted.

nmemb : the number of keys in the array to be sorted.

size : the size, which is in bytes, of each entry in the array.

*compar() : the name of the comparison function which is called with two argu-

ments that point to the keys being compared.

Since “qsort” operates on void pointers, it can sort arrays of any size, containing

any kind of object and using any kind of comparison predicate. If the objects are

not the same in size, pointers have to be used. To satisfy the above property of

“qsort”, we have developed our parallel sorting such that its interface is the same

as that of “qsort”.

Our method has implemented in C language with OpenMP 2.0 (Open Multi-

Processing). The OpenMP is an application programming interface that supports

shared memory environment [22]. It consists of a set of compiler directives and

library routines. By using OpenMP, it is relatively easy to create parallel applica-

tions in FORTRAN, C, and C++. However, there is considerable overhead due to

parallel processing when the number of keys in a sorted array is small.

Therefore, to obtain the optimal parameters t and k, we have implemented and

evaluated the performance of our parallel sorting in a Linux server with four hexad-

core processors, that is, we have used twenty four processor cores, where t is the

number of used processor cores and k is a parameter described in Sections 2 and 3.

Figure 2 shows the computing time of our implementation when random 32-bit

unsigned integers are sorted for general purpose. The evaluation has been carried
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out for different values of k, n and p. Recall that n represents the number of the

input keys and p represents the number of using processing cores. Note that in

Step 1, each processor does local sort using “qsort”, and for p = 1, that is single

process, the implementation performs “qsort” for the whole input keys. Therefore,

the computing time for p = 1 is independent of k.

The figure shows that for n ≤ 10, 000, the execution time of the single process,

that is p = 1, is short because in comparison with the total execution time, there

is considerable overhead due to parallel processing. On the other hand, for n >

10, 0000, the execution time of the single process is quite long. For n ≥ 1, 000, 000,

when k is not large, the execution time is independents of k. Based on the results,

Table 1 shows the parameter t and k, which seem to be optimal. For example, when

the number of input keys is 200,000 and the number of available cores is 4, from

the table, the optimal parameters t and k are 4 and 8, respectively.

Table 1. Optimal parameters.

The number of available cores 1 2 4 8 16 24

t k t k t k t k t k t k

n < 50, 000 1 – 1 – 1 – 1 – 1 – 1 –

50, 000 ≤ n < 500, 000 1 – 2 32 4 8 4 8 4 8 4 8

500, 000 ≤ n 1 – 2 1 4 1 8 1 16 1 24 1

5. Experimental Results

We have implemented and evaluated the performance of our parallel sorting algo-

rithm in a Linux server (CentOS 5.4) with four hexad-core processors (Intel Xeon

X7460 2.66GHz [23]), that is, we have used twenty four processor cores. Each multi-

core processor contains its own three-level caches. The capacity of each level cache

is 64KB, 3MB and 6MB, respectively. The size of the main memory is 128GB. Fig-

ure 3 shows the architecture of our experimental system. The program is compiled

by gcc 4.1.2 with -O2 option.

5.1. Performance evaluation

We evaluate the two versions of our parallel sorting “psort1” and “psort2” as follows:

psort1 We use regular relation “<” in Steps 1.3 and 2.1. Thus, if the input keys

are the same, they may not be partitioned into equal-sized groups.

psort2 We use relation “<l” in Steps 1.3 and 2.1. The input keys are partitioned

almost equal-size, but the comparison of two keys takes more time.

Figure 4 shows the number of keys assigned to each processor in Step 2 and

Step 3 for 108 keys with values either 0 or 1. The number of keys assigned to each

processor is almost the same for “psort2”, while in “psort1” only two processors P (0)
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Fig. 2. Computing time for our parallel sort.
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Fig. 3. Architecture of experimental system.

and P (4) have keys and the other processor have no key. Table 2 shows sorting time

of our “psort1” and “psort2”. The performance evaluation has been carried out for

a value of n and different values of p. Recall that n represents the number of the

input keys and p is the number of using processors. The experimental results show

that, when the input keys are 64-bit random numbers, the two psort algorithms

can sort the input keys at the same efficiency. However, if the input keys are 1-bit

random numbers, then the “psort2” can sort the input keys more efficient than the

“psort1”. Because the “psort2” can achieve a good loading balance even if some of

the input keys are the same and it can save time significantly in Step 3.

For comparing with other implementation of parallel sorting, we have used

C Multithread Library (beta release 0.1) [24]. The library features two interface-

compatible sorting functions for “qsort” and “mergesort” from C Standard Library.

Here, we call them as “qsort mt” and “mergesort mt”. These two parallel sort-

ing functions are implemented from original function in C Standard Library using

POSIX Threads. In implementation of “qsort mt”, a pivot is selected and the input

sequence is partitioned into two blocks using one processor such that all keys in

the first block are smaller than the threshold, and the other keys are larger than

the pivot. After that, two processors are used one for each block. And each block is

partitioned in the same way. The same procedure is recursively executed until the

number of blocks is equal the number of processors. Finally, each processor sorts

the block sequentially. It is clear that the loading balance of “qsort mt” is affected

by the selection of pivot keys. However, in “qsort mt”, pivots are selected randomly,

therefore “qsort mt” cannot achieve a good loading balance in each executing step.

On the other hand, “qsort mt” also cannot utilize all the available processors in each
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Fig. 4. The number of keys assigned to each processor in Step 2 and Step 3.

Table 2. Sorting time of psort1 and psort2 (n = 1, 000, 000, 000).

(a) All keys are random 64-bit unsigned integers from 0 to 264 − 1

psort1 psort2
p Step1[s] Step2[ms] Step3[s] Total[s] Step1[s] Step2[ms] Step3[s] Total[s]

2 159.654 0.038 14.867 174.521 159.769 0.035 14.677 174.445

4 78.803 0.038 9.724 88.527 78.493 0.034 9.815 88.308

8 46.281 0.062 6.902 53.184 46.382 0.062 6.857 53.238

16 33.469 0.185 5.623 39.092 33.733 0.168 5.766 39.499

24 32.060 0.395 4.953 37.013 32.174 0.385 4.957 37.131

(b) All keys are random 64-bit unsigned integers taking values either 0 or 1

psort1 psort2
p Step1[s] Step2[ms] Step3[s] Total[s] Step1[s] Step2[ms] Step3[s] Total[s]

2 80.220 0.026 9.237 89.456 80.144 0.021 9.700 89.844

4 40.151 0.028 9.199 49.350 40.330 0.030 5.665 45.995

8 22.147 0.034 10.266 32.413 21.862 0.036 3.481 25.342

16 13.357 0.048 11.565 24.921 13.366 0.052 2.466 15.831

24 11.699 0.089 12.312 24.011 11.562 0.108 2.801 14.362

parallel step. For implementing “mergesort mt”, the input sequence is partitioned

into p blocks. Each processor is arranged to a block and sorts it independently. After

that a pair of two blocks is merged using a processor. A pairwise-merging is repeated

until all blocks are merged into one. It is clear that, in each merging step, the num-

ber of used processors is reduced by half. So the “mergesort mt” can not utilize

all the available processors in each parallel step. However, our implementation can

achieve a good loading balance for both uniform input data and non-uniform input
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data. Moreover, our method can utilize all the available processors in each parallel

step. Therefore our implementation is faster than other two methods significantly.

Table 3 shows the performance of our implementation for random 64-bit un-

signed integers. In the table, “qsort”, “psort2”,“qsort mt” and “mergesort mt” de-

note qsort in C Standard Library, proposed multicore sorting methods, parallel

qsort in C Multithread Library and parallel mergesort in C Multithread Library,

respectively. The performance evaluation has been carried out for different values

of n.

The table shows that for n ≤ 10, 000, our method is almost same as “qsort”. In

Section 4, we showed that for a small number of input keys, the sequential sorting

using single processor is faster than parallel sorting using multicore processors due

to miscellaneous overhead. For example, some constant overhead of time c of parallel

overhead such as invoking processors is always needed in parallel computation. If n is

so small that the sequential sorting of n keys can be done in less than c time, parallel

sorting cannot be faster than the sequential sorting. Therefore, for n ≤ 10, 000, our

method has directly used standard qsort (in C Standard Library) to perform the

whole sorting work using optimal parameters shown in Table 1. Consequently, for

n ≤ 10, 000, our method is almost same as “qsort”. On the other hand, computing

time of qsort mt and mergesort mt is longer. When the input keys are random 64-bit

unsigned integers and n ≥ 10, 000, 000, our method sorted at most 11 times faster

than qsort in C Standard Library and approximately 3 times faster than qsort and

mergesort in C Multithread Library. When the input keys are either 0 or 1, our

method also sorted faster than qsort at most 13 times. Since the speed up factor

cannot be more than p if we use p cores, our algorithm is efficient.

5.2. Performance scalability analysis

As shown in Figure 3, our system has one main memory and every processor core

shares it. Therefore, two or more processor cores cannot access the memory simul-

taneously. If the number of simultaneous memory access is large, the memory access

time cannot be ignored.

Let us evaluate the computing time with the memory access necessary to perform

each step. Given the memory access, if p � n and k � n, in Step 1, the number of

memory access is O(n log n). From Section 3, Step 1 can be done in O(n logn

p
). Since

memory access cannot be done simultaneously, the total execution time of Step 1

is no more than C1 · n logn + D1 · n log n

p
, where C1 and D1 are constant values.

Similarly, Step 2 and Step 3 takes no more than C2 ·(n+p2 logn)+D2 ·(
n
p
+p logn)

and C3 · (n log p+ n log p

k
) +D3 · (

n log p

p
+ n log p

pk
), respectively. Also, C2, C3, D2 and

D3 are constant values. Note that the first terms C1 ·n logn, C2 · (n+p2 logn), and

C3 · (n log p+ n log p
k

) correspond to the time for the shared memory access and the

second terms D1 ·
n logn

p
, D2 ·(

n
p
+p logn), and D3 ·(

n log p
p

+ n log p
pk

) correspond to the

local computing time. Since Ci � Di(i = 1, 2, 3), the second terms are dominant

for practically small p and k.



July 19, 2011 16:9 WSPC/INSTRUCTION FILE S0129054111008568

An Efficient Parallel Sorting Algorithm Compatible with the Standard Qsort 1069

Table 3. Performance of parallel sorting.

(a) All keys are random 64-bit unsigned integers from 0 to 264 − 1

qsort psort2 qsort mt mergesort mt
n Time[s] Time[s] Speed up Time[s] Speed up Time[s] Speed up

100 0.000011 0.000011 1.00 0.001149 0.01 0.001009 0.01

1,000 0.000174 0.000172 1.01 0.001438 0.12 0.001534 0.11

10,000 0.001374 0.001381 0.99 0.003874 0.35 0.003181 0.43

100,000 0.016122 0.007734 2.08 0.024758 0.65 0.016122 1.00

1,000,000 0.194148 0.028720 6.89 0.270884 0.72 0.077644 2.50

10,000,000 2.416300 0.212756 11.34 2.196236 1.10 0.644443 3.75

100,000,000 28.525679 2.712458 10.47 22.66808 1.25 6.415592 4.44

(b) All keys are random 64-bit unsigned integers that are either 0 or 1

qsort psort2 qsort mt mergesort mt
n Time[s] Time[s] Speed up Time[s] Speed up Time[s] Speed up

100 0.000008 0.000009 0.90 0.000848 0.01 0.001015 0.01

1,000 0.000152 0.000160 0.95 0.000899 0.17 0.001475 0.10

10,000 0.000917 0.000919 0.99 0.000955 0.96 0.002760 0.33

100,000 0.009676 0.004746 2.03 0.002463 3.92 0.009834 0.98

1,000,000 0.108484 0.020650 5.25 0.023172 4.68 0.055484 1.95

10,000,000 1.265774 0.099879 12.67 0.249060 5.08 0.342431 3.69

100,000,000 14.707196 1.117982 13.15 2.456557 5.98 3.300517 4.45

Table 4. Performance of our implementation with different number of cores (n = 100 M).

Number of Cores 1 2 4 8 16 24

Time 28.525 [s] 15.791 [s] 8.121 [s] 4.762 [s] 3.221 [s] 2.712 [s]

Speed-up 1.00 1.80 3.51 6.00 8.86 10.47

Table 4 shows the scaling performance for 100M random 64-bit unsigned integers

with different number of cores. From the table, when the number of cores is small,

the speed up factor is close to the number of cores. However, when the number of

cores is large, the speed up factor is approximately half of the number of cores. The

result shows that memory access time cannot be ignored for large p.

6. Concluding Remarks

We have presented an efficient multicore sorting compatible with qsort. Our mul-

ticore sorting is implemented such that its interface is compatible with qsort in C

Standard Library and can sort arrays of any size, containing any kind of object

and using any kind of comparison predicate. By replacing calls to qsort with our

multicore sorting, the sequential sorting is replaced with our parallel sorting easily.

Also, we have implemented and evaluated our algorithm in a Linux server with

four Intel hexad-core processors (Intel Xeon X7460 2.66GHz). The experimental

results have shown that our multicore sorting is 11 times faster than original qsort.
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Since the speed up factor cannot be more than 24 if we use 24 cores, our algorithm

is efficient.
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