International Journal of Foundations of Computer Science
© World Scientific Publishing Company

FM Screening by the Local Exhaustive Search, with Hardware
Acceleration

YASUAKI ITO
Department of Artificial Complex Systems Engineering

Hiroshima University
Kagamiyama, Higashi-Hiroshima, 739-8527, JAPAN

and

KOJI NAKANO
Department of Artificial Complex Systems Engineering
Hiroshima University
Kagamiyama, Higashi-Hiroshima, 739-8527, JAPAN

Received (received date)
Revised (revised date)
Communicated by Editor’s name

ABSTRACT

The main contribution of this paper is to show a new approach for FM screening
which we call Local Exhaustive Search (LES) method, and to present ways to accelerate
the computation using an FPGA. FM screening, as opposed to conventional AM screen-
ing, keeps unit dot size when converting an original gray-scale image into the binary
image for printing. FM screening pays great attention to generate moiré-free binary im-
ages reproducing continuous-tone and fine details of original photographic images. Our
basic approach for FM screening is to generate a binary image whose projected image
onto human eyes is very close to the original image. The projected image is computed
by applying a Gaussian filter to the binary image. LES performs an exhaustive search
for each of the small square subimages in the binary image and replaces the subimage
by the best binary pattern. The exhaustive search is repeated until no more improve-
ment is possible. The experimental results show that LES produces high quality sharp
binary images. We also implemented LES on an FPGA to accelerate the computation
and achieved a speedup factor of up to 51 over the software implementations.

Keywords: Image Processing, Screening for Printing, Local Search, FPGA-based com-
puting

1. Introduction

Screening is an important task to convert a continuous-tone image into a binary
image with pure black and white pixels [2, 8]. This task is necessary when printing
a monochrome or color image by a printer with limited number of ink colors. AM
(Amplitude Modulated) screening, a commonly used screening method, arranges

I I
AM screening FM screening

Figure 1: AM screening and FM screening

black dots in a regular grid and reproduces the intensity of an original continuous-
tone image by the number of black pixels in a dot. A black dot involves fewer
black pixels to reproduce highlight color, and has more black pixels to create a
shadow image. FM (Frequency Modulated) screening, on the other hand, keeps
dots of a unit size when converting an original continuous-tone image into the
binary image for printing. The intensity level of an original continuous-tone image
is reproduced by the density of black unit dots (or pixels). FM screening pays
great attention to generate moiré-free binary images reproducing continuous-tone
and fine details of original photographic images. We refer the reader to Figure 1
for illustrations of a dot of AM screening and dots of FM screening. The most well-
known FM screening algorithm is Error Diffusion [5] that propagates rounding errors
to unprocessed neighboring pixels according to some fixed ratios. Error Diffusion
preserves the average intensity level between the original input image and the binary
output image. It is also quite fast and often produces good results. However, Error
Diffusion may generate worm artifacts, which is a sequence of dots like a worm,
especially in the areas of uniform intensity. Several techniques have been developed
to prevent artifacts in output binary images [14]. Further, Error Diffusion based
techniques is that the pixel values are propagated to neighbors and the resulting
images are defocused.

In applications requiring high fidelity of the printed material (such as printing
fine art books, pictorial books, and replicas of paintings), an FM screening method
that produces artifact-free higher quality binary images reproducing original work
is expected even if the computation takes a lot of time. The first contribution of this
paper is to present a new approach for FM screening that we call Local Exhaustive
Search (LES). Our idea for FM screening, LES, is to use the local search technique
investigated in the area of combinatorial optimization, which usually takes a lot of
computing time. More specifically, our new FM screening method LES produces a
binary image whose projected image onto human eyes is very close to the original
image. The projected image is computed by applying a Gaussian filter, which
approximates the characteristic of the human visual system. We define the total
error of the binary image to be the sum of the difference of the intensity levels over
all pixels between the original image and the projected image. LES performs the
local exhaustive search for a small square window of size, say, 2 x 2, 3 x 3, and 4 x 4,

in the binary image, and finds the best binary image pattern in the window, whose
total error is the minimum over all possible binary patterns. After that, a binary
subimage in the window is replaced by the best binary image pattern obtained. The
local exhaustive search is repeated until no more improvement on the total error is
possible.

A similar idea has been presented under the name of Direct Binary Search
(DBS) [1]. In DBS, a pixel value is flipped if the resulting image has smaller total
error. Also, neighboring pixel values are swapped if the total error of the resulting
image decreases. Hence, LES for a window of size 2 x 2 or larger finds the best image
for more candidates than DBS, and thus, the total error of the resulting binary
image is smaller. In this paper, we also show the experimental results for DBS
that performs swap operations for four immediate neighbors, above, below, right,
and left (DBS4) and for eight immediate neighbors (DBS8) including diagonally
adjacent pixels, as counterparts of LES.

The second contribution of this paper is to implement LES in an FPGA to
accelerate the computation. An FPGA (Field Programmable Gate Array) is a pro-
grammable VLSI in which a hardware design can be embedded quickly. We have
used Nallatech Xtreme DSP kit [13], which is a PCI board with Xilinx VirtexII fam-
ily FPGA XC2V3000-4 [7], and embedded a circuit to perform the local exhaustive
search for a window of size 3 x 3 and 4 x 4. To reduce the amount of used FPGA re-
source and the delay, we use the instance-specific approach [3, 4, 11], which embed a
hardware depending on a part of the input instance. The instance-specific approach
is applied as follows. One can think that the inputs of LES are an original image
and a Gaussian filter. Since a Gaussian filter can be fixed during the computation
by LES, we can embed a circuit to perform the local exhaustive search for a specific
Gaussian filter. Further, we have developed an improved FPGA-implementation
which minimizes the overhead caused by the high latency of the PCI bus. Conse-
quently, we have succeeded in accelerating LES by a speedup factor of up to 51 over
the software implementations.

This paper is organized as follows. Section 2 formalizes the problem of finding
the best binary image of an original gray-scale image as a combinatorial optimization
problem. In Section 3, we present the local exhaustive search (LES) method, which
is an approximation algorithm for solving the combinatorial optimization problem.
Section 4 shows an implementation of LES on an FPGA. In Section 5, we present
the experimental results for screening images by known methods and LES. Section 6
offers concluding remarks.

2. FM Screening based on the Human Visual System

This section defines the problem of finding the best binary image of an original
gray-scale image as a combinatorial optimization problem.

Suppose that an original gray-scale image A = (a; ;) of size n x n is given® ,
where a; ; denotes the intensity level at position (7,j) (1 < ¢,j < n) taking a
real number in the range [0,1]. The goal of screening is to find a binary image

@ For simplicity, we assume that images are square.

B = (b;,;) of the same size that reproduces original image A, where each b; ; is either
O(black) or 1(white). We measure the goodness of output binary image B using the
Gaussian filter that approximates the characteristic of the human visual system.
Let V = (vi,) denote a Gaussian filter, i.e. a 2-dimensional symmetric matrix of
size (2w + 1) x (2w + 1), where each non-negative real number v;; (—w < k,1 < w)
is determined by a 2-dimensional Gaussian distribution such that their sum is 1. In
other words,

2 2
Vg = coe 5T (1)

where o is a parameter of the Gaussian distribution and ¢ is a fixed real number to
satisfy). <pi<w Ukt = 1. Let R = (r; ;) be the projected gray-scale image of a
binary image B = (b; ;) obtained by applying the Gaussian filter as follows:

Tij = > vrgbirkg (1<4,5<n) (2)
—w<k,l<w

Clearly, from E_w<k’l<w vk, = 1 and vy is non-negative, each r; ; takes a real
number in the range [0,_1] and thus, the projected image R is an gray-scale image.
We can say that a binary image B is a good approximation of original image A if
the difference between A and R is small enough. Hence, we are going to define the
error of B as follows. Error e; ; at each pixel location (i, j) is defined by

€ij = @ij—Tij (3)

and the total error is defined by

Error(A,B) = Z le: ;- (4)

1<ij<n

Since the Gaussian filter approximates the characteristics of the human visual
system, we can think that image B reproduces original gray-scale image A if
Error(A, B) is small enough. The best binary image that reproduces A is a bi-
nary image B with the minimum total error is given by the following formula:

B* = argmfi;nErmr(A,B). (5)

If the size of the Gaussian filter is 1 x 1, then B* can be obtained by the simple
thresholding method. In other words, the binary image B* = (b;;) such that
b;j = 1if and only if a; ; > % is an optimal binary image satisfying (5). However,
in general, it is very hard to find the optimal binary image B* for a given gray-
scale image A if the Gaussian filter is not small, say, 7 x 7. Although we do not
have the proof, we believe that the problem of finding the optimal binary image
B* is NP-hard. A straightforward method to find the best image is to evaluate
Error(A, B) for all possible 2n’ binary images B. Clearly, this takes more than
9(2”2) computing time. Since n is usually much larger than 100, this approach is
not feasible. Thus, the challenge is to find, in practical computing time, a nearly
optimal binary image B, whose total error is close to that of the optimal image B*.

3. The Local Exhaustive Search for FM Screening

The main purpose of this section is to present our ideas to find a good binary
image B whose total error with respect to original gray-scale image A may not
be minimum but is small enough. Our approach, named Local Ezhaustive Search
(LES) updates a small square region of a temporal binary image by the best binary
pattern, in which the total error is the minimum over all possible binary patterns.

Suppose that an original image A and a temporary binary image B are given.
Further, let W (i, j) be a window of size kx k in B whose top-left corner is at position
(Z,7). Our first idea is to compute the total error for all ok binary patterns in
W (i,j) and replace the current binary subimage in the window by the best binary
pattern that minimizes the total error. In other words, we find a binary image B’
such that

B' = argmin{FError(A,B) |
B and B’ differ only in W (i, j)}. (6)

Clearly, Error(A, B') < Error(A, B) always holds, and thus, we can say that B’ is
an improvement over B since it is a better reproduction of original gray-scale image
A.

Next, let us see the details on how B’ satisfying formula (6) above is computed.
Since we use a Gaussian filter of size (2w + 1) X (2w + 1), the change of the binary
pattern affects the errors in a square region of size (2w + k) x (2w + k), which we
call the affected region. We refer the reader to Figure 2 for illustrating a window,
a Gaussian filter, and the affected region. It should be clear that the best binary
pattern can be selected by computing the total errors of the affected region of size
(2w + k) x (2w + k), because the change of the binary pattern does not affect errors
at pixels outside the affected region.

Let us evaluate the computing time necessary to find the best binary pattern
in the window. The error of a fixed pixel in an affected region can be computed in
O(k?) time by evaluating formulas (2) and (3). Hence all the errors in the affected
region can be computed in O(k?(2w + k)2) time. After that, their sum can be
computed in O((2w + k)?) time. Thus, the total error in the affected region can
be computed in O(k*(2w + k)?) time. Since we need check all the possible 2+
binary patterns, the best binary pattern can be obtained in O(2% k2(2w + k)?)
time. We can improve the computing time by flipping a pixel in the order of the
gray code of binary numbers. Recall that the gray code represents a list of all m-bit
binary numbers such that any two adjacent numbers differ only one position. Thus,
by flipping an appropriate bit using the gray code, we can list all the 2™ binary
numbers with m bits. Using the gray code with k2 bits, we can evaluate the errors
for all binary patterns in O(2F w?) time as follows. Starting with the current pixel
pattern in the window, we repeat flipping an appropriate pixel according to the
gray code. In each flipping operation, we compute the total error in the affected
region for the current binary pattern in the window. Since the flipping operation
for a single bit affects the error of (2w + 1) x (2w 4 1) pixels, the total error can be

Gaussian filter 2w +1

window W (i,j) [

i L

/---E---I 1 1 1 1 --E---

affected region |--4--t--d--d-doo -
2w+ k

Figure 2: Illustrating a window of size k x k, a Gaussian filter of size (2w + 1) X
(2w + 1), and the affected region of size (2w + k) x (2w + k)

computed in O(w?) time in an obvious way. Thus, the best binary pattern can be
computed in O(w?) x 2k — 0(2’“2 w?) time using the exhaustive search.

We are now in position to show our new screening method LES. Let By = (b?’j)
be an appropriate initial binary image. Although we can initialize the binary image
By using any screening method, we assume that By is initialized by the random
dither method. In the random dither method, a binary pixel takes value 1 with
probability p if the pixel value of the corresponding pixel of an original image is
p (€ [0,1]). Thus, by; = 1 with probability a;; for every i and j. We repeat
sliding a window of size k x k and improving the binary pattern in the window
by replacing the pixel values in it by the best binary pattern. The window sliding
can be done in any order. We perform window sliding in the raster scan order
as illustrated in Figure 3, to obtain a better quality binary image B;. The same
procedure is repeated, that is, the window sliding operation is applied to B;—; and
obtain a better binary image B; (¢t > 1) until B;_; and B; are identical and no more
improvement is possible. When computing B; for ¢ > 2, we do not have to perform
the exhaustive search for all the windows. If the projected image of the affected
region for the current window did not change, then we can omit the exhaustive
search. The details of our algorithm Local Exhaustive Search (LES) are spelled out
as follows:

Local Exhaustive Search(A)

Set an appropriate initial binary image in By;

By « Bo;

fori<1ton—w+1do
forj<1lton—w+1do

Perform the exhaustive search in W (i, j) for By

and update B; by the best binary pattern.

w(n —w,n — w)

Figure 3: Sliding window in raster scan order

t <+ 1;
do {
t+—t+1;
B; + B;_1;
fori < 1ton—w+1do
forj«<1lton—w+1do
If the projected image in the affected regions of
W (i,j) for Ry and R;_; are not identical then
perform the exhaustive search in W (i, j) for By
and update B; by the best binary pattern.
} until (B; and B;_; are identical)
output (B);

4. Hardware Acceleration for the Local Exhaustive Search using an

FPGA

We have developed the hardware accelerator using the PCI-connected FPGA
that performs the exhaustive search in order to find the best binary pattern in a
window. This section is devoted to show the architecture of our hardware FPGA-
based accelerator.

Before showing the architecture, we first show how our hardware accelerator is
used by the host PC. Recall that, as shown in Figure 2, W (i, j) contains pixels at
position (i +i',5 4+ j') for 0 <i',j’ < k — 1 and the affected region involves pixels
(i+i',j+7") for —w <i',j' <w+k—1. To perform the local exhaustive search for
a window W (i, j), the host PC initializes all binary pixels in window W (i, j) to 0,
i.e. sets by j450 < 0 for all 0 <4',j' <k —1, and computes pixel values 7y jijo
(—w <i',j' <w+ k—1) in the affected region of the projected image. After that,
it computes all the errors e;yy j1 5 (—w <4',j' <w + k — 1) in the affected region
by formula (3). The host PC sends these errors to the PCI-connected FPGA. The
FPGA computes the best binary pattern for W (i, j), and returns it to the host PC.
It should be clear that, the best binary pattern can be computed using e;; i j4j

(—w <1, j' <w+k—1). We call this operation for a fixed window W (i, j) a round.
We can summarize the exhaustive search for a window W (i, j) as follows:
Exhaustive Search(W (i, j))
forall 0 <i',j7'<k—1do
bitir,j+j0 < 0;
forall —w <i,j' <w+k—1do
Titit 43 2 _w<k,i<w Vk itk g+
for all —w <i,j' <w+k—1do
Citil jjbj! = Qiir jpjt = Tidei s
host PC sends ey j15 (—w <d,j' <w+k—1)
to the FPGA;
FPGA computes the best binary pattern in W (4, j);
and sends it to host PC;
host PC stores the best binary pattern in by j4j
(0<i',j' <k—1);

PCI bus

< =

~ ;
registers to store [II)CIZHEI."Y pattern]
€itir j4j for -bit counter

—w < Swt k-] < =

combinatorial circuit
to apply the
Gaussian filter

- =

combinatorial circuit to
compute the total errors

< =

the total error

Figure 4: Tllustrating a part of the hardware accelerator.

Next, we are going to show the architecture of our hardware accelerator. Figure 4
illustrates a part of the FPGA-based hardware accelerator, which outputs the total
error for every binary pattern. Errors e;; s j+; sent from the host PC are stored in
the registers. A k?-bit counter is used to list all the binary patterns. Let b], ti’
(0 <i',j' < k—1) denote the current pixel value of the binary pattern stored in
the k2-bit counter. A combinatorial circuit is used to apply the Gaussian filter to
the current binary pattern stored in the counter. In other words, it computes, for

OS’L.I,'].ISI{?—I,

Citir jt+j = €iti j+j’ E Ukt bigir b g 1o
—w<k,lI<w
where b} ;i p iy =0 unless 0 < i’ +k,j + 1" <k — 1. Recall that we can fix a

Gaussian filter V' = (vg,;). Thus, the value of each vy is a constant value. After
computing e;, ; ;. , the total error in the affected region

Z l€iir g

—w<i,j <w+k—1

is computed. This value can be computed by summing the integers, which can be
done efficiently on the FPGA [9, 10, 12]. The architecture illustrated in Figure 4
outputs the errors of all binary patterns in 2F* clock cycles. Using all the total
errors, the best binary pattern can be stored into a register using a comparator in
an obvious way. After that, the best binary pattern is sent to the host PC, which
stores it in the window of the binary image.

window W (%,) window W (7, j + 3)
BN EEEENEES

L et

influence region

Figure 5: Illustrating a exhaustive search for four windows.

In principle, the hardware on the FPGA computes the best binary pattern in
28 clock cycles. Since the circuit is quite simple (it mainly applies the Gaussian
filter and computes the total sum), we can improve the clock frequency using the
pipelining technique [12]. Actually, we have partitioned the combinatorial circuits
into seven stages. The pipelined architecture works properly in frequency of 80MHz
on Nallatech Xtreme DSP kit [13] with Xilinx VirtexII family FPGA XC2V3000-
4 [7]. We have used Xilinx ISE Logic Design Tools [6] for logic synthesis.

For k£ = 4, the hardware accelerator works 24" = 65536 clock cycles to find
the best binary pattern. In this case, the overhead caused by the communication
through the PCI bus is negligible. However, if k¥ = 3, then it only runs in 23" = 512
clock cycles for the exhaustive search. Hence, the time necessary to transfer the
current errors and the resulting binary image though the PCI bus will be larger
than that for the exhaustive search due to the high latency of the PCI bus.

Further, to reduce the communication through the PCI bus for k£ = 3, we have
developed an improved FPGA implementation, that performs the exhaustive search
for the four windows W (4, 5), W (i, j+1), W (i, j+2), and W (i, j+3) in around. More
specifically, the host PC sends the current errors in the affected region illustrated
in Figure 5. The FPGA performs the exhaustive search for four windows W (i, j),
Wi, j+1), W(i,j+2), and W(i,j+3) in 423" = 2048 clock cycles. After that, the
best binary image of four windows, that is, a binary pattern of 3 x 6 is transferred
to the host PC. Roughly speaking, the number of rounds decreases by a quarter,
because each round performs exhaustive searches for four windows.

Images RD ED LES1 | DBS4
Average Error 23.5 7.06 8.48 5.93
“squares” | Time (Software) | 0.717ms | 0.748ms | 99.0ms | 0.359s
64 x 256 | Time (FPGA) - - - -
Speed up - - - -
Average Error 27.7 6.56 8.65 5.98
“Lena” | Time (Software) | 12.4ms | 16.2ms | 1.80s | 6.96s
512 x 512 | Time (FPGA) - - - -
Speed up - - - -
Images DBS8 | LES4 | LES9 | LES4X9 | LES16
Average Error 5.86 5.44 4.90 4.90 4.42
“squares” | Time (Software) | 0.636s | 1.05s | 29.0s 29.0s 3360s
64 x 256 | Time (FPGA) - - 3.25s 1.54s 68.3s
Speed up - - 8.92 18.8 49.2
Average Error 5.93 5.52 | 4.99 4.99 4.62
“Lena” | Time (Software) | 11.8s | 16.8s | 488s 488s 60500s
512 x 512 | Time (FPGA) - - 50.3s 23.5s 1186s
Speed up - - 9.7 20.3 51.0

Table 1: The experimental results for “squares” and “Lena” using the Gaussian
filter of size 7 x 7 with parameter o = 1.0.

5. Experimental Results

This section presents experimental results. We have developed a software that
performs LES for windows of sizes 1 x 1, 2 x 2, 3 x 3, and 4 x 4, which we call LESI,
LES4, LES9, and LES16, respectively.

Table 1 show the experimental results for two 8-bit gray-scale images “squares”
and “Lena”. We have used a Pentium4-based PC (Xeon 2.8GHz) with Linux op-
erating system (Kernel 2.4). The source program is compiled by gcc 3.2.2 with
-02 and -march=pentium4 options. We have used a library call rand() to generate
random bits. Since the images are 8-bit gray-scale, the intensity of a pixel takes
one of the rational numbers 0/255,1/255,2/255,...,255/255. Gray-scale image
“squares” of size 64 x 256 has four squares of size 64 x 64, which have uniform in-
tensity levels, 239/255, 223/255, 191/255, and 128/255. Note that 15/16 = 239/255,
7/8 =~ 223/255, 3/4 ~ 191/255, and 1/2 ~ 128/255. Hence, the binary images for

10

ORIG

RD

ED

LES1

DBS4

DBS8

LES4

LES9

LES16

Figure 6: The original and the resulting binary images for “squares”.

11

the four squares are expected to have one black pixel in every 16, 8, 4, and 2 pix-
els, respectively. Gray-scale image “Lena” is a well-known standard image of size
512 x 512. We have performed the experiment for these two images using the Ran-
dom Dither(RD), the Floyd and Steinberg’s Error Diffusion(ED), the Direct Binary
Search for four neighbors (DBS4) and for eight neighbors (DBS8), LES for windows
of size 1 x 1 (LES1), 2 x 2 (LES4), 3 x 3 (LES9), and 4 x 4 (LES16). It is quite
interesting that the average error by ED is better than that by LES1, although its
strategy is not based on the local search. We can list the six local search based
methods in order of the quality of the binary image in terms of the average error
as follows:
LES16,LES9, LES4, DBS8, DBS4, LES1.

Since LESI1 just repeats the toggle operation, it cannot be better than DBS4 and
DBSS. It should be noted that LES4 finds a better binary image than DBS4 and
DBSS8. The reason is as follows. Suppose that DBSS8 is performed for a fixed pixel
(4,7). The local exhaustive search for a window of size 2 x 2 whose top-left corner is
(4,) involves the swap operations between (7, 5)-(i — 1, j), (¢,7)-(i,7 — 1), and (4, j)-
(¢ — 1,5 — 1). Thus, the search space of DBS8 is completely included by the total
search space for LES4 whose top-left corners are (1 — 1,5 — 1), (i — 1,5), (i,7 — 1),
(i,7). It follows that LES4 can find better binary images than DBS4 and DBS8.

Table 1 also shows the computing time by the software and by an FPGA. LES9
performs the local exhaustive search for a single window of size 3 x 3 in a round,
and LES4X9 performs it four windows in a round as illustrated in Figure 5. Thus,
LES4X9 is approximately twice faster than LES9 due to the smaller communication
overhead through the PCI-bus. The FPGA implementation for LES9 achieved a
speedup factor of 18.8 and 20.3 for “squares” and “Lena”, respectively, while that
for LES16 is approximately 50 times faster than the traditional software solution.
It follows that LES4X9 still have a large overhead for communication through the
PCI-bus.

Figure 6 shows the original image (ORIG) of “squares”, and the resulting images.
The resulting image obtained by RD is awkward. ED generates an binary image
that has worm artifacts, especially, in the first and the second squares. In the
third and the fourth squares, it has regular patterns generating gaps which is not in
the original image. For example, the fourth square has regular patterns separated
horizontally, and the separated lines can be seen as gaps. Although the average
error of ED is smaller than LES1, the image by produced the LES1 seems better.
Among the images encountered by the local search based screening methods, the
image by LES16 has the best quality, because the distribution of the black pixels
is most uniform. For example, in the third square, it is expected that no two black
pixels are adjacent. The third square of the image obtained by LES16 has fewest
adjacent black pixels. The images generated by DBS4 and DBS8 has more adjacent
black pixels which makes the images non-uniform and dusty, although the original
image has uniform intensity.

Figures 7, 8 and 9 shows the resulting image for “Lena”. Although screening
is performed for image “Lena” of size 512 x 512, LES16 creates a smoother image,

12

especially in face and shoulder of the woman, than DBSS.

R

:Ef* 5 ?&%@%’E{
G

Pty

H R

TN

*é
3
T

R = e
ey e
i
A T
R
SRt

i
AL
A,

Figure 7: The resulting images for “Lena” using Error Diffusion

6. Concluding Remarks

We have presented the Local Exhaustive Search (LES) method for finding a
high quality binary image that reproduce the original gray-scale image. Since this
screening process requires huge amount of computation, it would be impractical if
we would implement it naively. Although the processing time is still much larger
than that of the currently used screening algorithms such as Error Diffusion and
also much larger hardware resources are required, our algorithm would be useful in
applications requiring high fidelity binary images.

13

o
(5
SR
.r.f} i
T 5& E
i

Figure 8: The resulting images for “Lena” using DBS8

References

1. M. Analoui and J.P. Allebach. Model-based halftoning by direct binary search.
In Proc. SPIE/IS&T Symposium on Electronic Imaging Science and Technology,
volume 1666, pages 96-108, 1992.

2. T. Asano. Digital halftoning: Algorithm engineering challenges. IEFICE Transac-
tions on Information and Systems, February 2003.

3. J. L. Bordim, Y. Ito, and K. Nakano. Accelerating the CKY parsing using FPGAs.
IEICE Transactions on Information and Systems, E86-D(5):803-810, May 2003.

4. J. L. Bordim, Y. Ito, and K. Nakano. Instance-specific solutions to accelerate the
cky parsing for large contex-free grammars. to appear in International Journal on
Foundations of Computer Science, 2004.

5. R. W. Floyd and L. Steinberg. An adaptive algorithm for spatial gray scale. SID

14

o

?.
L
R

ﬁ"‘{%ﬁ
o

L

e
L

i

it
e
i
KT

5
el

]

I

© N>

10.

11.

12

Figure 9: The resulting images for “Lena” using LES16

75 Digest,Society for Information Display, pages 3637, 1975.

Xilinx Inc. ISE Logic Design Tools, 2002.

Xilinx Inc. Virtez-II Platform FPGAs: Complete Data Sheet, 2003.

D. L. Lau and G. R. Arce. Modern Digital Halftoning. Marcel Dekker, 2001.

R. Lin, K. Nakano, S. Olariu, M. C. Pinotti, J. L. Schwing, and A. Y. Zomaya.
Scalable hardware-algorithms for binary prefix sums. IEEE Transactions on Parallel
and Distributed Systems, 11(8):838-850, 8 2000.

D. E. Muller and F. P. Preparata. Bounds to complexityies of network for sorting
and for switching. J. ACM, 22:195-201, 1975.

K. Nakano and E. Takamichi. An image retrieval system using FPGAs.
Transactions on Information and Systems, E86-D(5):811-818, May 2003.

K. Nakano and K. Wada.

IEICE

Integer summing algorithms on reconfigurable meshes.

15

Theoretical Computer Science, pages 57-77, January 1995.
13. Nallatech. Xtreme DSP Development Kit User Guide, 2002.
14. V. Ostromoukhov. A simple and efficient error-diffusion algorithm. In Proc.of the

28th SIGGRAPH, pages 567 — 572, 2001.

16

