
An Algorithm to Obtain Circuits with Synchronous

RAMs

Md. Nazrul Islam Mondal, Koji Nakano, Yasuaki Ito

Department of Information Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan

Abstract: Field Programmable Gate Arrays (FPGAs) are used to embed a circuit designed by users instantly. Most of FPGAs have

Configurable Logic Blocks (CLBs) to implement combinational and sequential circuits and block RAMs to implement Random Access

Memories (RAMs) and Read Only Memories (ROMs). Circuit design that minimizes the number of clock cycles is easy if we use

asynchronous read operations. However, most of FPGAs support synchronous read operations, but do not support asynchronous read

operations. It is one of the main difficulties for users to implement parallel and hardware algorithms in FPGAs. The main contribution

of this paper is to provide one of the potent approaches to resolve this problem. We assume that a circuit using asynchronous RAMs

designed by a non-expert or quickly designed by an expert is given. Our goal is to convert this circuit with asynchronous RAMs into an

equivalent circuit with synchronous ones. The resulting circuit with synchronous RAMs can be embedded into the FPGAs.

Key words: FPGA, Block RAMs, asynchronous read operations, rewriting algorithm.

1. Introduction

 An FPGA is a programmable VLSI (Very Large

Scale Integration) in which a hardware designed by

users can be embedded quickly. Typical FPGAs consist

of an array of programmable logic blocks (slices),

memory blocks, and programmable interconnects

between them. The logic block contains four-input

logic functions implemented by a LUT and/or several

registers. Using four-input logic functions, registers,

and their interconnections, any combinational circuit

and sequential logic can be implemented. The memory

block is a dual-port RAM which can perform read

Corresponding author: Md. Nazrul Islam Mondal (2009-),

Ph.D student, research fields: algorithm for FPGA-based

re-configurable architectures, image processing, email:

nimbd@yahoo.com.

Koji Nakano (2003-), Ph.D, professor, research fields:

hardware algorithms, FPGA-based reconfigurable computing,

parallel and mobile computing, algorithms and architectures,

e-mail: nakano@cs.hiroshima-u.ac.jp

Yasuaki Ito (2007-), Ph.D, assistant professor, research

fields: reconfigurable architecture, parallel computing,

computational complexity and image processing, e-mail:

yasuaki@cs.hiroshima-u.ac.jp

and/or write operations for a word of data to two

distinct or same addresses in the same time. In our

work, we consider single-port RAM which can be

embedded into a dual-port block RAM of the current

FPGA. Usually, the dual-port RAM supports

synchronous read and synchronous write operations.

The read and write operations are performed at the

rising clock edges. Design tools are available to the

users to embed their hardware logic into the FPGAs.

Some circuit implementations are described in the

papers [1-4] to accelerate computation.

 In this paper, we focus on the asynchronous read,

synchronous read and synchronous write operations of

memory blocks as follows:

Asynchronous read operation The memory block

outputs the data specified by the address given to the

address port. When the address value is changed, the

output data is updated immediately within some delay

time. In other words, the output data port always

outputs M[a], which is the data stored in the input

address value a.

An Algorithm to Obtain Circuits with Synchronous RAMs

Synchronous read operation Even if the address

value is changed; the output data is not updated. The

output data is updated based on the address value at

the rising edge of the clock. More specifically, the

output data port outputs M[a] on the rising edge of the

clock, where a is the address data at the previous point

of the rising clock edge.

Synchronous write operation The memory block

stores the input data, given to the data port on the

rising edge of the clock only when write enable we is

high. Even though, the input data value is changed and

the rising edge of the clock is available, nevertheless

write enable we is low, the input data value is not

written into the memory block. Particularly, the input

data value d is only written into the memory of M[a]

on the rising edge of the clock when write enable we

is high, where a, d and we represent address data value,

input data value and write enable respectively at the

previous point of the rising clock edge.

 In this work, we consider asynchronous RAMs

(ARAMs) and synchronous RAMs (SRAMs). They

have a data input port D, an address input port A,

clock input port clock, write enable input port we and

data output port Q , shown in Fig 1. ARAMs and

SRAMs support asynchronous and synchronous read

operations respectively. Also they both support

synchronous write operations. In general, the circuit

design is simpler and easier to the designers, more

specifically to the non-expert circuit designers if

ARAMs are available. In asynchronous read operation,

the value of a specified address can be obtained

immediately. However, in synchronous read operation,

one clock cycle is required to obtain it. Nevertheless,

block RAMs embedded in most of the current FPGAs

do not support asynchronous read operation for

increasing its clock frequency.

 In our previous paper

[5], we have presented a

circuit rewriting approach for Directed Acyclic Graph

(DAG) circuits considering only read operations of the

memory blocks (ROMs). However, this paper

considers both read and write operations of the

memory blocks (RAMs). Note that, a RAM can be

treated as a ROM when we is low. It is not trivial to

convert an asynchronous circuit with ARAMs into an

equivalent synchronous one. However, it is solved by

our technique.

 The main contribution of this paper is to present a

circuit rewriting approach that converts an

asynchronous circuit consisting

Combinational Circuits (CCs), Registers

(Rs), and RAMs with asynchronous read

and synchronous write operations (ARAMs)

into an equivalent synchronous circuit consisting

Combinational Circuits (CCs), Registers

(Rs), and RAMs with synchronous read and

synchronous write operations (SRAMs).

Note that, most of the current FPGAs support

synchronous read operation, but do not support

asynchronous one. We are thinking the following

scenario to use the circuit rewriting algorithm.

• An asynchronous circuit with ARAMs designed

by a non-expert or quickly designed by an

expert is given.

• Our circuit rewriting algorithm converts it into an

equivalent synchronous circuit.

• The resulting synchronous circuit can be

implemented in FPGAs.

 The outlines of our work are as follows:

1. We use a Negative Register (NR) which is

originally introduced in our previous paper [5].

The NR is an imaginary register that is used for

latching a future input data.

2. We define simple five rules that rewrite a circuit.

3. The rewriting algorithm just repeats applying

these rules until no more rules can be applied.

When the rewriting algorithm terminates, we

have an equivalent ARAM-free circuit to the

original circuit.

2. Random Access Memory (RAM)

 A RAM is an array of memory where information

can be stored until power is switched off. It has b-bit

An Algorithm to Obtain Circuits with Synchronous RAMs

data input D, e-bit address input A and c-bit data

output Q, it can store 2
e
 words such as M[0], M[1], ….,

M[2
e
-1] with c bits each, shown in Fig. 1. A RAM can

support the following operations.

Asynchronous read operation:

 A RAM continuously outputs the data specified by

the address given to the address port A. When the

address value a is changed, the output data is updated

immediately within some delay time. In other words,

the output data port always outputs M[a], which is the

data stored in the input address value a.

Synchronous read operation:

 Even if the input address value a is changed, the

output data specified by the address given to the

address port A is not updated. The output data is

updated based on the address value a at the rising edge

of the clock. More specifically, the output data port Q

outputs M[a] on the rising edge of the clock, where a

is the address data at the previous point of the rising

clock edge.

Synchronous write operation:

 A RAM stores the input data value d which is given

to the data port D on the rising edge of the clock only

when write enable we is high. Even though, the input

data value d is changed and the rising edge of the clock

is available, nevertheless write enable we is low, the

input data value d is not written into the memory of

M[a]. Particularly, the input data value d is only written

into the memory of M[a] on the rising clock edge when

write enable we is high, where a, d and we represent

address data value, input data value and write enable

respectively at the previous point of the rising clock

edge.

 For the reader's benefit, we will describe two types

of RAM (shown in Fig. 1) as follows:

• Asynchronous RAM (ARAM): An ARAM

supports asynchronous read and synchronous

write operations. It has a clock input clock and

a write enable input we. The clock input clock

is only needed for write operations. The data

values of M[a] are continuously output from

port Q. They do not depend on clock input

clock. Only when write enable we is high,

initial stored values of M[a] are updated by

input data value d, given to the data input port

D at the latest rising clock edge.

• Synchronous RAM (SRAM): An SRAM

supports synchronous read and synchronous

write operations. It has also a clock input clock

and a write enable input we. The read operation

of the SRAM is performed on every rising

clock edge. The output Q is the value of M[a]

at the latest rising clock edge. The write

operations for an SRAM are the same as an

ARAM. The readers may refer to the Fig. 2 for

read and write operations of an ARAM and an

SRAM.

 In this work, we consider Write After Read (WAR)

mode for data handling of the memory blocks. Now,

we will discuss the WAR and RAW mode only for the

SRAM, because the SRAM supports synchronous

read and synchronous write operations. The WAR and

RAW modes of an SRAM are described as follows:

• Write After Read (WAR) Mode: First,

currently stored data, specified by the address

given to the address port A outputs from the

output port Q at the latest rising clock edge.

Then input data value d, given to the data port

D is written into the memory of M[a] at the

latest rising clock edge only when write enable

we is high. More specifically, the output data

port Q outputs currently stored data of M[a] on

the latest rising clock edge first. Then the input

data value d is written into the memory of M[a]

SRAM

Q

clock

DAwe

ARAM

Q

clock

DAwe

Fig. 1 An asynchronous RAM (ARAM) and a

synchronous RAM (SRAM).

An Algorithm to Obtain Circuits with Synchronous RAMs

on the latest rising clock edge only when write

enable we is high.

• Read After Write (RAW) Mode: First, input

data value d, given to the data port D is written

into the memory of M[a] at the latest rising

clock edge only when write enable we is high.

Then currently stored data, specified by the

address given to the address port A outputs from

the output port Q at the latest rising clock edge.

Particularly, input data value d is written first

into the memory of M[a] on the latest rising

clock edge only when write enable we is high.

Then stored data value of M[a] outputs from the

output port Q at the latest rising clock edge.

The readers should refer to the Fig. 2 for the

illustrations of the WAR and RAW. The Fig. 2 shows a

timing diagram of the ARAM, SRAM, Register (R)

and Negative Register (NR). Initially global reset is 1

and it drops to 0 just before time 0. We assume that

write enable we is high for the first several clock cycles

from the beginning (initially we is 1 and drops to 0

before the fourth rising clock edge). Data 11, 12, 13, -, -,

- and 1, 2, 3, 1, 2, 3 are given to the input data port D

and address port A respectively. The dash (-) line

represents any data which is not necessary in our case.

For simplicity, we have used the written data values of

M[1], M[2], M[3] for an SRAM to read again at the

latest rising clock edge at time 3, 4, 5 respectively. We

have also used the written data values of M[1], M[2],

M[3] for an ARAM to read immediately at time 3, 4, 5

respectively. The edges at time 0, 1, 2 of the clock

represent the latest rising edges for the stored data

values of M[1], M[2], M[3] respectively of an SRAM

and ARAM. On the other hand, the edges at time 0, 1, 2,

3, 4 of the clock represent the latest rising edges for the

output data sequence of 0, 0, 0, 11, 12 respectively of

an SRAM when it follows WAR. We assume that the

stored values of M[a] are initialized by 0 of an SRAM

and an ARAM. For the case of an ARAM, the data

values of M[1], M[2], M[3], M[1], M[2], M[3]

correspond to 0, 0, 0, 11, 12, 13 are taken respectively

at time 0, 1, 2, 3, 4, 5 from the output port Q

immediately due to the asynchronous read operations.

Therefore, the output sequence of an ARAM [Q

(ARAM)] is: 0, 0, 0, 11, 12, 13. According to the WAR,

the output sequence of an SRAM [Q (SRAM, WAR)]

is: 0, 0, 0, 0, 11, 12 at time 0, 1, 2, 3, 4, 5 respectively.

On the other hand, according to the RAW, the output

sequence of an SRAM [Q (SRAM, RAW)] is: 0, 11, 12,

13, 11, 12 at time 0, 1, 2, 3, 4, 5 respectively. Note that

the output value of an SRAM at time 0 is initialized by

0. The stored data of M[1], M[2] and M[3] of the time 0,

1, 2, 3, 4, 5 are the same for an ARAM and an SRAM

which are M[1]: 0, 11, 11, 11, 11, 11; M[2]: 0, 0, 12, 12,

12, 12 and M[3]: 0, 0, 0, 13, 13, 13. The output of R is 0

at time 0. Also at time 1, 2, 3, 4, 5; the value of output R

is 11, 12, 13, -, - respectively. The value of output NR

is 12, 13, - ,-, -, - of the time 0, 1, 2, 3, 4, 5 respectively.

3. Circuits and Their Equivalence

Let us consider a synchronous sequential circuit that

consists of input ports, output ports, combinational

circuits (CCs), registers (Rs), Random Access

Memories (RAMs), a global clock input (clock), a

global reset input (reset) and a write enable input (we).

 A combinational circuit (CC) is a network of

fundamental logic gates with no feedback. So, it can

compute Boolean functions represented by Boolean

formulas, such as and

as illustrated in our previous paper [5]. Once inputs

are given, the outputs are computed in small

propagation delay.

 A b-bit register has a clock input and a reset input.

It can store a b-bit data. If reset is 1, then the b-bit data

is initialized by 0. If reset is 0, the stored data is

updated by the value given to the input port d at every

rising clock edge. The data stored in the register is

always output from port q. The readers should refer to

our previous paper [5] and Section 2 for the details

about combinational circuit, register and RAM.

 We will describe a behavior of the circuit elements

An Algorithm to Obtain Circuits with Synchronous RAMs

clock

time 0 1 2 3

reset

4

we

5

D 11 12 13 -

Q (SRAM, WAR)

Q (NR)

- -

A 1 2 3 1 2 3

12 13 - - - -

Q (SRAM, RAW)

M[1] 110 11 11 11 11

M[2] 120 12 12 120

M[3] 130 13 1300

0 0 0 0 11 12

M[1] 110 11 11 11 11

M[2] 120 12 12 120

M[3] 130 13 1300

0 11 12 13 11 12

Q(R) 0 11 12 13 - -

Q (ARAM) 0

M[1] 110 11 11 11 11

M[2] 120 12 12 120

M[3] 130 13 1300

0 0 11 12 13

Fig. 2 A timing chart of an ARAM, an SRAM, a register

(R) and a negative register (NR).

using a sequence of output as well as stored data at

every rising clock edge for periodic clock (clock is

inverted into a fixed frequency), initial reset (initially,

reset is 1 and drops to 0 before the first rising clock

edge) and write enable, we (initially, we is 1 and drops

to 0 before the fourth rising clock edge) as illustrated

in Fig. 2. The behavior of each circuit element is

described by the output sequences and stored data as

follows:

• Combinational Circuit (CC) For simplicity, we

assume 3-input 2-output combinational circuit,

shown in our previous paper [5]. There is no

difficulty to extend the definition for general

m-input, n-output combinational circuit. We

assume that, at time i (i>=0), ai, bi, and ci are

given to the 3 input ports A, B, and C. Let f and

g be the two functions with three arguments

that determine the value of output ports F and

G. The output sequences of F and G are

described as follows:

CC(F): <f(a0,b0,c0),f(a1,b1,c1),

f(a2,b2,c2),……………>.

CC(G): <g(a0,b0,c0), g(a1,b1,c1),

g(a2,b2,c2),…………...>.

• Register (R) Let di denote an input value given to

an input port D at time i (i>= 0). As shown in

Fig. 2, the output sequence of the register is

described as follows:

 R: < 0, 11, 12, 13, -, -,………>.

• Synchronous and Asynchronous RAMs

(SRAMs and ARAMs) Let M[j] denotes the

value stored in address j (j>= 0) of the RAM.

Recall that the initial data values of M[j] are 0

and the WAR mode of the SRAM is considered.

As shown in Fig. 2, the output sequences and

stored data of an SRAM and ARAM of the

time 0, 1, 2, 3, 4, 5 are as follows:

SRAM (output sequence): < 0, 0, 0, 0, 11, 12 >.

 SRAM (stored data of M[1], M[2] and M[3]):

M[1]: < 0, 11, 11, 11, 11, 11 >. It means that

memory content of the address value 1 is updated

by 11 at time 1 and remains the same until further

updating.

M[2]: < 0, 0, 12, 12, 12, 12 >. It means that

memory content of the address value 2 is updated

by 12 at time 2 and remains the same until further

updating and

M[3]: < 0, 0, 0, 13, 13, 13 >. It means that

memory content of the address value 3 is updated

by 13 at time 3 and remains the same until further

updating.

ARAM (output sequence): < 0, 0, 0, 11, 12, 13>.

ARAM (stored data of M[1], M[2] and M[3]):

M[1]: < 0, 11, 11, 11, 11, 11 >, M[2]: < 0, 0,

12, 12, 12, 12 > and M[3]: < 0, 0, 0, 13, 13, 13 >.

 These have the same aforesaid explanations.

An Algorithm to Obtain Circuits with Synchronous RAMs

In this paper, we assume that a fully synchronous

circuit has data input, data output, a global clock input,

a global reset input, a write enable input,

combinational circuits (CCs), registers (Rs), SRAMs,

ARAMs, and their interconnects. The readers should

refer to the Fig. 3 for illustrating an example of a fully

synchronous circuit. The global clock is directly

connected to the clock input ports of all Rs and

SRAMs, ARAMs and the global reset is connected to

the reset input ports of all Rs. Also the write enable is

directly connected to the write enable input ports of all

SRAMs and ARAMs. We assume that a circuit has no

loop.

 Let us define equivalence of two fully synchronous

circuits for the periodic clock and initial reset. Note that,

an equivalence of the circuits with RAMs is determined

by the output sequences and stored data. We say that

two circuits X and Y are an equivalent if, for any input

sequence, the output sequences and stored data at the

same memory locations are the same except for first

several outputs and stored data.

 For the periodic clock with initial reset and write

enable, the output sequences and stored data of SRAM,

R + ARAM and ARAM + R are described as follows

(As shown in Fig. 5):

SRAM (output sequence): < 0, 0, 0, 0, 11, 12 >.

SRAM (stored data of M[1], M[2] and M[3]):

M[1]: < 0, 11, 11, 11, 11, 11 >, M[2]: < 0, 0, 12, 12,

12, 12 > and M[3]: < 0, 0, 0, 13, 13, 13 >.

R + ARAM (output sequence): < 0, 0, 0, 0, 11, 12 >.

R + ARAM (stored data of M[1], M[2] and M[3]):

M[1]: < 0, 0, 11, 11, 11, 11 >, M[2]: <0, 0, 0, 12, 12,

12 > and M[3]: < 0, 0, 0, 0, 13, 13 >.

ARAM +R (output sequence): < 0, 0, 0, 0, 11, 12 >.

ARAM + R (stored data of M[1], M[2] and M[3]):

M[1]: < 0, 11, 11, 11, 11, 11 >, M[2]: < 0, 0, 12, 12,

12, 12 > and M[3]: < 0, 0, 0, 13, 13, 13 >.

These also have the same explanations mentioned

above.

 Since, these three circuits, shown in Fig. 4 have the

same output in time 0, 1, 2, 3, 4 and 5. Also they have

the same stored data at the memory location 1 (M[1])

of the time 2, 3, 4 and 5, at memory location 2 (M[2])

of the time 3, 4 and 5 and at the memory location 3

(M[3]) of time 4 and 5. Thus, these three circuits are

equivalent. In this paper, we ignore first several clock

cycles when we determine the equivalency of the

circuits.

I

R
CC

ARAM

O

ARAM

O

R
CC

CC

clock

reset

ARAM

CC

ARAM

R

RCC

CC
ARAM

0

-1 -1

0
-1

-1 0

-2

-1

I

0

I

0

I

0

I

0

I

0

R

A Dwe A Dwe

ARAM

-2

R

0

0

Fig. 3 An example of a fully synchronous circuit and the corresponding circuit graph with potentiality.

An Algorithm to Obtain Circuits with Synchronous RAMs

 Suppose that a circuit X with ARAMs is given. The

main contribution of this paper is to show

• a necessary condition such that an ARAM-free

circuit, Y can be generated, which is equivalent

to X, and

• an algorithm to derive Y if the necessary

condition is satisfied.

 Recall a Negative Register (NR), which is a

nonexistent device used only for showing our

algorithm to derive Y and related proofs. Recall again

that, a regular register latches the input at the rising

clock edge whereas a negative register latches a future

input. An NR latches the value which is given to input

data port D at the rising edge of two clock cycles later

as illustrated in Fig. 2. Thus, the NR has the following

output sequence for a periodic clock with an initial

reset.

 NR: < 12, 13, -, -, -, - >.

 In our algorithm to derive an ARAM-free circuit Y,

circuits with NRs will be used as interim results.

4. Circuit Graph and Rewriting Rules

 We simply use a directed graph to denote the

interconnections of a fully synchronous circuit. We

call such graph as a circuit graph. A circuit graph

consists of a set of nodes and a set of directed edges

connecting two nodes. Each node is labeled by either I

(Input port), O (Output port), CC (Combinational

Circuit), R (Register), NR (Negative Register),

ARAM, or SRAM. A node with label I is connected

with one or more outgoing edges. A node with label O

is connected with exactly one incoming edge. A node

with label CC has one or more incoming edges and

one or more outgoing edges. A node with label R and

NR has one incoming and one outgoing edge. A node

with label ARAM or SRAM has three incoming edges

and one outgoing edge. We also assume that a circuit

graph is a directed acyclic graph (DAG), that is, it has

no directed cycles. The Fig. 3 illustrates an example of

a directed graph. Note that nodes with label I, R, NR,

ARAM, or SRAM has one outgoing edge. The readers

may think that one outgoing edge is a too stringent

restriction because it does not allow two or more

fan-outs. However, we can implement multiple

fan-outs by attaching a simple combinational circuit

(CC) that just duplicates the input. For example, a CC

with one input port A and two output ports F and G

such that F = A and G = A is used to implement

fan-out 2.

 For a given circuit X with ARAMs, we will show

an algorithm to derive an ARAM-free and NR-free

circuit, Y by rewriting circuits. We assume that X is

given as a circuit graph. We will define rules to

rewrite a circuit graph. The readers should refer to

A

Q

e

c

SRAM
clock

D

b

we

Q

c

ARAM

D

b

= =

Q

c

clock

A

e

ARAM
clock

D

b

weA

e

we

11

1 clock

reset
1-bit R e-bit R

clock

reset
b-bit R

clock

reset

reset

c-bit R

Fig. 4 SRAM, R + ARAM and ARAM + R.

An Algorithm to Obtain Circuits with Synchronous RAMs

clock

time 0 1 2 3

reset

4

we

5

D 11 12 13 -

Q (SRAM, WAR)

- -

A 1 2 3 1 2 3

M[1] 110 11 11 11 11

M[2]

M[3] 13

0 0 0 0 11 12

Q (ARAM)

M[1]

M[2]

M[3]

Q (R+ARAM)

M[1]

M[2]

M[3]

Q (ARAM+R)

M[1]

M[2]

M[3]

Q(R,input we)

Q(R,input A)

Q(R,input D)

0 0 12 12 12 12

0 0 0 13 13

0 0 0 11 12 13

0 11 11 11 11 11

0 0 12 12 12 12

130 0 0 13 13

0 1 2 3 1 2

11 12 13 - -0

0 0 0 0 11 12

0 0 11 11 11 11

0 0 0 12 12 12

00 0 0 13 13

0 0 0 0 11 12

0 11 11 11 11 11

0 0 12 12 12 12

130 0 0 13 13

Fig. 6 for illustrating the rules, where P and S denote

predecessor and successor nodes respectively. The

nodes between predecessor and successor nodes are

rewritten as follows:

• Rule 0 ARAM node is rewritten into SRAM +

NR.

• Rule 1 Adjacent R and NR nodes are rewritten

into NULL circuit, that is, they are removed.

• Rule 2 R + SRAM (or NR + SRAM) is rewritten

into SRAM + R (or SRAM + NR). More

specifically, if each incoming edge of an

SRAM node is connected to a R node, then all

the Rs are removed to the outgoing edge of the

SRAM node. On the other hand, if one of the

incoming edges of an SRAM node is connected

to an NR node, then the NR node is removed, a

R node is added to all other incoming edges,

and the NR node is moved to the outgoing edge

of the SRAM node.

• Rule 3 If one of the incoming edges of a CC

node is connected to an NR node, then the NR

node is removed, a R node is added to all the

other incoming edges, and the NR node is

moved to all the outgoing edges of the CC

node.

• Rule 4 If all the incoming edges of a CC node

are connected to a R node, then all the Rs are

removed to all the outgoing edges of the CC

node.

 Let us confirm that, after applying one of the

rewriting rules, an original circuit and the resulting

circuit are an equivalent. Let ai, bi, ci, di, ai (address

data) and we (i>=0) denote inputs given from the

predecessor node at time i.

Rule 0 Both ARAM and SRAM + NR have the same

output sequences and stored data.

ARAM/SRAM + NR (output sequence): < 0, 0, 0, 11,

12, 13 >.

ARAM/SRAM + NR (stored data of M[1], M[2] and

M[3]):

Fig. 5 A timing chart for showing the equivalency of

 SRAM, R + ARAM and ARAM + R.

An Algorithm to Obtain Circuits with Synchronous RAMs

M[1]: < 0, 11, 11, 11, 11, 11>; M[2]: < 0, 0, 12, 12,

12, 12 > and M[3]: < 0, 0, 0, 13, 13, 13 >. Thus they

are an equivalent.

Rule 1 R + NR and NR + R have the following

output sequences.

R + NR : < 11, 12, 13, -, - , - > and NR + R: < 0,

12,13,-, -, - >. Also, NULL circuit has the following

output sequence.

NULL: < 11, 12, 13, -, -, - >. Thus, they are an

equivalent.

Rule 2 R + SRAM has the following output

sequence and stored data.

R + SRAM (output sequence): < 0, 0, 0, 0, 0, 11 >.

R + SRAM (stored data of M[1], M[2] and M[3]):

M[1]: < 0, 0, 11, 11, 11, 11>; M[2]: < 0, 0, 0, 12, 12,

12 > and M[3]: < 0, 0, 0, 0, 13, 13 >.

SRAM + R has the following output sequence and

stored data.

SRAM + R (output sequence): < 0, 0, 0, 0, 0, 11 >.

SRAM + R (stored data of M[1], M[2] and M[3]:

M[1]: < 0, 11, 11, 11, 11, 11 >; M[2]: < 0, 0, 12, 12, 12,

12 > and M[3]: < 0, 0, 0, 13, 13, 13 >. Thus they are an

equivalent.

On the other hand, NR + SRAM has the following

output sequence and stored data.

NR + SRAM (output sequence): < 0, 0, 0, 0, 12, 13 >.

NR + SRAM (stored data of M[1], M[2] and M[3]):

M[1]: < 0, 12, 12, 12, 12, 12 >; M[2]: < 0, 0, 13, 13,

13, 13 > and M[3]: < 0, 0, 0, -, -, - >.

SRAM + NR has the following output sequence and

stored data.

SRAM + NR (output sequence): < 0, 0, 0, 0, 12, 13 >.

ARAM

NR

SRAM

Rule 0
Rule 1

NR

R

R

NR

OR

R

SRAM

(or NR)

R

SRAM

(or NR)

Rule 2

CC

R R R

CC

NR

CC

R R

NR NR

Rule 3

CC

R R

Rule 4

S

P

S

P P

S S

P

S

P

S S

P P P

S S

P P P

S S

P P P

S S

P P P

S S

PP
P PP

PP

R R

P PP

(or R) (or R)

A Dwe
A D

A D A D
we

we we

Fig. 6 Rules to rewrite a circuit graph.

An Algorithm to Obtain Circuits with Synchronous RAMs

SRAM + NR (stored data of M[1], M[2] and M[3]):

M[1]: < 0, 0, 12, 12, 12, 12 >; M[2]: < 0, 0, 0, 13, 13,

13 > and M[3]: < 0, 0, 0, 0, -, - >. Thus they are an

equivalent.

For the Rule 2, we consider that an NR is connected to

data input port D only. If an NR is connected to the

address input port A or write enable input we, an

equivalency of the Rule 2 can be shown in the similar

way.

Rule 3 The output sequences of the left-hand side of

this rule are < f(a1,b0,c0), f(a2,b1,c1), f(a3,b2,c2),…>

and <g(a1,b0,c0), g(a2,b1,c1), g(a3,b2,c2),…>. Those of

Rule~1

Rule~2

RCC

ARAM

O

ARAM

O

R CC

CC
RCC

SRAM

O

SRAM

O

R CC

CC

NR NR

Rule~0

-1 -1

0
-1

0
-1

-2

-2

-1

0 0

-1 -1

0
-1

-1
0

-2 0

-1

I

0

I

0

I

0

I

0

I

0

I

0

I

0

I

0

I

0

I

0

I

0

I

0

R

SRAMSRAM

CC

NR

RCC

SRAMSRAM

CC

NRNR

Rule~3 Rule~1

0 0

-1

-1

0

0 0

0

-1-1

-1
0

I

0

I

0

I

0

I

0

I

0

I

0

I

0

I

0

I

0

I

0

I

0

I

0

CC

SRAMSRAM

CC

NR

R

-1

0 0

0
1

0

I

0

I

0

I

0

I

0

I

0

I

0

Rule~3

ARAM

R

0

0

SRAM

NR

-1

-2

R

0

CC

OO

CC

-1

-2 0

-1

SRAM

NR

-2

R

0

OO

CC

-2 0

-1

SRAM

NR

-2

R

0

-1 -1

O

-2

NR

-2

-1

O

CC

0

-1

R

0

NR NR NR

SRAM

-1-1-1

CC

SRAMSRAM

CCR

0 0

0
1

0

I

0

I

0

I

0

I

0

I

0

I

0

NRSRAM

O

-2

NR

-2

-1

NR

-1
0

O

0

-1

R

0

CC

Rule~1
CC

SRAMSRAM

CCR

0 0

0
1

0

I

0

I

0

I

0

I

0

I

0

I

0

SRAM

O

-2

NR

-2

-1

NR

0

CC

NR

O

0

0

R

0

-1

CC

SRAMSRAM

CCR

0 0

0
1

0

I

0

I

0

I

0

I

0

I

0

I

0

SRAM

O

-2

NR

-2

-1

NR

0

CC

O

0

0

CC

CC

NR

-1

-1

0

OO

CC

-2 0

SRAM

NR

-2

R

0

SRAMSRAM

0 0

I

0

I

0

I

0

I

0

I

0

I

0

1

R R
1

-1
-1

Rule~3

Fig. 7 Interim and resulting circuit graphs obtained by our rewriting algorithm for a circuit graph.

An Algorithm to Obtain Circuits with Synchronous RAMs

the right-hand side are <f(a1,b0,c0),f(a2,b1,c1),

f(a3,b2,c2),…> and <g(a1,b0,c0), g(a2,b1,c1),

g(a3,b2,c2),…>. Thus, they are an equivalent.

Rule 4 The output sequences of the left-hand side of

this rule are < f(0,0,0), f(a0,b0,c0), f(a1,b1,c1), …> and

< g(0,0,0), g(a0,b0,c0), g(a1,b1,c1),…>. Those of the

right-hand side are < 0, f(a0,b0,c0), f(a1,b1,c1),…> and

< 0, g(a0,b0,c0), g(a1,b1,c1),…>. Thus, they are an

equivalent.

 We are now in position to apply the rewriting

algorithm to the given input circuit. Suppose that an

input circuit graph has nodes with labels I, O, R,

ARAM, SRAM, and CC. The following rewriting

algorithm generates a circuit graph equivalent to the

original circuit graph.

Find a minimum i such that Rule i can be applied

to the current circuit graph. Rewrite the circuit

graph using such Rule i. This rewriting procedure

is repeated until no more rewriting is possible.

5. Behavior of Our Circuit Rewriting

Algorithm

 Let us observe the behavior of the rewriting

algorithm.

• First, the rewriting algorithm repeats the applying

Rule 0 to all ARAM nodes until all ARAM

nodes are rewritten into SRAM + NR. After

that, Rule 0 is never be applied.

• Rules 1 is applied and adjacent R and NR nodes

are removed whenever possible.

• R or NR node is moved toward the output nodes

using Rules2, Rule 3 and Rule 4 whenever

possible.

 The Fig. 7 shows one of the applications of our

rewriting algorithm. First, our rewriting algorithm

repeats the applying Rule 0 to all ARAM nodes until all

ARAM nodes are rewritten into SRAM + NR. After

that, Rule 1 is used to remove adjacent R and NR. Then

Rule 3, Rule 1, Rule 3, Rule 2, Rule 3, Rule 1 are

applied one after another. Thus, intuitively, all NR

nodes in the resulting circuit graph are moved and

placed just before the output nodes.

 For the purpose of clarifying the condition such that

the rewriting algorithm can generate NR-free circuit

graph. We define the potentiality of the nodes in a

circuit graph. Suppose that a node v of a circuit graph

has k (>=0) incoming edges such as (u1, v), (u2, v),…,

(uk, v). Let us define the potentiality p(v) of a node v

as follows:

• If v is I, then p(v) = 0.

• If v is O, then p(v) = p(u1).

• If v is SRAM, then p(v) = min(p(u1), p(u2),p(u3)).

• If v is ARAM, then p(v) = min(p(u1), p(u2),p(u3))

- 1.

• If v is NR, then p(v) = p(u1) - 1.

• If v is R, then p(v) = p(u1) + 1.

• If v is CC, then p(v) = min(p(u1), p(u2),………..,

p(uk)).

The Fig. 3 shows the potentiality of each node.

 We have the following theorem.

Theorem 1: All O nodes of a circuit graph have

non-negative potentiality, if and only if our rewriting

algorithm generates an ARAM-free and NR-free

circuit graph, equivalent to the original circuit graph.

6. Proof of Theorem 1

 The main purpose of this section is to show a proof

of Theorem 1.

Let us observe how the potentiality of nodes is

changed by our rewriting algorithm. We focus the

potentiality of successor nodes. Let P1, P2, P3 and S

denote the predecessor and successor nodes for Rules

0 and 2. P and S denote the predecessor and successor

nodes for Rules 1. Also let P1, P2, P3 and S1, S2, denote

the predecessor and successor nodes for Rules 3 and 4.

We compute the potentiality of each successor node

both before and after applying the rules as follows.

Rule 0 p(S) = min(p(P1), p(P2), p(P3)) -1.

Rule 1 p(S) = p(P).

Rule 2 p(S) = min(p(P1)+1, p(P2)+1, p(P3)+1)) =

An Algorithm to Obtain Circuits with Synchronous RAMs

min(p(P1), p(P2), p(P3)) + 1 if all are R and p(S) =

min(p(P1), p(P2), p(P3) - 1)) = min(p(P1) + 1, p(P2) + 1,

p(P3)) - 1 if any of them is NR. In this case an NR is

connected to data input port D.

Rule 3 p(S1) = p(S2) = min(p(P1) - 1, p(P2), p(P3)) =

min(p(P1), p(P2)+1,p(P3)+1) - 1.

Rule 4 p(S1) = p(S2) = min(p(P1)+1, p(P2)+1,

p(P3)+1)) = min(p(P1), p(P2), p(P3))+ 1.

Thus, the potentiality of every successor node is never

changed by applying the rules. In every rule, O nodes

can only be successor nodes. Thus, we have,

Lemma 2: The potentiality of every O node of the

resulting circuit graph is the same as that of the

corresponding O node of the original circuit graph.

In Fig. 7, the potentialities of the left and the right O

nodes are -2 and 0, respectively, and these values are

never changed.

 In a circuit graph, let a segment be a directed path

u1, u2,…, uk such that, u1 and uk are either I, O, SRAM,

or CC, and u2, ……, uk-1 are either R or NR. Note that,

if k = 2 then it represents a null segment with u1 and u2.

We also have the following lemma.

Lemma 3: Let u be an NR node and (u, v) be its

outgoing edge in the resulting circuit graph. Node v

must be either NR or O node. Also, all NR nodes must

be in segments ending at O node.

Proof: If v is an R, SRAM, or CC node then Rules 1, 2,

or 3 can be applied. Since no more rules can be applied

to the resulting circuit graph, v must be either NR or O

node. Since the successor of NR nodes must be NR or

O node, all NR nodes must be in segments ending at O

node.

 From Lemma 3, we will prove that all SRAM and CC

nodes in the resulting circuit graph have zero

potentiality.

Lemma 4: All SRAM and CC nodes in the resulting

circuit graph have non-negative potentiality.

Proof: Since the resulting graph is ARAM-free, nodes

follow NR nodes can have negative potentiality. Since

no segment ending at SRAM or CC has NR nodes,

their potentiality must be non-negative.

 Similarly, we have the following lemma.

Lemma 5: All SRAM and CC nodes in the resulting

circuit graph have non-positive potentiality.

Proof: We assume that the resulting circuit graph has

a SRAM or CC node with positive potentiality, and

show a contradiction. Let v be a first SRAM or CC

node with negative potentiality, that is, all SRAM and

CC nodes in all directed paths incoming to v have

non-positive potentiality and SRAM or CC node v has

positive potentiality.

Case 1 v is an SRAM node

Let (u1, v), (u2, v), and (u3, v), denote the

incoming edges. From Lemma 3, none of u1, u2

and u3 is an NR node. If u1, u2 and u3, all are R,

then Rule 2 can be applied. Thus at least one of

them is not an R node. It follows that at least one

of them is either I or SRAM or CC node. If this is

the case, p(u1 or u2 or u3) = 0 and thus, p(v) = 0, a

contradiction.

Case 2 v is a CC node

Let (u1, v), (u1, v),…, (uk, v) (k >= 1) denote the

incoming edges. From Lemma 3, none of u1,

u2,…, uk is an NR node. If all of them are R

nodes, then Rule 4 can be applied. Thus, at least

one of them is not an R node. It follows that at

least one of them is either I or SRAM or CC node.

From the assumption, the potentiality of such

node is non-positive, Hence, the potentiality of v

is non-positive, a contradiction.

 From Lemma 4 and 5, all SRAM and CC nodes in

the resulting circuit graph have zero potentiality.

Hence, if the potentiality of one of the O nodes in the

resulting circuit graph is negative, a segment ending at

O node in the resulting graph should have NR from

Lemma 3. Similarly, if the potentiality of all the O

nodes is non-negative, no segment ending at an output

node has NR in the resulting circuit graph. From

Lemma 2, the potentiality of O nodes does not change

by our rewriting algorithm. Thus, all output nodes of a

circuit graph have negative potentiality, if and only if

our rewriting algorithm generates the resulting circuit

An Algorithm to Obtain Circuits with Synchronous RAMs

graph with NR nodes. This completes the proof of

Theorem 1.

 By the Theorem 1, it is not always possible to have

an equivalent ARAM-free circuit. However, we may

modify a circuit such that it can be converted into an

almost equivalent ARAM-free circuit. For this

purpose, we compute the potentiality of all O nodes in

the corresponding circuit graph. After that, we insert

registers just before O nodes with negative potentiality

so that the potentiality of the corresponding O nodes

turns into a zero. Since the potentiality of the

corresponding O nodes now is 0, it can be converted

into an equivalent ARAM-free circuit according to our

Theorem 1.

7. Conclusions

 In this paper, we have presented a rewriting

algorithm and five rewriting rules to convert a

sequential circuit with ARAMs into an equivalent

fully synchronous circuit with no ARAMs for the

current FPGA. We consider both read and write

operations of the memory blocks (RAMs) whereas

only read operation of the memory blocks (ROMs) is

considered in our previous paper [5]. In fact, we have

improved our previous research work where RAMs

can be used as the additional circuit elements to the

given input sequential circuits. Using the rewriting

algorithm, any sequential circuit with ARAMs can be

converted into an equivalent fully synchronous

sequential circuit with no ARAMs to support the

modern FPGA architecture. As a future work, we have

a plan to present an algorithm for circuits with

feedback loops.

References

[1] J. Bordim, Y. Ito and K. Nakano. Accelerating the CKY

parsing using FPGAs, IEICE Transactions on Information

and Systems, E86-D(5): 803-810, 2003

[2] J. Bordim, Y. Ito and K. Nakano. Instant specific

solutions to accelerate the CKY parsing for large

context-free grammars. International Journal on

Foundations of Computer Science, pages 403-416, 2004

[3] K. Nakano and Y. Yamagishi. Hardware n choose k

counters with applications to the partial exhaustive search.

IEICE Transaction on Information and Systems, 2005.

[4] Y. Ito and K. Nakano. A hardware-software cooperative

approach for the exhaustive verification of the collatz

conjecture. In Proc. of International Symposium on

Parallel and Distributed Processing with Applications,

pages 63-70, 2009.

[5] M. N. I Mondal, K. Nakano and Y. Ito. A rewriting

algorithm to generate AROM-free fully synchronous

circuits. In Proc. of the First International Conference on

Networking and Computing (ICNC), pages 148-155,

November 2010.

