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Abstract: Field Programmable Gate Arrays (FPGAs) are used to embed a circuit designed by users instantly. Most of FPGAs have 

Configurable Logic Blocks (CLBs) to implement combinational and sequential circuits and block RAMs to implement Random Access 

Memories (RAMs) and Read Only Memories (ROMs). Circuit design that minimizes the number of clock cycles is easy if we use 

asynchronous read operations. However, most of FPGAs support synchronous read operations, but do not support asynchronous read 

operations. It is one of the main difficulties for users to implement parallel and hardware algorithms in FPGAs. The main contribution 

of this paper is to provide one of the potent approaches to resolve this problem. We assume that a circuit using asynchronous RAMs 

designed by a non-expert or quickly designed by an expert is given. Our goal is to convert this circuit with asynchronous RAMs into an 

equivalent circuit with synchronous ones. The resulting circuit with synchronous RAMs can be embedded into the FPGAs. 
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1. Introduction
     

  An FPGA is a programmable VLSI (Very Large 

Scale Integration) in which a hardware designed by 

users can be embedded quickly. Typical FPGAs consist 

of an array of programmable logic blocks (slices), 

memory blocks, and programmable interconnects 

between them. The logic block contains four-input 

logic functions implemented by a LUT and/or several 

registers. Using four-input logic functions, registers, 

and their interconnections, any combinational circuit 

and sequential logic can be implemented. The memory 

block is a dual-port RAM which can perform read 
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and/or write operations for a word of data to two 

distinct or same addresses in the same time. In our 

work, we consider single-port RAM which can be 

embedded into a dual-port block RAM of the current 

FPGA. Usually, the dual-port RAM supports 

synchronous read and synchronous write operations. 

The read and write operations are performed at the 

rising clock edges. Design tools are available to the 

users to embed their hardware logic into the FPGAs. 

Some circuit implementations are described in the 

papers [1-4] to accelerate computation.  

  In this paper, we focus on the asynchronous read, 

synchronous read and synchronous write operations of 

memory blocks as follows: 

Asynchronous read operation The memory block 

outputs the data specified by the address given to the 

address port. When the address value is changed, the 

output data is updated immediately within some delay 

time. In other words, the output data port always 

outputs M[a], which is the data stored in the input 

address value a. 
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Synchronous read operation Even if the address 

value is changed; the output data is not updated. The 

output data is updated based on the address value at 

the rising edge of the clock. More specifically, the 

output data port outputs M[a] on the rising edge of the 

clock, where a is the address data at the previous point 

of the rising clock edge. 

Synchronous write operation The memory block 

stores the input data, given to the data port on the 

rising edge of the clock only when write enable we is 

high. Even though, the input data value is changed and 

the rising edge of the clock is available, nevertheless 

write enable we is low, the input data value is not 

written into the memory block. Particularly, the input 

data value d is only written into the memory of M[a] 

on the rising edge of the clock when write enable we 

is high, where a, d and we represent address data value, 

input data value and write enable respectively at the 

previous point of the rising clock edge.  

  In this work, we consider asynchronous RAMs 

(ARAMs) and synchronous RAMs (SRAMs). They 

have a data input port D, an address input port A, 

clock input port clock, write enable input port we and 

data output port Q , shown in Fig 1. ARAMs and 

SRAMs support asynchronous and synchronous read 

operations respectively. Also they both support 

synchronous write operations. In general, the circuit 

design is simpler and easier to the designers, more 

specifically to the non-expert circuit designers if 

ARAMs are available. In asynchronous read operation, 

the value of a specified address can be obtained 

immediately. However, in synchronous read operation, 

one clock cycle is required to obtain it. Nevertheless, 

block RAMs embedded in most of the current FPGAs 

do not support asynchronous read operation for 

increasing its clock frequency. 

  In our previous paper
 
[5], we have presented a 

circuit rewriting approach for Directed Acyclic Graph 

(DAG) circuits considering only read operations of the 

memory blocks (ROMs). However, this paper 

considers both read and write operations of the 

memory blocks (RAMs). Note that, a RAM can be 

treated as a ROM when we is low. It is not trivial to 

convert an asynchronous circuit with ARAMs into an 

equivalent synchronous one. However, it is solved by 

our technique.  

  The main contribution of this paper is to present a 

circuit rewriting approach that converts an 

asynchronous circuit consisting 

Combinational Circuits (CCs), Registers 

(Rs), and RAMs with asynchronous read 

and synchronous write operations (ARAMs) 

into an equivalent synchronous circuit consisting  

Combinational Circuits (CCs), Registers 

(Rs), and RAMs with synchronous read and 

synchronous write operations (SRAMs). 

Note that, most of the current FPGAs support 

synchronous read operation, but do not support 

asynchronous one. We are thinking the following 

scenario to use the circuit rewriting algorithm. 

• An asynchronous circuit with ARAMs designed 

by a non-expert or quickly designed by an 

expert is given. 

• Our circuit rewriting algorithm converts it into an 

equivalent synchronous circuit. 

• The resulting synchronous circuit can be 

implemented in FPGAs. 

  The outlines of our work are as follows: 

1. We use a Negative Register (NR) which is 

originally introduced in our previous paper [5]. 

The NR is an imaginary register that is used for 

latching a future input data.  

2. We define simple five rules that rewrite a circuit. 

3. The rewriting algorithm just repeats applying 

these rules until no more rules can be applied. 

When the rewriting algorithm terminates, we 

have an equivalent ARAM-free circuit to the 

original circuit. 

2. Random Access Memory (RAM) 

  A RAM is an array of memory where information 

can be stored until power is switched off. It has b-bit 
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data input D, e-bit address input A and c-bit data 

output Q, it can store 2
e
 words such as M[0], M[1], …., 

M[2
e
-1] with c bits each, shown in Fig. 1. A RAM can 

support the following operations. 

Asynchronous read operation: 

  A RAM continuously outputs the data specified by 

the address given to the address port A. When the 

address value a is changed, the output data is updated 

immediately within some delay time. In other words, 

the output data port always outputs M[a], which is the 

data stored in the input address value a. 

Synchronous read operation: 

  Even if the input address value a is changed, the 

output data specified by the address given to the 

address port A is not updated. The output data is 

updated based on the address value a at the rising edge 

of the clock. More specifically, the output data port Q 

outputs M[a] on the rising edge of the clock, where a 

is the address data at the previous point of the rising 

clock edge. 

Synchronous write operation: 

  A RAM stores the input data value d which is given 

to the data port D on the rising edge of the clock only 

when write enable we is high. Even though, the input 

data value d is changed and the rising edge of the clock 

is available, nevertheless write enable we is low, the 

input data value d is not written into the memory of 

M[a]. Particularly, the input data value d is only written 

into the memory of M[a] on the rising clock edge when 

write enable we is high, where a, d and we represent 

address data value, input data value and write enable 

respectively at the previous point of the rising clock 

edge.  

 

 

 

 

 

               

 

 

  For the reader's benefit, we will describe two types 

of RAM (shown in Fig. 1) as follows: 

• Asynchronous RAM (ARAM): An ARAM 

supports asynchronous read and synchronous 

write operations. It has a clock input clock and 

a write enable input we. The clock input clock 

is only needed for write operations. The data 

values of M[a] are continuously output from 

port Q. They do not depend on clock input 

clock. Only when write enable we is high, 

initial stored values of M[a] are updated by 

input data value d, given to the data input port 

D at the latest rising clock edge. 

• Synchronous RAM (SRAM): An SRAM 

supports synchronous read and synchronous 

write operations. It has also a clock input clock 

and a write enable input we. The read operation 

of the SRAM is performed on every rising 

clock edge. The output Q is the value of M[a] 

at the latest rising clock edge. The write 

operations for an SRAM are the same as an 

ARAM. The readers may refer to the Fig. 2 for 

read and write operations of an ARAM and an 

SRAM. 

  In this work, we consider Write After Read (WAR) 

mode for data handling of the memory blocks. Now, 

we will discuss the WAR and RAW mode only for the 

SRAM, because the SRAM supports synchronous 

read and synchronous write operations. The WAR and 

RAW modes of an SRAM are described as follows: 

• Write After Read (WAR) Mode: First, 

currently stored data, specified by the address 

given to the address port A outputs from the 

output port Q at the latest rising clock edge. 

Then input data value d, given to the data port 

D is written into the memory of M[a] at the 

latest rising clock edge only when write enable 

we is high. More specifically, the output data 

port Q outputs currently stored data of M[a] on 

the latest rising clock edge first. Then the input 

data value d is written into the memory of M[a] 

SRAM

Q

clock

DAwe

 

ARAM

Q

clock

DAwe

 

Fig. 1  An asynchronous RAM (ARAM) and a 

synchronous RAM  (SRAM). 
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on the latest rising clock edge only when write 

enable we is high. 

• Read After Write (RAW) Mode: First, input 

data value d, given to the data port D is written 

into the memory of M[a] at the latest rising 

clock edge only when write enable we is high. 

Then currently stored data, specified by the 

address given to the address port A outputs from 

the output port Q at the latest rising clock edge. 

Particularly, input data value d is written first 

into the memory of M[a] on the latest rising 

clock edge only when write enable we is high. 

Then stored data value of M[a] outputs from the 

output port Q at the latest rising clock edge. 

The readers should refer to the Fig. 2 for the 

illustrations of the WAR and RAW. The Fig. 2 shows a 

timing diagram of the ARAM, SRAM, Register (R) 

and Negative Register (NR). Initially global reset is 1 

and it drops to 0 just before time 0. We assume that 

write enable we is high for the first several clock cycles 

from the beginning (initially we is 1 and drops to 0 

before the fourth rising clock edge). Data 11, 12, 13, -, -, 

- and 1, 2, 3, 1, 2, 3 are given to the input data port D 

and address port A respectively. The dash (-) line 

represents any data which is not necessary in our case. 

For simplicity, we have used the written data values of 

M[1], M[2], M[3] for an SRAM to read again at the 

latest rising clock edge at time 3, 4, 5 respectively. We 

have also used the written data values of M[1], M[2], 

M[3] for an ARAM to read immediately at time 3, 4, 5 

respectively. The edges at time 0, 1, 2 of the clock 

represent the latest rising edges for the stored data 

values of M[1], M[2], M[3] respectively of an SRAM 

and ARAM. On the other hand, the edges at time 0, 1, 2, 

3, 4 of the clock represent the latest rising edges for the 

output data sequence of 0, 0, 0, 11, 12 respectively of 

an SRAM when it follows WAR. We assume that the 

stored values of M[a] are initialized by 0 of an SRAM 

and an ARAM. For the case of an ARAM, the data 

values of M[1], M[2], M[3], M[1], M[2], M[3] 

correspond to 0, 0, 0, 11, 12, 13 are taken respectively 

at time 0, 1, 2, 3, 4, 5 from the output port Q 

immediately due to the asynchronous read operations. 

Therefore, the output sequence of an ARAM [Q 

(ARAM)] is: 0, 0, 0, 11, 12, 13. According to the WAR, 

the output sequence of an SRAM [Q (SRAM, WAR)] 

is: 0, 0, 0, 0, 11, 12 at time 0, 1, 2, 3, 4, 5 respectively. 

On the other hand, according to the RAW, the output 

sequence of an SRAM [Q (SRAM, RAW)] is: 0, 11, 12, 

13, 11, 12 at time 0, 1, 2, 3, 4, 5 respectively. Note that 

the output value of an SRAM at time 0 is initialized by 

0. The stored data of M[1], M[2] and M[3] of the time 0, 

1, 2, 3, 4, 5 are the same for an ARAM and an SRAM 

which are M[1]: 0, 11, 11, 11, 11, 11; M[2]: 0, 0, 12, 12, 

12, 12 and M[3]: 0, 0, 0, 13, 13, 13. The output of R is 0 

at time 0. Also at time 1, 2, 3, 4, 5; the value of output R 

is 11, 12, 13, -, - respectively. The value of output NR 

is 12, 13, - ,-, -, - of the time 0, 1, 2, 3, 4, 5 respectively. 

3. Circuits and Their Equivalence 

Let us consider a synchronous sequential circuit that 

consists of input ports, output ports, combinational 

circuits (CCs), registers (Rs), Random Access 

Memories (RAMs), a global clock input (clock), a 

global reset input (reset) and a write enable input (we). 

  A combinational circuit (CC) is a network of 

fundamental logic gates with no feedback. So, it can 

compute Boolean functions represented by Boolean 

formulas, such as  and  

as illustrated in our previous paper [5]. Once inputs 

are given, the outputs are computed in small 

propagation delay.  

  A b-bit register has a clock input and a reset input. 

It can store a b-bit data. If reset is 1, then the b-bit data 

is initialized by 0. If reset is 0, the stored data is 

updated by the value given to the input port d at every 

rising clock edge. The data stored in the register is 

always output from port q. The readers should refer to 

our previous paper [5] and Section 2 for the details 

about combinational circuit, register and RAM. 

  We will describe a behavior of the circuit elements 
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clock

time 0 1 2 3

reset

4

we

5

D 11 12 13 -

Q (SRAM, WAR)

Q (NR)

- -

A 1 2 3 1 2 3

12 13 - - - -

Q (SRAM, RAW)

M[1] 110 11 11 11 11

M[2] 120 12 12 120

M[3] 130 13 1300

0 0 0 0 11 12

M[1] 110 11 11 11 11

M[2] 120 12 12 120

M[3] 130 13 1300

0 11 12 13 11 12

Q(R) 0 11 12 13 - -

Q (ARAM) 0

M[1] 110 11 11 11 11

M[2] 120 12 12 120

M[3] 130 13 1300

0 0 11 12 13

 

Fig. 2  A timing chart of an ARAM, an SRAM, a register 

(R) and a negative register (NR). 

using a sequence of output as well as stored data at 

every rising clock edge for periodic clock (clock is 

inverted into a fixed frequency), initial reset (initially, 

reset is 1 and drops to 0 before the first rising clock 

edge) and write enable, we (initially, we is 1 and drops 

to 0 before the fourth rising clock edge) as illustrated 

in Fig. 2. The behavior of each circuit element is 

described by the output sequences and stored data as 

follows: 

• Combinational Circuit (CC) For simplicity, we 

assume 3-input 2-output combinational circuit, 

shown in our previous paper [5].  There is no 

difficulty to extend the definition for general 

m-input, n-output combinational circuit. We 

assume that, at time i (i>=0), ai, bi, and ci are 

given to the 3 input ports A, B, and C. Let f and 

g be the two functions with three arguments 

that determine the value of output ports F and 

G. The output sequences of F and G are 

described as follows:  

CC(F): <f(a0,b0,c0),f(a1,b1,c1), 

f(a2,b2,c2),……………>. 

CC(G): <g(a0,b0,c0), g(a1,b1,c1),        

g(a2,b2,c2),…………...>. 

• Register (R) Let di denote an input value given to 

an input port D at time i (i>= 0). As shown in 

Fig. 2, the output sequence of the register is 

described as follows: 

  R: < 0, 11, 12, 13, -, -,………>. 

• Synchronous and Asynchronous RAMs 

(SRAMs and ARAMs) Let M[j] denotes the 

value stored in address j (j>= 0) of the RAM. 

Recall that the initial data values of M[j] are 0 

and the WAR mode of the SRAM is considered. 

As shown in Fig. 2, the output sequences and 

stored data of an SRAM and ARAM of the 

time 0, 1, 2, 3, 4, 5 are as follows: 

SRAM (output sequence): < 0, 0, 0, 0, 11, 12 >. 

   SRAM (stored data of M[1], M[2] and M[3]):  

M[1]: < 0, 11, 11, 11, 11, 11 >. It means that 

memory content of the address value 1 is updated 

by 11 at time 1 and remains the same until further 

updating.  

M[2]: < 0, 0, 12, 12, 12, 12 >. It means that 

memory content of the address value 2 is updated 

by 12 at time 2 and remains the same until further 

updating and 

M[3]: < 0, 0, 0, 13, 13, 13 >. It means that 

memory content of the address value 3 is updated 

by 13 at time 3 and remains the same until further 

updating. 

ARAM (output sequence): < 0, 0, 0, 11, 12, 13>. 

ARAM (stored data of M[1], M[2] and M[3]): 

M[1]: < 0, 11, 11, 11, 11, 11 >, M[2]: < 0, 0,       

12, 12, 12, 12 > and M[3]: < 0, 0, 0, 13, 13, 13 >. 

  These have the same aforesaid explanations. 
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In this paper, we assume that a fully synchronous 

circuit has data input, data output, a global clock input, 

a global reset input, a write enable input, 

combinational circuits (CCs), registers (Rs), SRAMs, 

ARAMs, and their interconnects. The readers should 

refer to the Fig. 3 for illustrating an example of a fully 

synchronous circuit. The global clock is directly 

connected to the clock input ports of all Rs and 

SRAMs, ARAMs and the global reset is connected to 

the reset input ports of all Rs. Also the write enable is 

directly connected to the write enable input ports of all 

SRAMs and ARAMs. We assume that a circuit has no 

loop. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

  Let us define equivalence of two fully synchronous 

circuits for the periodic clock and initial reset. Note that, 

an equivalence of the circuits with RAMs is determined 

by the output sequences and stored data. We say that 

two circuits X and Y are an equivalent if, for any input 

sequence, the output sequences and stored data at the 

same memory locations are the same except for first 

several outputs and stored data. 

  For the periodic clock with initial reset and write 

enable, the output sequences and stored data of SRAM, 

R + ARAM and ARAM + R are described as follows 

(As shown in Fig. 5): 

SRAM (output sequence):  < 0, 0, 0, 0, 11, 12 >. 

SRAM (stored data of M[1], M[2] and M[3]): 

M[1]: < 0, 11, 11, 11, 11, 11 >, M[2]:  < 0, 0, 12, 12, 

12, 12 > and M[3]: < 0, 0, 0, 13, 13, 13 >.  

R + ARAM (output sequence): < 0, 0, 0, 0, 11, 12 >. 

R + ARAM (stored data of M[1], M[2] and M[3]): 

M[1]: < 0, 0, 11, 11, 11, 11 >, M[2]: <0, 0, 0, 12, 12, 

12 > and M[3]: < 0, 0, 0, 0, 13, 13 >. 

ARAM +R (output sequence): < 0, 0, 0, 0, 11, 12 >. 

ARAM + R (stored data of M[1], M[2] and M[3]):  

M[1]: < 0, 11, 11, 11, 11, 11 >, M[2]: < 0, 0, 12, 12, 

12, 12 > and M[3]: < 0, 0, 0, 13, 13, 13 >. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These also have the same explanations mentioned 

above. 

  Since, these three circuits, shown in Fig. 4 have the 

same output in time 0, 1, 2, 3, 4 and 5. Also they have 

the same stored data at the memory location 1 (M[1]) 

of the time 2, 3, 4 and 5, at memory location 2 (M[2]) 

of the time 3, 4 and 5 and at the memory location 3 

(M[3]) of time 4 and 5. Thus, these three circuits are 

equivalent. In this paper, we ignore first several clock 

cycles when we determine the equivalency of the 

circuits. 
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R
CC

ARAM

O

ARAM

O

R
CC

CC

clock

reset

ARAM

CC

ARAM

R

RCC
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ARAM
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-1 -1

0
-1

-1 0

-2

-1

I

0

I

0

I

0

I

0

I

0

R

A Dwe A Dwe

ARAM

-2

R

0

0  

Fig. 3  An example of a fully synchronous circuit and the corresponding circuit graph with potentiality. 
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  Suppose that a circuit X with ARAMs is given. The 

main contribution of this paper is to show 

• a necessary condition such that an ARAM-free 

circuit, Y can be generated, which is equivalent 

to X, and 

• an algorithm to derive Y if the necessary 

condition is satisfied. 

  Recall a Negative Register (NR), which is a 

nonexistent device used only for showing our 

algorithm to derive Y and related proofs. Recall again  

that, a regular register latches the input at the rising 

clock edge whereas a negative register latches a future 

input. An NR latches the value which is given to input 

data port D at the rising edge of two clock cycles later 

as illustrated in Fig. 2. Thus, the NR has the following 

output sequence for a periodic clock with an initial 

reset. 

  NR:  < 12, 13, -, -, -, - >. 

  In our algorithm to derive an ARAM-free circuit Y, 

circuits with NRs will be used as interim results. 

4. Circuit Graph and Rewriting Rules 

  We simply use a directed graph to denote the 

interconnections of a fully synchronous circuit. We 

call such graph as a circuit graph. A circuit graph 

consists of a set of nodes and a set of directed edges 

connecting two nodes. Each node is labeled by either I 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Input port), O (Output port), CC (Combinational 

Circuit), R (Register), NR (Negative Register), 

ARAM, or SRAM. A node with label I is connected 

with one or more outgoing edges. A node with label O 

is connected with exactly one incoming edge. A node 

with label CC has one or more incoming edges and 

one or more outgoing edges. A node with label R and 

NR has one incoming and one outgoing edge. A node 

with label ARAM or SRAM has three incoming edges 

and one outgoing edge. We also assume that a circuit 

graph is a directed acyclic graph (DAG), that is, it has 

no directed cycles. The Fig. 3 illustrates an example of 

a directed graph. Note that nodes with label I, R, NR, 

ARAM, or SRAM has one outgoing edge. The readers 

may think that one outgoing edge is a too stringent 

restriction because it does not allow two or more 

fan-outs. However, we can implement multiple 

fan-outs by attaching a simple combinational circuit 

(CC) that just duplicates the input. For example, a CC 

with one input port A and two output ports F and G 

such that F = A and G = A is used to implement 

fan-out 2. 

  For a given circuit X with ARAMs, we will show 

an algorithm to derive an ARAM-free and NR-free 

circuit, Y by rewriting circuits. We assume that X is 

given as a circuit graph. We will define rules to 

rewrite a circuit graph. The readers should refer to  

 

A

Q

e

c

SRAM
clock

D

b

we

Q

c

ARAM

D

b

= =

Q

c

clock

A

e

ARAM
clock

D

b

weA

e

we

11

1 clock

reset
1-bit R e-bit R

clock

reset
b-bit R

clock

reset

reset

c-bit R

 
Fig. 4  SRAM, R + ARAM and ARAM + R. 
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clock

time 0 1 2 3

reset

4

we

5

D 11 12 13 -

Q (SRAM, WAR)

- -

A 1 2 3 1 2 3

M[1] 110 11 11 11 11

M[2]

M[3] 13

0 0 0 0 11 12

Q (ARAM)

M[1]

M[2]

M[3]

Q (R+ARAM)

M[1]

M[2]

M[3]

Q (ARAM+R)

M[1]

M[2]

M[3]

Q(R,input we)

Q(R,input A)

Q(R,input D)

0 0 12 12 12 12

0 0 0 13 13

0 0 0 11 12 13

0 11 11 11 11 11

0 0 12 12 12 12

130 0 0 13 13

0 1 2 3 1 2

11 12 13 - -0

0 0 0 0 11 12

0 0 11 11 11 11

0 0 0 12 12 12

00 0 0 13 13

0 0 0 0 11 12

0 11 11 11 11 11

0 0 12 12 12 12

130 0 0 13 13

 

 

 

Fig. 6 for illustrating the rules, where P and S denote 

predecessor and successor nodes respectively. The 

nodes between predecessor and successor nodes are 

rewritten as follows: 

• Rule 0 ARAM node is rewritten into SRAM + 

NR. 

• Rule 1 Adjacent R and NR nodes are rewritten 

into NULL circuit, that is, they are removed. 

 

• Rule 2 R + SRAM (or NR + SRAM) is rewritten 

into SRAM + R (or SRAM + NR). More 

specifically, if each incoming edge of an 

SRAM node is connected to a R node, then all 

the Rs are removed to the outgoing edge of the 

SRAM node. On the other hand, if one of the 

incoming edges of an SRAM node is connected 

to an NR node, then the NR node is removed, a 

R node is added to all other incoming edges, 

and the NR node is moved to the outgoing edge 

of the SRAM node.  

• Rule 3 If one of the incoming edges of a CC 

node is connected to an NR node, then the NR 

node is removed, a R node is added to all the 

other incoming edges, and the NR node is 

moved to all the outgoing edges of the CC 

node.  

• Rule 4 If all the incoming edges of a CC node 

are connected to a R node, then all the Rs are 

removed to all the outgoing edges of the CC 

node. 

  Let us confirm that, after applying one of the 

rewriting rules, an original circuit and the resulting 

circuit are an equivalent. Let ai, bi, ci, di, ai (address 

data) and we (i>=0) denote inputs given from the 

predecessor node at time i.   

Rule 0 Both ARAM and SRAM + NR have the same 

output sequences and stored data. 

ARAM/SRAM + NR (output sequence): < 0, 0, 0, 11,  

12, 13 >. 

ARAM/SRAM + NR (stored data of M[1], M[2] and 

M[3]): 

 

Fig. 5  A timing chart for showing the equivalency of 

 SRAM,  R + ARAM and ARAM + R. 
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M[1]: < 0, 11, 11, 11, 11, 11>; M[2]: < 0, 0, 12, 12, 

12, 12 > and M[3]: < 0, 0, 0, 13, 13, 13 >. Thus they 

are an equivalent. 

Rule 1  R + NR and NR + R have the following 

output sequences. 

R + NR : < 11, 12, 13,  -,  - ,  - > and NR + R: < 0, 

12,13,-, -, - >. Also, NULL circuit has the following 

output sequence.  

NULL: < 11, 12, 13, -, -, - >. Thus, they are an 

equivalent.  

Rule 2  R + SRAM has the following output 

sequence and stored data. 

R + SRAM (output sequence): < 0, 0, 0, 0, 0, 11 >. 

R + SRAM (stored data of M[1], M[2] and M[3]): 

M[1]: < 0, 0, 11, 11, 11, 11>;  M[2]: < 0, 0, 0, 12, 12, 

12 > and M[3]: < 0, 0, 0, 0, 13, 13 >.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SRAM + R has the following output sequence and 

stored data. 

SRAM + R (output sequence): < 0, 0, 0, 0, 0, 11 >. 

SRAM + R (stored data of M[1], M[2] and M[3]: 

M[1]: < 0, 11, 11, 11, 11, 11 >; M[2]: < 0, 0, 12, 12, 12, 

12 > and M[3]: < 0, 0, 0, 13, 13, 13 >. Thus they are an 

equivalent. 

On the other hand, NR + SRAM has the following 

output sequence and stored data. 

NR + SRAM (output sequence): < 0, 0, 0, 0, 12, 13 >. 

NR + SRAM (stored data of M[1], M[2] and M[3]): 

M[1]: < 0, 12, 12, 12, 12, 12 >; M[2]: < 0, 0, 13, 13, 

13, 13 > and M[3]: < 0, 0, 0,  -,  -,  - >. 

SRAM + NR has the following output sequence and 

stored data. 

SRAM + NR (output sequence): < 0, 0, 0, 0, 12, 13 >. 
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Fig. 6  Rules to rewrite a circuit graph. 
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SRAM + NR (stored data of M[1], M[2] and M[3]): 

M[1]: < 0, 0, 12, 12, 12, 12 >; M[2]: < 0, 0, 0, 13, 13, 

13 > and M[3]: < 0, 0, 0, 0,  -,  - >. Thus they are an 

equivalent. 

For the Rule 2, we consider that an NR is connected to 

data input port D only. If an NR is connected to the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

address input port A or write enable input we, an 

equivalency of the Rule 2 can be shown in the similar 

way.  

Rule 3 The output sequences of the left-hand side of 

this rule are < f(a1,b0,c0), f(a2,b1,c1), f(a3,b2,c2),…> 

and <g(a1,b0,c0), g(a2,b1,c1), g(a3,b2,c2),…>. Those of 
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Fig. 7  Interim and resulting circuit graphs obtained by our rewriting algorithm for a circuit graph. 
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the right-hand side are <f(a1,b0,c0),f(a2,b1,c1), 

f(a3,b2,c2),…> and <g(a1,b0,c0), g(a2,b1,c1), 

g(a3,b2,c2),…>. Thus, they are an equivalent. 

Rule 4 The output sequences of the left-hand side of 

this rule are < f(0,0,0), f(a0,b0,c0), f(a1,b1,c1), …> and  

< g(0,0,0), g(a0,b0,c0), g(a1,b1,c1),…>. Those of the 

right-hand side are < 0, f(a0,b0,c0), f(a1,b1,c1),…> and  

< 0, g(a0,b0,c0), g(a1,b1,c1),…>. Thus, they are an 

equivalent.  

  We are now in position to apply the rewriting 

algorithm to the given input circuit. Suppose that an 

input circuit graph has nodes with labels I, O, R, 

ARAM, SRAM, and CC. The following rewriting 

algorithm generates a circuit graph equivalent to the 

original circuit graph. 

Find a minimum i such that Rule i can be applied 

to the current circuit graph. Rewrite the circuit 

graph using such Rule i. This rewriting procedure 

is repeated until no more rewriting is possible. 

5. Behavior of Our Circuit Rewriting 

Algorithm 

  Let us observe the behavior of the rewriting 

algorithm. 

• First, the rewriting algorithm repeats the applying 

Rule 0 to all ARAM nodes until all ARAM 

nodes are rewritten into SRAM + NR. After 

that, Rule 0 is never be applied.  

• Rules 1 is applied and adjacent R and NR nodes 

are removed whenever possible. 

• R or NR node is moved toward the output nodes 

using Rules2, Rule 3 and Rule 4 whenever 

possible. 

  The Fig. 7 shows one of the applications of our 

rewriting algorithm. First, our rewriting algorithm 

repeats the applying Rule 0 to all ARAM nodes until all 

ARAM nodes are rewritten into SRAM + NR. After 

that, Rule 1 is used to remove adjacent R and NR. Then 

Rule 3, Rule 1, Rule 3, Rule 2, Rule 3, Rule 1 are 

applied one after another. Thus, intuitively, all NR 

nodes in the resulting circuit graph are moved and 

placed just before the output nodes.  

  For the purpose of clarifying the condition such that 

the rewriting algorithm can generate NR-free circuit 

graph. We define the potentiality of the nodes in a 

circuit graph. Suppose that a node v of a circuit graph 

has k (>=0) incoming edges such as (u1, v), (u2, v),…, 

(uk, v). Let us define the potentiality p(v) of a node v 

as follows: 

• If v is I, then p(v) = 0. 

• If v is O, then p(v) = p(u1). 

• If v is SRAM, then p(v) = min(p(u1), p(u2),p(u3)). 

• If v is ARAM, then p(v) = min(p(u1), p(u2),p(u3)) 

- 1. 

• If v is NR, then p(v) = p(u1) - 1. 

• If v is R, then p(v) = p(u1) + 1. 

• If v is CC, then p(v) = min(p(u1), p(u2),……….., 

p(uk)). 

The Fig. 3 shows the potentiality of each node.  

  We have the following theorem.  

Theorem 1: All O nodes of a circuit graph have 

non-negative potentiality, if and only if our rewriting 

algorithm generates an ARAM-free and NR-free 

circuit graph, equivalent to the original circuit graph. 

6. Proof of Theorem 1 

  The main purpose of this section is to show a proof 

of Theorem 1.  

Let us observe how the potentiality of nodes is 

changed by our rewriting algorithm. We focus the 

potentiality of successor nodes. Let P1, P2, P3 and S 

denote the predecessor and successor nodes for Rules 

0 and 2. P and S denote the predecessor and successor 

nodes for Rules 1. Also let P1, P2, P3 and S1, S2, denote 

the predecessor and successor nodes for Rules 3 and 4. 

We compute the potentiality of each successor node 

both before and after applying the rules as follows. 

Rule 0  p(S) = min(p(P1), p(P2), p(P3 )) -1. 

Rule 1  p(S) = p(P). 

Rule 2  p(S) = min(p(P1)+1, p(P2)+1, p(P3)+1)) =  
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min(p(P1), p(P2), p(P3)) + 1 if all are R and p(S) =  

min(p(P1), p(P2), p(P3) - 1)) = min(p(P1) + 1, p(P2) + 1, 

p(P3)) - 1 if any of them is NR. In this case an NR is 

connected to data input port D.  

Rule 3  p(S1) = p(S2) = min(p(P1) - 1, p(P2), p(P3)) = 

min(p(P1), p(P2)+1,p(P3)+1) - 1. 

Rule 4  p(S1) = p(S2) = min(p(P1)+1, p(P2)+1, 

p(P3)+1)) = min(p(P1), p(P2), p(P3))+ 1. 

Thus, the potentiality of every successor node is never 

changed by applying the rules. In every rule, O nodes 

can only be successor nodes. Thus, we have,  

Lemma 2: The potentiality of every O node of the 

resulting circuit graph is the same as that of the 

corresponding O node of the original circuit graph. 

In Fig. 7, the potentialities of the left and the right O 

nodes are -2 and 0, respectively, and these values are 

never changed. 

  In a circuit graph, let a segment be a directed path 

u1, u2,…, uk such that, u1 and uk are either I, O, SRAM, 

or CC, and u2, ……, uk-1 are either R or NR. Note that, 

if k = 2 then it represents a null segment with u1 and u2. 

We also have the following lemma. 

Lemma 3: Let u be an NR node and (u, v) be its 

outgoing edge in the resulting circuit graph. Node v 

must be either NR or O node. Also, all NR nodes must 

be in segments ending at O node. 

Proof: If v is an R, SRAM, or CC node then Rules 1, 2, 

or 3 can be applied. Since no more rules can be applied 

to the resulting circuit graph, v must be either NR or O 

node. Since the successor of NR nodes must be NR or 

O node, all NR nodes must be in segments ending at O 

node.  

 From Lemma 3, we will prove that all SRAM and CC 

nodes in the resulting circuit graph have zero 

potentiality. 

Lemma 4: All SRAM and CC nodes in the resulting 

circuit graph have non-negative potentiality. 

Proof: Since the resulting graph is ARAM-free, nodes 

follow NR nodes can have negative potentiality. Since 

no segment ending at SRAM or CC has NR nodes, 

their potentiality must be non-negative. 

  Similarly, we have the following lemma. 

Lemma 5: All SRAM and CC nodes in the resulting 

circuit graph have non-positive potentiality. 

Proof: We assume that the resulting circuit graph has 

a SRAM or CC node with positive potentiality, and 

show a contradiction. Let v be a first SRAM or CC 

node with negative potentiality, that is, all SRAM and 

CC nodes in all directed paths incoming to v have 

non-positive potentiality and SRAM or CC node v has 

positive potentiality. 

Case 1 v is an SRAM node 

Let (u1, v), (u2, v), and (u3, v), denote the 

incoming edges. From Lemma 3, none of u1, u2 

and u3 is an NR node. If u1, u2 and u3, all are R, 

then Rule 2 can be applied. Thus at least one of 

them is not an R node. It follows that at least one 

of them is either I or SRAM or CC node. If this is 

the case, p(u1 or u2 or u3 ) = 0 and thus, p(v) = 0, a 

contradiction. 

Case 2 v is a CC node 

Let (u1, v), (u1, v),…, (uk, v) (k >= 1) denote the 

incoming edges. From Lemma 3, none of u1, 

u2,…, uk is an NR node. If all of them are R  

nodes, then Rule 4 can be applied. Thus, at least 

one of them is not an R node. It follows that at 

least one of them is either I or SRAM or CC node. 

From the assumption, the potentiality of such 

node is non-positive, Hence, the potentiality of v 

is non-positive, a contradiction.  

  From Lemma 4 and 5, all SRAM and CC nodes in 

the resulting circuit graph have zero potentiality. 

Hence, if the potentiality of one of the O nodes in the 

resulting circuit graph is negative, a segment ending at 

O node in the resulting graph should have NR from 

Lemma 3. Similarly, if the potentiality of all the O 

nodes is non-negative, no segment ending at an output 

node has NR in the resulting circuit graph. From 

Lemma 2, the potentiality of O nodes does not change 

by our rewriting algorithm. Thus, all output nodes of a 

circuit graph have negative potentiality, if and only if 

our rewriting algorithm generates the resulting circuit 
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graph with NR nodes. This completes the proof of 

Theorem 1. 

  By the Theorem 1, it is not always possible to have 

an equivalent ARAM-free circuit. However, we may 

modify a circuit such that it can be converted into an 

almost equivalent ARAM-free circuit. For this 

purpose, we compute the potentiality of all O nodes in 

the corresponding circuit graph. After that, we insert 

registers just before O nodes with negative potentiality 

so that the potentiality of the corresponding O nodes 

turns into a zero. Since the potentiality of the 

corresponding O nodes now is 0, it can be converted 

into an equivalent ARAM-free circuit according to our 

Theorem 1.  

7. Conclusions 

  In this paper, we have presented a rewriting 

algorithm and five rewriting rules to convert a 

sequential circuit with ARAMs into an equivalent 

fully synchronous circuit with no ARAMs for the 

current FPGA. We consider both read and write 

operations of the memory blocks (RAMs) whereas 

only read operation of the memory blocks (ROMs) is 

considered in our previous paper [5]. In fact, we have 

improved our previous research work where RAMs 

can be used as the additional circuit elements to the 

given input sequential circuits. Using the rewriting 

algorithm, any sequential circuit with ARAMs can be 

converted into an equivalent fully synchronous 

sequential circuit with no ARAMs to support the 

modern FPGA architecture. As a future work, we have 

a plan to present an algorithm for circuits with 

feedback loops. 
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