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Abstract—In this work we present randomly optimized grid
graphs that maximize the performance measure, such as diameter
and average shortest path length (ASPL), with subject to limited
edge length on a grid surface. We also provide theoretical
lower bounds of the diameter and the ASPL, which prove
optimality of our randomly optimized grid graphs. We further
present a diagonal grid layout that significantly reduces the
diameter compared to the conventional one under the edge-
length limitation. We finally show their applications to three case
studies of off- and on-chip interconnection networks. Our design
efficiently improves their performance measures, such as end-to-
end communication latency, network power consumption, cost,
and execution time of parallel benchmarks.

I. INTRODUCTION

In this work, we tackle a graph problem called the or-
der/degree problem, especially with the subject to edge length
in a two-dimensional surface[1]. The order/degree problem
with parameters n and K is to find a graph with minimum
diameter over all graphs with the number of vertices = n and
degree ≤K. If two or more graphs take the minimum diameter,
a graph with minimum average shortest path length (ASPL)
over all graphs with minimum diameter must be found.

Graph structure has been studied in terms of ASPL and
diameter. The Moore bound illustrates ideal graphs in terms
of path hops, though they may not exist[2]. Given a graph with
degree K and diameter i, the number of vertices in the graph is

at most 1+K ∑i−1
j=0 (K −1) j

. The most famous graph problem

that relates to the Moore bound is called degree/diameter
problem (DDP). The DDP has been studied for decades and
consists in generating the largest possible graph given degree
and diameter constraints, striving to approach theoretical upper
bounds.

From the engineering point of view, the order/degree
problem is radically different from DDP. Although the DDP
is theoretically interesting, its application field to computer
networks is limited. DDP solutions may not be directly usable
for building network topologies in supercomputers, high-end
datacenter systems and on-chip multiprocessors, because they
are for particular number of compute nodes, whereas the
number of nodes in a real system is determined based on
practical considerations, e.g., budget. We thus consider that
the order/degree problem will be important in the field of
interconnection networks.

The tight design constraints of recent on-chip and off-
chip interconnection networks make the order/degree problem
and its model complex. A short link design is preferred in
various interconnection networks, such as network-on-chips
(NoCs) and also in supercomputers for better wiring and
floorplan[3], [4]. In this context we present (1) the randomly
optimized grid graphs that maximize the performance measure,
such as diameter and average shortest path length (ASPL)
with subject to limited edge length on a grid surface, (2)
their theoretical lower bounds of the diameter and ASPL,
which prove optimality of our randomly optimized grid graphs,
and (3) a diagonal grid layout that significantly reduces the
diameter compared with the conventional one under the edge
length limitation.

Our main contributions in this work are as follows.
Section III: We propose a heuristic method to build a ran-
domly optimized grid graph that corresponds to the network
topologies under tight constraints of the link length on a
floorplan.
Sections IV, V and VII: We theoretically illustrate the
lower bound of both diameter and ASPL of the grid graph.
The diameter and the ASPL of the proposed grid graph is
almost optimal in the sense that they are very close to the
theoretical lower bounds. We illustrate well-balanced values
of degree and maximum cable length.
Section VI: We devise an efficient geometric structure called
diagrid to reduce the diameter of the grid graph without
increasing degree and maximum edge length. It gives a short
Manhattan distance between the farthest nodes.
Section VIII: We provide quantitative comparisons of network
topologies through practical case studies. We find that the
resulting optimized topologies outperform by 55% on average
the counterpart k-ary n-cubes in terms of parallel benchmark
performance. Our network design also works well for improv-
ing off-chip network power consumption and on-chip parallel
application performance.

Background information and related work are discussed
in Section II. Section IX concludes with a summary of our
findings.



II. BACKGROUND AND RELATED WORK

A. Graphs with Low Diameters and Low ASPLs

The diameter/degree problem (DDP) has been considered
for various types of graphs, such as Caylay and circulant
versions [2]. Several graphs with tractable and hierarchical
structure and good diameter properties have been reported,
including the well-known De Bruijn graphs, Kautz graphs and
(n,k)-star graphs. The distance to the Moore bound makes the
DDP interesting. The DDP best known solutions typically have
relatively small numbers of vertices, and are thus far from the
Moore bound [2]. For example, most best known solutions for
d > 7 and K > 7 general graphs achieve less than 10%.

Our interests are the order/degree problem that might relate
to the DDP: find a graph that has smallest diameter and ASPL
given an order and a degree. Its lower bound on the ASPL has
been computed from the Moore bound[5]. However, when a
grid graph is considered, the problem becomes complex. If the
target is a grid graph where each vertex is located in a two-
dimensional surface and an upper bound of the edge length is
given, its theoretical bound of diameter/ASPL and best known
graphs are not resolved and not listed in a catalogue. We
provide the solutions of the grid graph in this study.

B. Order/Degree Graph Application to Interconnection Net-
works

High-performance computing systems with possibly mil-
lions of cores is required to achieve low network latency, e.g.,
1µs across the system, as well as high bisection bandwidth [6].
To achieve low latency, a topology of switches should thus
have low diameter and low average shortest path length
(ASPL), both measured in numbers of switch hops for given
degree and network size [7]. This fact motivates the application
of the order/degree solution graph for the network topology of
interconnection networks.

1) Off-Chip Network Topology: A few topologies (e.g.,
k-ary n-cubes, fat trees, and Dragonfly) have been used to
connect compute nodes in most HPC systems. Historically,
in a conservative engineering approach, the main use of
short cables is preferred for good floor layout in a machine
room. The k-ary n-cubes only have short cables (e.g., in K
computer[4]). Fat trees and Dragonfly use some long optical
inter-cabinet links to have low hop counts exploiting high-
radix switches. More aggressively, a random topology, that
may have a large number of long links that makes cabling
complex, achieves low diameter and low average shortest path
length (ASPL)[7].

Note that InfiniBand and Ethernet used in recent commod-
ity interconnection networks have routing tables and support
arbitrary topologies. To support arbitrary topologies and their
routing, the path calculation costs for deadlock-free topology-
agnostic routing[8] and the scalability issues are no longer
severe problems[9]. In this context, we can apply our randomly
optimized grid graph for those network topologies.

2) On-Chip Network Topology: The k-ary 2-meshes and
folded k-ary 2-tori have good layouts that make each link
length uniform and short. In the flattened butterfly[10], routers
in each row of a conventional butterfly are combined into a
single router. It has a large diversity of router degrees for

various network sizes and its low-degree case is equivalent to
hypercube. When a design allows each router to have multiple
cores and slightly longer links, a cost-effective design, such
as concentrated mesh, can be used[11]. Random and small-
world network topologies are also well considered in on-
chip networks[12], because random long links strongly reduce
packet path hops. There are some techniques concerning signal
propagation delay. Express virtual channels and SMART can
bypass router pipelines for certain access patterns so that a flit
could reach the destination almost by its signal propagation
delay[13]. Elastic buffers and on-chip decentralized routers
can optimize energy on wires[14] by distributing the router
functions over links.

In this work we compare our randomly optimized grid
graph (topology) to those same-degree network topologies in
Section VIII.

III. RANDOMLY OPTIMIZED K-REGULAR L-RESTRICTED

GRID GRAPHS

A grid graph is a graph G = (V,E) such that V = {(x,y) |
0 ≤ x,y ≤

√
N − 1} is a set of N nodes and E is a set of

edges connecting a pair of two distinct nodes in V . We can
think that nodes in V are arranged in a 2-dimensional space
so that each node (x,y) is located at position (x,y). Let l(u,v)
denote the Manhattan distance of two nodes u and v in V ,
that is, l(u,v) = |ux − vx|+ |uy − vy|, where u = (ux,uy) and
v = (vx,vy). In a network with topology represented by a grid
graph, the two nodes (u,v) are connected by a communication
link of length l(u,v) wired along the grid.

A grid graph G = (V,E) is L-restricted if l(u,v) ≤ L for
all edges (u,v) ∈ E. Clearly, in a network with topology
represented by an L-restricted grid graph, the length of every
communication link is restricted to no more than L. A graph
is K-regular if every node is connected with K edges. The
value of K corresponds to the number of ports equipped with
a computer or a network switch.

Let D(G) and A(G) be the diameter and the average
shortest path length (ASPL) of a graph G, respectively. More
formally, D(G) and A(G) can be defined using hG(u,v), the
number of edges in the shortest path between nodes u and v
in G as follows:

D(G) = max{hG(u,v) | u,v ∈V}
A(G) = ∑

u 6=v

hG(u,v)/(N(N −1))

Our goal is to find a K-regular L-restricted grid graph G with
the minimum diameter D(G). Further, we want to select a
graph G with the minimum ASPL A(G) over all graphs with
the minimum diameter. We say that G is better than G′ if
D(G)< D(G′), or both D(G) = D(G′) and A(G)< A(G′) hold.
In other words, our goal is to find the best or an almost
best graph over all K-regular L-restricted grid graphs. Our
algorithm for this goal may need to handle an unconnected
grid graph, in which the diameter and the ASPL cannot be
computed, as an intermediate one. Hence, we extend this
definition as follows. When at least one of G and G′ are
unconnected, we say that G is better than G′ if C(G)<C(G′),
where C(G) is the number of connected components of G.
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Fig. 2. 2-toggle operation

We will show a randomized algorithm for generating an
almost optimal K-regular L-restricted grid graph with small
diameter and small ASPL. Our algorithm has three steps as
follows:
Step 1: Generate an initial K-regular L-restricted grid graph
G.
Step 2: Repeatedly perform random 2-toggle operation to
generate a random K-regular L-restricted grid graph.
Step 3: Repeatedly perform random 2-opt operation to find a
K-regular L-restricted grid graph as best as possible.

In Step 1, an initial graph can be generated by connecting
two adjacent nodes appropriately. Note that the topology of an
initial graph generated in Step 1 is not a big issue. Since the
following steps generate a random graph by scrambling the
edges, an initial grid graph can be any K-regular L-restricted
grid graph.

Step 2 repeats the random 2-toggle operation illustrated
in Figure 2. In the random 2-toggle operation, we randomly
pick two disjoint edges. In the figure, (u1,u2) and (v1,v2) are
selected. These edges are replaced with two edges (u1,v1) and
(u2,v2). Clearly, this replacement does not change the degree
of every node. However, it is possible that the graph thus
obtained is not L-restricted, that is, l(u1,v1)> L or l(u2,v2)> L
hold. If this is the case, we undo the replacement. The random
2-toggle operation is repeated for all edges in G. Figure 1 (2)
shows a random grid graph obtained when Step 2 terminates.
The shortest paths from the node at the top-left corner to the
other corners are colored.

In Step 3, the random 2-opt operation is repeated many
times. The random 2-opt operation is almost the same as
the 2-toggle operation. The difference is cancellation of the
replacement. We also undo the random 2-opt operation if
the resulting graph is not better than the graph before the
operation. Figure 1 (3) shows a graph obtained after Step 3. We
can see that the iterative random 2-opt operations can generate
a graph with smaller diameter and ASPL. Since the random
2-opt operation is a simple local search for finding a local
minimum, we have applied simulated annealing technique, a
generic metaheuristic for the optimization, which can be more
efficient than a straightforward local search. More specifically,
even if the resulting graph obtained by the 2-toggle operations
is not better, we do not cancel the replacement with some
small probability. We call a graph obtained by our randomized
algorithm a randomly optimized grid graph.

We should mention that Step 2 can be omitted. An opti-
mized random grid graph can be obtained just by executing
Step 1 and Step 3. We execute Step 2 to accelerate the com-
putation. The computation cost of the random 2-opt operation
is much larger than that of the random 2-toggle operation,
because it must compute both the diameter and the ASPL,
which takes O(N2K) time by breadth first search starting from

every node. On the other hand, the random 2-toggle operation
can be done in O(1) time and thus the running time of Step 2
is very small. For example, Step 2 runs in less than 0.1 seconds
for parameters K = 6, L = 6 and N = 30× 30, and generates
a grid graph with diameter 12 and ASPL 5.7933 using Intel
Core i7-4650 CPU. If we omit Step 2, then more than 1,800
iterations of the random 2-opt operations, which takes more
than 70 seconds, are performed to obtain a grid graph with
the same diameter and ASPL. Hence Step 2 is very helpful
to get a good intermediate solution of a grid graph at a small
computing cost.

IV. LOWER BOUNDS OF THE DIAMETER AND ASPL OF

GRID GRAPHS

This section shows tight lower bounds of the diameter and
the ASPL of grid graphs. Throughout this section, we focus on
K-regular L-restricted grid graphs of size

√
N ×

√
N. We first

show the lower bound of the ASPLs for K-regular graphs and
for L-restricted grid graphs, separately. After that, we combine
them to obtain a tight lower bound for K-regular L-restricted
grid graphs.

First, we show the lower bound of the ASPL of a K-regular
graph G = (V,E). For any fixed node u, we can partition all
nodes in V into groups V0,V1, . . . such that Vi = {v ∈ V | the
shortest path between u and v has i edges}. Clearly, V0 = {u}
holds. Since u is connected with K edges, V1 has K nodes.
Further, each node in V1 is connected with K nodes in V0 ∪
V1 ∪V2, and one of them is u (∈ V0). Hence, it is connected
with at most K−1 nodes in V2 and so V2 has at most K(K−1)
nodes. Similarly, each node in V2 is connected with at most
K−1 nodes in V3, and thus V3 has K(K−1)2 nodes. In general,
Vi (i ≥ 1) has no more than K(K − 1)i−1 nodes. Let m(i) be
the Moore function such that m(1) = 1 and

m(i) = max(1+
i

∑
j=1

K(K −1) j−1,N) (1)

for all i > 1. It should be clear that the number of nodes
reachable in i hops from u does not exceed m(i). Thus, we
have the lower bound of the ASPL A−

m of a K-regular graph
as follows:

A−
m = ∑

i≥1

((m(i)−m(i−1)) · i)/(N −1). (2)

Next, we show the lower bound of the ASPL of an L-
restricted grid graph. To show the lower bound, we evaluate
the ASPL of a grid graph in which all pair of two nodes within
distance L are connected. The number of nodes that can be
reachable in i hops from a node (x,y) is

dx,y(i) = |{(x′,y′) ∈V | d((x,y),(x′,y′))≤ i ·L}|. (3)

Figure 3 illustrates the values of d0,0(i) for a 3-restricted grid
graph of size 10× 10. The lower bound A−

d of the ASPL of
an L-restricted grid graph can be computed by the following
formula:

A−
d = ∑

(x,y)∈V

∑
i≥1

((dx,y(i)−dx,y(i−1)) · i)/N(N −1). (4)

It should be clear that max(A−
m ,A

−
d ) is the lower bound of

the ASPL of a K-regular L-restricted grid graph, because it is



diameter = ∞ diameter = 10 diameter = 6
ASPL = ∞ ASPL = 4.575 ASPL = 3.443

(1) initial grid graph (2) random grid graph (3) randomly optimized grid graph

Fig. 1. The topologies of 4-regular 3-restricted grid graphs created at the end of each step. Edges are drawn straight for visibility, although they should be
wired along the grid.

d0,0(0) = 1

d0,0(1) = 10
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d0,0(3) = 55

d0,0(4) = 79
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d0,0(6) = 100

1

1

Fig. 3. The values of d0,0(i) for a 3-restricted grid graph of size 10×10.

a K-regular graph as well as an L-restricted grid graph. We
can obtain a better, that is, larger lower bound by combining
m(i) and dx,y(i). Let mdx,y(i) = min(m(i),dx,y(i)). Clearly, the
number of nodes reachable in i hops from node (x,y) in a K-
regular L-restricted grid graph does not exceed mdx,y(i). Thus,
we have the lower bound A− by the following formula:

A− = ∑
(x,y)∈V

∑
i≥1

((mdx,y(i)−mdx,y(i−1)) · i)/N(N −1).

We can also have the lower bound of the diameter using md.
Let D− be the value of i such that md0,0(i − 1) < N and
md0,0(i− 1) = N. Since there exists a node v such that the
shortest path from (0,0) to v has D− edges, D− is the lower
bound of the diameter.

Table I shows the values of m, d, and md for a 4-regular
3-restricted grid graph of size 10 × 10. We can see that
m(i)< d0,0(i) for small i and m(i) increases more rapidly than
d0,0(i). From the table, we have the diameter lower bound
D− = 6. Also, we can obtain the lower bound A− = 3.330 of
the ASPL, which is larger than A−

m = 3.273 and A−
d = 2.560.

Thus, the diameter of a 4-regular 3-restricted grid graph shown
in Figure 1 (3) is optimal. Also, the ASPL is almost optimal;
the gap is only 3.443−3.330

3.330
≈ 3.4%.

TABLE I. THE VALUES OF m, d0,0 , AND md0,0 FOR A 4-REGULAR

3-RESTRICTED GRID GRAPH OF SIZE 10×10

i 0 1 2 3 4 5 6
m(i) 1 5 17 53 100 100 100

d0,0(i) 1 10 28 55 79 94 100
md0,0(i) 1 5 17 53 79 94 100

For later reference, we write D−(N,K,L), A−(N,K,L),
A−

m(N,K), and A−
d (N,L) when we should clarify that the values

of D−, A−, A−
m , and A−

d are for a K-regular L-restricted grid

graph of size
√

N×
√

N. Also, let D+(N,K,L) and A+(N,K,L)
be the values of the diameter and the ASPL of optimized grid
graph generated by our randomized algorithm. We may also
omit N if it is clear from the context.

V. OPTIMALITY OF RANDOMLY OPTIMIZED GRID

GRAPHS

In this section, we discuss optimality of the optimized grid
graphs that our randomized algorithm generates by comparing
the diameter and the ASPL with the lower bounds and show
that they are almost optimal. We focus on a K-regular L-
restricted grid graph of size 30×30.

We will show that the diameter D+(K,L) of the optimized
grid graph is equal to the theoretical lower bound D−(K,L)
for most of K and L. Table II shows the values of D+(K,L)
and D−(K,L) for all K (3 ≤ K ≤ 12) and L (2 ≤ L ≤ 12).
Since D+(7,L),D+(8,L), and D+(9,L) are the same for every
L, these values are written in row D+(7–9,L). Similarly, rows
D+(10–16,L) and D−(6–16,L) corresponds to multiple K’s
that take the same diameters for every L. From the table, we
can see that the values of D+

K,L and D−
K,L are almost the same.

In particular for large K or for small L, they are equal and
randomly optimized grid graphs are diameter-optimal. On the
other hand, for small K and large L, D+(K,L) and D−(K,L)
are not equal. If L is large, we have a lot of choices of edges
connecting nodes, and thus, it is very hard to find the best one.
Also, if K is small, each edge is used for the shortest paths of
many pairs of nodes. Hence, generation of best configuration
of edges for small K and large L is difficult.

However, the non-optimal cases are not big issues, because
we can select the best pair of K and L to satisfy a given



TABLE II. DIAMETER UPPER BOUND D+(K,L) AND LOWER BOUND

D−(K,L) OF A K-REGULAR L-RESTRICTED GRID GRAPH OF SIZE 30×30

L 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
D+

3,L 29 20 15 12 12 11 11 11 11 11 11 11 11 11 11
D−

3,L 29 20 15 12 10 9 9 9 9 9 9 9 9 9 9

D+
4,L 29 20 15 12 10 9 8 8 8 8 8 8 8 8 8

D−
4,L 29 20 15 12 10 9 8 7 6 6 6 6 6 6 6

D+
5,L 29 20 15 12 10 9 8 7 7 6 6 6 6 6 6

D−
5,L 29 20 15 12 10 9 8 7 6 6 5 5 5 5 5

D+
6,L 29 20 15 12 10 9 8 7 6 6 6 6 6 6 6

D+
7−9,L 29 20 15 12 10 9 8 7 6 6 5 5 5 5 5

D+
10−16,L 29 20 15 12 10 9 8 7 6 6 5 5 5 4 4

D−
6−16,L 29 20 15 12 10 9 8 7 6 6 5 5 5 4 4
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A−m (3,L)
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A−m (5,L)

A+(10,L)

A−(10,L)

A−m (10,L)

A−
d
(L)

Fig. 4. ASPL of grid graphs of size 30×30 for K =3, 5, and 10

diameter condition. For example, if diameter 8 is required, we
can find from Table II that K = 4 and L = 8 must be selected.
Also, we can see that D−(K,L) ≥ 9 when K ≤ 3 or L ≤ 7.
Hence, the degree K = 4 and the maximum edge length L = 8
are must to attain diameter 8. In other words, our randomly
optimized 4-regular 8-restricted grid graph with diameter 8
is optimal in the sense that it is proved that any grid graph
with smaller parameters always has diameter larger than 8.
If we need a grid graph with diameter 7, then we can select
parameters K = 5 and L = 9. Unfortunately, the graph obtained
by our algorithm with these parameters is not proved optimal.
From D−(4,9) = 8, there may exist a 4-regular 9-restricted
grid graph with diameter 8. Of course, there may not exist
such a graph, because the lower bound is not tight. However,
we can say that it is almost optimal because plus one degree
achieves the optimal diameter graph.

Next, we will discuss the ASPL of grid graphs of size
30 × 30. Figure 4 shows the upper bounds and the lower
bounds for K = 3, 5, and 10 from L = 2 to 16. Combining
each A−

m(3) = 7.325, A−
m(5) = 4.377, and A−

m(10) = 2.878
with A−

d (L), we have the lower bounds A−(3,L), A−(5,L),
and A−(10,L). We can see that the upper bounds A+(3,L),
A+(5,L), and A+(10,L) obtained by our randomly optimized
grid graph are very close to these lower bounds. From the
figure, we can see that the improvement of the ASPL is
saturated for large L. Hence, it makes no sense to select too
large L. For example, from the values of A+(5,L) in Figure 4,
it makes no sense to choose L ≥ 10 when K = 5, because the
ASPL A+(5,L) for L≥ 10 is almost the same as that for L = 9.

Figure 5 shows the upper bounds and the lower bounds
for L = 3, 5, and 10 from K = 3 to 16. We can see that it is
very similar to Figure 4. Combining the lower bounds A−

d (3) =
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Fig. 5. ASPL of grid graphs of size 30×30 for L =3, 5, and 10

7.000, A−
d (5) = 4.401, and A−

d (10) = 2.452 with A−
m(K), we

have the lower bounds A−(K,3), A−(K,5), and A−(K,10).
We can see that the upper bounds A+(3,L), A+(5,L), and
A+(10,L) are very close to the lower bounds. Also, the
improvement is saturated for large L, and thus, we can find
appropriate values of L for each K in the same way.

VI. RANDOMLY OPTIMIZED K-REGULAR L-RESTRICTED

DIAGRID GRAPHS

This section presents an idea to reduce the diameter of a
grid graph without increasing degree K and maximum edge
length L. The idea is to use a diagonal grid (i.e., a diagrid)
arrangement of nodes and edges.

Suppose that
√

n
2
×
√

2n nodes are arranged in
√

n
2

rows

such that each row has
√

n
2

nodes and the Euclidean distance

of adjacent nodes is
√

2. Each odd rows are slided by
√

2/2.
We call a graph arranged in this way a diagrid graph. We
assume that the distance of two nodes is defined by the
Manhattan distance along diagonal directions. For example,
the distance of two nodes adjacent in a diagonal direction is 1.
The distance of two nodes adjacent in a horizontal direction is

2, although the Euclidean distance of them is
√

2/2. Figure 6
illustrates the node arrangement of a diagrid graph of size
7×14. As the Manhattan distance is defined along slash lines,
communication links of a network represented by a diagrid
graph are wired along them.

We can generate a randomly optimized diagrid graph in
three steps almost in the same way as a grid graph. More
specifically, an initial diagrid graph is generated (Figure 7 (1))
in Step 1. In Step 2, the random 2-toggle operation is repeated
for generating a random diagrid graph (Figure 7 (2)). Finally,
Step 3 repeats the random 2-opt operation to obtain a randomly
optimized diagrid graph (Figure 7 (3)). We can see that the
iterative random 2-opt operation can decrease the diameter and
the ASPL significantly.

Let us compare the randomly optimized diagrid graph (Fig-
ure 7 (3)) to the randomly optimized grid graph (Figure 1 (3)).
Note that the numbers of nodes are almost the same: the diagrid
graph has 98 nodes while the grid graph has 100 nodes. The
diameter of the diagrid graph is smaller than that of the grid
graph, because the maximum distance of two nodes is smaller.
That of the diagrid graph of size 7×14 is only 13, while that
of the grid graph of size 10×10 is 18. In general, that of the



diameter = ∞ diameter = 9 diameter = 5
ASPL = ∞ ASPL = 4.370 ASPL = 3.459

(1) initial diagrid graph (2) random diagrid graph (3) randomly optimized random graph

Fig. 7. Illustrating 4-regular 3-restricted diagrid graphs of size 7×14 generated by our algorithm. Edges are drawn along Euclid for the sake of simplicity,

although they are along Manhattan distance.

m(0) = 1

m(1) = 8

m(2) = 25

m(3) = 50

m(4) = 85
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Fig. 6. A diagrid graph of 7×14 and the values of d0,0(i) for 3-restricted

the diagrid graph of size
√

n
2
×
√

2n is
√

2n−1, while that of

the grid graph of size
√

n×√
n is 2

√
n−2. Thus, the diameter

of the diagrid graph may be decreased to
√

2n−1

2
√

n−2
≈

√
2

2
≈ 70.7%

for enough large n. On the other hand, the ASPL of two graphs
are almost the same, because the average distances of them
are almost equal. Actually, the average distance of nodes of
a 10× 10 grid graph is 6.667, while that of a 7× 14 diagrid
graph is 6.552. Theoretically, for enough large N, the average
Manhattan distance of all pairs of two nodes in a

√
N ×

√
N

grid graph can be evaluated as follows:
∫∫∫∫

D
(|x− x′|+ |y− y′|)dxdydx′dy′ =

2

3

√
N,

where the domain D is {0 ≤ x,y,x′,y′ ≤
√

N}. Similarly, that

of a

√

N
2
×
√

2N diagrid graph arranged in a square field of

size
√

N ×
√

N is computed as follows.

∫∫∫∫

D

√
2 ·max(|x− x′|, |y− y′|)dxdydx′dy′ =

7
√

2

15

√
N.

TABLE III. THE VALUES OF m, d0,0 , AND md0,0 FOR A 4-REGULAR

3-RESTRICTED DIAGRID GRAPH OF SIZE 10×10

i 0 1 2 3 4 5
m(i) 1 5 17 53 98 98

d0,0(i) 1 8 25 50 85 98
md0,0(i) 1 5 17 50 85 98

From 2
3
≈ 0.667 and 7

√
2

15
≈ 0.660, the average distances of

nodes are almost the same, and so the ASPL will be also.

Next, let us discuss the lower bound of the ASPL. As
before, let m(i) be the number of nodes in i hops from
a particular node of a K-regular graph. Also, let dx,y(i) be
the number of nodes in i hops from node (x,y) of an L-
restricted diagrid graph. Further, let mdx,y be the minimum of
them. Table III shows these values of a 4-regular 3-restricted
diagrid graph. Using the values of mdx,y(i) we can compute
the ASPL lower bound A− of a diagrid graph. For example,
A− = 3.279 for a 4-regular 3-restricted diagrid graph. Hence,
the gap of the randomly optimized diagrid graph in Figure 7
is 3.459−3.279

3.279
= 5.5%. Also, from Table III, we have the lower

bound D− = 5 of the diameter. Thus, the randomly optimized
diagrid graph is diameter-optimal.

Let us compare the diameters of grid graphs and diagrid
graphs with almost the same nodes. We use 900-node grid
graphs of size 30× 30 and 882-node diagrid graphs of size
21× 42. Figure 8 shows the diameter of the grid graph and
the diagrid graph for K = 3, 5, and 10. When L is small,
say L = 2, the diameter of the grid graphs is 29, while that
of the diagrid graphs is 21 for all K. Hence, the diameter is
decreased to 21

29
= 72.4%, which is close to 70.7% obtained

by the theoretical analysis. On the other hand, for large L,
the diameter is determined by the value of K. For example,
D+(3,16) = 11, D+(5,16) = 6, and D+(10,16) = 4 for both
the grid graphs and the diagrid graphs. Hence, we should select
the diagrid graph if L is not so large.

Finally, we will show that the ASPLs of the grid graph
and the diagrid graph are almost the same. Since the average
distance of nodes are almost the same, we can expect that
the ASPLs are also the same. We can confirm this fact by
experiments. Figure 9 shows ASPL A+(K,L) of grid graphs
and diagrid graphs for K = 3, 5, and 10. We can see that the
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ASPL is almost the same for every pair of K and L.

VII. A GUIDELINE FOR SELECTING DEGREE K AND

MAXIMUM LENGTH L

As we can see in Section V, we should choose well-
balanced values of degree K and maximum length L. Clearly,
since the values of K and L determine the hardware resources,
smaller values are better to reduce the installation and running
costs. Because the upper bound and the lower bound of the
ASPL of a K-regular L-restricted grid graph are very close, we
use the lower bounds to discuss appropriate selection of values
of K and L. The discussion in this section can be applied to
diagrid graphs as it is.

Imbalanced values of K and L waste the hardware re-
sources. For example, when N = 30× 30, K = 4, and L = 8,
A−(4,8) = 5.207, that is, the lower bound of the ASPL
is 5.207. Also, A−

m(4) = 5.204 and A−
d (8) = 2.939, that is,

the ASPL lower bounds of 4-regular and 8-restricted grid
graphs are 5.204 and 2.939, respectively. Hence, the ASPL
is determined almost only by K and the maximum length L
affects the ASPL a few. Even if we decrease L by one, the
ASPL A−(4,7) = 5.225 is almost the same. This fact means
that K is too small or L is too large. Such imbalanced values
of K and L waste the cost incurred by large L. We should
choose smaller L or larger K to balance the contribution of K
and L for the ASPL. From this observation, we say that the
values of K and L are well-balanced if the absolute difference

TABLE IV. WELL-BALANCED PAIRS OF K AND L WITH THE LOWER

BOUNDS A−m(N,K), A−
d (K) AND A−(K,L) FOR N =30×30

K 3 4 5 6 9 10
L 3 4 5 6 7 8

A−
m(K) 7.325 5.204 4.377 3.746 3.169 2.877

A−
d (L) 7.000 5.376 4.440 3.751 3.287 2.939

A−(K,L) 8.112 6.001 4.957 4.305 3.626 2.964

|A−
m(K)−A−

l (L)| is a local minimum, that is, it is no larger than

the absolute differences of four neighbors |A−
m(K−1)−A−

l (L)|,
|A−

m(K + 1)−A−
l (N,L)|, |A−

m(K)−A−
l (L− 1)|, and |A−

m(K)−
A−

l (L+1)|.
Table IV shows a list of well-balanced pairs for a grid

graph of size N = 30× 30. It is recommended to use these
pairs when a network of size 30× 30 is installed. However,
it is not a must to select a pair in this table. We can select a
pair close to these well-balanced values. For example, if we
select K = 4 and L = 5, the lower bounds are A−

m(4) = 5.204,
A−

d (5) = 4.401, and A−(4,5) = 5.471. Hence, this pair is still
acceptable for network installation.

Next, let us discuss asymptotic analysis of well-balanced
pairs of K and L of a

√
N×

√
N grid graph from a theoretical

point of view. To simplify the analysis, we use big-theta
Θ such that f (n) = Θ(g(n)) if c1 · g(n) ≤ f (n) ≤ c2 · g(n)
for some c1 and c2. From Formulae (1) and (2), we have
A−

m(N,K) = Θ(logN/ logK). From Formulae (3) and (4), we

also have A−
d (N,K) =Θ(

√
N/L). To balance K and L, we must

satisfy A−
m(N,K)≈ A−

d (N,K), that is,

Θ(logN/ logK) ≈ Θ(
√

N/L). (5)

We show several interesting observations from Formula (5).
Since we have three parameters N, K, and L, we fix one of
them and see the relation of the remaining two parameters. In
each observations, we first assume that we have an optimized
grid graph of size

√
N ×

√
N with parameters K and L.

(1) N is fixed: If L is doubled, then K must be squared
from logK2 = 2logK to keep well-balanced. This means
that increment of L affects the ASPL more than that of K.
For example, balanced pairs (K,L) for a grid graph of size
300×300 include (6,32) and (33,64), which approximate this
relation.
(2) K is fixed: From Formula (5), we have an increasing
function L = Θ(logK

√
N/ logN) of N. If N is increased by

a factor of α , L must be about
√

α times larger to keep well-
balanced. For example, if N = 10×10, then (K,L) = (6,3) is
well-balanced. We have shown (K,L) = (6,6) is well-balanced
when N = 30×30. Since α = 3, the increasing ratio 6/3 = 2
is close to

√
α = 1.732.

(3) L is fixed: From Formula (5), we have a decreasing function
logK = Θ(L logN/

√
N) of N. Thus, if L is fixed and N is

increased, K must be decreased to keep well-balanced. For
example, if N = 20×20, then (K,L) = (11,6) is well-balanced.
Also, (K,L) = (6,6) is well-balanced when N = 30 × 30.
Hence, by increasing the number of nodes, the value of K
is decreased to keep well-balanced. Quite surprisingly, the
relation of N and K for a fixed L is against this intuition.
For example, suppose that a computer manufacturer releases
two supercomputers: the mid-range with 20× 20 nodes and
the high-end with 30 × 30 nodes. We assume that electric
communication cables with the same technology are used
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Fig. 10. Zero-load latency for each topology

in these supercomputers and their length must be no more
than 6. Manufacturer may want to use more ports in each
node of the high-end supercomputer to differentiate the two
models. However, the high-end supercomputer should have
fewer ports to keep well-balanced. Each node of a 20× 20-
node supercomputer should have 11 ports, while 6 ports are
sufficient for a 30× 30-node supercomputer. This is a very
interesting observation against developer’s common intuition.

VIII. CASE STUDIES

A. Design of Off-chip Low-latency Networks

In the first case study we aim at building low-latency
interconnection networks without active optical cables, because
they are quite expensive when compared to other network
components, switch chips, network interface and passive elec-
tric cables[15]. To this end our K-regular L-restricted graph
generation method is a perfect way, because the passive electric
cables have a limited maximum length.

1) Condition: We assume N switches enclosed in N cabi-
nets arranged on a machine room floor. We set the switch delay
to 60 ns and the cable delay to 5 ns/m. The network topologies
are generated as in Sections III and VI with parameters K = 6
and L = 6 so as to use no optical cables. The objective is
to minimize the diameter and the ASPL. As a competitor
topology we choose a k-ary 3-cube (i.e., a 3-D torus) because
other popular topologies (fat tree, Dragonfly, etc.) are difficult
to build without long cables. For simplicity we set the cabinet
size to 1 × 1 m on the floor, while a different size is used in
the following case studies.

2) Average and Worst Zero-load Latency: Figure 10 illus-
trates the zero-load communication latency calculated as the
sum of the switch delay and the cable delay for the shortest
paths (assuming a minimal routing) between every pair of
switches. Our randomly optimized grid and diagrid topologies
are denoted as Rect and Diag, respectively.

For the 4,608-switch networks, the average zero-load la-
tencies are 921 ns and 915 ns for the grid and the diagrid,
respectively. They are about 41% lower than that of the
counterpart 3-D torus. The difference in the average latency
between the grid and the diagrid is negligible. The maximum
(worst) zero-load latencies are 2,355 ns and 1,860 ns for the
grid and the diagrid, respectively. The latter is 44% lower than
that of the torus. All those results indicate that both the grid
and the diagrid offer lower latencies than torus regardless of
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Fig. 11. Application performance for each topology

the network size, and the diagrid has a notable advantage over
the grid in the maximum latency.

3) Event-discrete Simulation: We use the SIMGRID simu-
lation framework (v3.12)[16]. SIMGRID implements validated
simulation models, is scalable, and makes it possible to sim-
ulate the execution of unmodified parallel applications that
use the Message Passing Interface (MPI). We simulate the
execution of the NAS Parallel Benchmarks (version 3.3.1, MPI
versions)[17] (Class B) and the matrix multiplication example
provided in the SIMGRID distribution (MM). In all figures
the execution times relative to that of the execution on 3-D
torus are shown. The higher values are better. We pick 288-
switch networks for the fair comparison of the grid and the
diagrid. The cable length between switches is set to 5m for all
the topologies. We configure SIMGRID to utilize its built-in
version of the MVAPICH2 implementation of MPI collective
communications.

Figure 11 shows the performance of each benchmark
executed on our randomly optimized grid (Rect) and diagrid
(Diag) topologies, both normalized to that executed on torus.
The grid and the diagrid outperform torus by 70% and 49%
on average, respectively. CG and LU typically communicates
between neighboring switches (i.e., stencil communication),
whereas FT, IS, and MM communicates between all pairs of
switches (i.e., all-to-all communication). Our randomly opti-
mized topologies achieve higher performance for FT and MM,
because they have lower zero-load communication latencies
than torus. As shown in Section VIII-A2, the maximum zero-
load latency of the diagrid is lower than that of the grid, while
the averages are almost the same. As a result, the diagrid
slightly outperforms the grid. We thus consider that the max-
imum zero-load latency affects the all-to-all communication
performance.

B. Design of Off-chip Low-power Networks under 1µs Maxi-
mum Communication Latency

The second case study aims at generating the lowest-
power interconnection networks that satisfies 1µs maximum
zero-load latency. The low power consumption is a general
requirement and the 1µs latency is listed in the requirements
of future interconnection networks[6]. In this case study, we
can use both passive electric and active optical cables, but
try to minimize the number of active optical cables so as to
minimize the power consumption. In this evaluation we do
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Fig. 12. Network power consumption (left) and cost (right) for each topology.

not consider any link regulation mechanism such as Energy
Efficient Ethernet (EEE), with which the NIC/switch PHY is
set to Low Power Idle mode when there is no traffic on a
cable. The reason is that these operation overheads degrade the
performance of latency-sensitive HPC benchmarks, and hence
the EEE is not common in the HPC field.

1) Condition: We take the evaluation parameters from the
Mellanox Technologies products. The passive electric cable
length is assumed to be up to 7 m according to the 40 Gbps
InfiniBand cable products. The power consumption of a switch
is minimally set to 111.54 W when connected only to passive
electric cables, and maximally 200.4 W when connected only
to active optical cables[18]. We assume that each cabinet uses
the space of 0.6 × 2.1 m and requires 1 m overhead at both
ends of a cable. The other parameters are the same as those in
the previous subsection. We use the randomized algorithm for
generating a K-regular L-restricted grid graph for the purpose.
The 2-opt operation in Step 3 in Section III is implemented
as follows. (1) Swap the endpoints of two disjoint edges if
the maximum zero-load communication latency becomes lower
in this operation. Repeat the procedure until the maximum
zero-load communication latency becomes lower than 1 µs.
(2) Repeatedly swap the endpoints of two disjoint edges only
when (a) the maximum zero-load communication latency is
lower than 1 µs and (b) the amount of power consumption for
the network decreases in this operation.

2) Network Power Consumption and Cost: Figure 12 (left)
shows the network power consumption of the grid (Rect) and
the diagrid (Diag) topologies, normalized to the performance
of the counterpart torus. The maximum zero-load communi-
cation latency after the optimization are shown in Figure 13.
Most cases for torus cannot meet the latency requirement. By
contrast, most cases for the grid and the diagrid meet, though
they increase the network power consumption. Interestingly,
the ratio of electric cables over the total number of inter-
switch cables varies from 19% to 100% in the grid and the
diagrid. Our finding is that the grid and the diagrid topologies
work well to the purposes of reducing both the communication
latency and the power consumption.

The cable media also affects the network cost. Figure 12
(right) computes the cost for each network topology using the
cost model of InfiniBand QDR electric and optical cables[19].
We can see that the cost of the diagrid and the grid increases
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Fig. 13. Maximum zero-load latency after optimization.

by 0.7%–33% when compared to that of torus, which does not
meet the 1 µs maximum zero-load communication latency.

C. Design of Low-latency On-chip Networks

The last case study focuses on on-chip interconnection
networks, especially those used for chip multi-processors
(CMPs), in which communication latency significantly affects
the parallel application performance.

As an alternative to regular topologies where the longest
wire length is automatically determined, the proposed low-
latency topology optimized for a given longest wire length
parameter would become an attractive design option when the
wire delay is a severe design issue. Due to page limitation,
the primary objective of this case study is to demonstrate po-
tentials of the optimized low-latency topologies when they are
applied for on-chip interconnection networks. To this end, the
following three 72-node topologies are compared in terms of
average hop count, network latency, and application execution
time; 9×8 2-D folded torus (Torus), 9×8 randomly optimized
grid topology (Rect), and 12×6 randomly optimized diagrid
topology (Diag). The grid and the diagrid are generated by the
proposed method under constraints where K = 4 and L = 4, in
order to see a performance gain when L constraint is relaxed
compared to the baseline torus. Although manufacturability,
yield, and reliability aspects of a diagonal VLSI architecture
have been addressed[20], we mainly compare torus and the
grid in this work. XY dimention-order minimum routing is
used for torus, while a deterministic routing restricted by
Up*/Down* rule is used for the grid and the diagrid.

We assume shared-memory CMPs, in which each processor
has private L1 data and instruction caches, while the unified L2
cache banks are shared by all the processors. Eight processors
(CPUs), 64 L2 cache banks, and four memory controllers are
interconnected by 72-node torus, the grid, and the diagrid
topologies. CPUs are connected to routers on chip edges (two
CPUs for each edge). We used a full-system CMP simulator
gem5[21]. The processor and network parameters are listed in
Table V. We use eight parallel programs from the OpenMP
implementation of NAS Parallel Benchmarks (NPB). The
number of threads was set to eight as the number of processors
in the target CMPs is eight. Figure 14 shows the application
execution times. The results are normalized so that the exe-
cution time on torus is 100%. As expected, the application



TABLE V. SIMULATION PARAMETERS OF TARGET CMPS.

Processor architecture x86-64
L1 I/D cache size, latency 32 KB (line:64B), 1 cycle

L2 cache bank size, latency 256 KB (assoc:4), 6 cycles
Memory size, latency 4 GB, 160 cycles

Cache coherency protocol MOESI directory

Router pipeline 3 cycles for router + 1 cycle for link
Buffer size, flit size 5 flits per VC, 128 bits

Packet size 1 flit for control, 5 flits for data
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Fig. 14. Full-system simulation results.

execution time results also reflect the communication latency
reduction.

IX. CONCLUSIONS

We generate a randomly optimized grid graph so as to
satisfy given degree and edge length constraints. Its diameter
and ASPL are close to the lower bounds. In addition, we
present a diagrid graph to reduce the maximum Manhattan
distance of a link, and the diagrid successfully reduces the
distance by 29.3%.

Our result graphs can be applied for network topology of
an interconnection network. Through three case studies, our
main finding is that our randomly optimized topologies reduce
the zero-load communication latency, thus giving the perfor-
mance improvement of seven out of eight parallel applications
(70% improvement on average) on off-chip networks. Another
finding is that our randomly optimized topologies provide
good design trade-off between power consumption, cost, and
communication latency. Similarly, they can be applied to an
on-chip network. The full-system simulation results illustrate
that all the application performance is improved by 3.3% on
average. Through these theoretical and practical findings, our
recommendation is to use the randomly optimized topologies
for various off- and on-chip interconnection networks.
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