
A Time Optimal Parallel Algorithm for the Dynamic
Programming on the Hierarchical Memory Machine

Koji Nakano
Department of Information Engineering

Hiroshima University
Kagamiyama 1-4-1, Higashi Hiroshima, 739-8527 Japan

Abstract—The Hierarchical Memory Machine (HMM) is a
theoretical parallel computing model that captures the essence of
architecture of CUDA-enabled GPUs. The main contribution of
this paper is to present an efficient implementation of the �����-
time dynamic programming algorithm for solving the optimal
triangulation problem for a convex �-gon in the HMM. Although
the HMM can run a lot of threads in parallel, it is very hard
to accelerate computation involving complicated memory access
such as the dynamic programming for the optimal triangulation
problem. It is often the case that the acceleration rate is
limited to the bandwidth � of the global memory for problems
involving complicated stride memory access. Quite surprisingly,
our implementation of the dynamic programing algorithm for
solving the optimal triangulation problem runs �� �

�

�
� � time units

using ����������� threads on the HMM with bandwidth �,
global memory latency � and shared memory latency �. Hence,
this parallel algorithm achieves the acceleration rate of more
than � although the dynamic programming algorithm involves
complicated stride memory access. Also, we prove that this
parallel algorithm is time optimal when � � �����.

Keywords-Dynamic programming, parallel algorithms, mem-
ory machine models, GPU, CUDA

I. INTRODUCTION

The GPU (Graphics Processing Unit) is a specialized circuit
designed to accelerate computation for building and manip-
ulating images [1], [2], [3]. Latest GPUs are designed for
general purpose computing and can perform computation in
applications traditionally handled by the CPU. Hence, GPUs
have recently attracted the attention of many application
developers [1], [4], [5], [6], [7]. NVIDIA provides a paral-
lel computing architecture called CUDA (Compute Unified
Device Architecture) [8], the computing engine for NVIDIA
GPUs. CUDA gives developers access to the virtual instruction
set and memory of the parallel computational elements in
NVIDIA GPUs. In many cases, GPUs are more efficient
than multicore processors [9], since they have thousands of
processor cores and very high memory bandwidth.

CUDA uses two types of memories in the NVIDIA GPUs:
the shared memory and the global memory [8]. The shared
memory is an extremely fast on-chip memory with lower ca-
pacity, say, 16-48 Kbytes. The global memory is implemented
as an off-chip DRAM, and thus, it has large capacity, say, 1.5-6
Gbytes, but its access latency is very long. The efficient usage
of the shared memory and the global memory is a key for
CUDA developers to accelerate applications using GPUs. In
particular, we need to consider the bank conflict of the shared

memory access and the coalescing of the global memory
access [6], [9], [10], [11]. The address space of the shared
memory is mapped into several physical memory banks. If
two or more threads access the same memory banks at the
same time, the access requests are processed in turn. Hence,
to maximize the memory access performance, threads of
CUDA should access distinct memory banks to avoid the bank
conflicts of the memory accesses. To maximize the bandwidth
between the GPU and the DRAM chips, the consecutive
addresses of the global memory must be accessed at the same
time. Thus, CUDA threads should perform coalesced access
when they access the global memory.

In our previous papers [12], [13], we have introduced three
models, the Discrete Memory Machine (DMM), the Unified
Memory Machine (UMM), and the Hierarchical Memory Ma-
chine (HMM) which reflect the essential features of computa-
tion performed by CUDA-enabled GPUs. The DMM is a theo-
retical parallel computing model of a streaming multiprocessor
in a CUDA-enabled GPU. It has a shared memory with �

memory banks, and a warp of � threads can access the shared
memory. The UMM is a model for the parallel computation
using the global memory of a CUDA-enabled GPU. It also
has a global memory with � memory banks. The difference
of the shared memory of the DMM and the global memory
of the UMM is the restriction of access to memory banks.
The same address of memory banks of the global memory
must be accessed in each time unit, while different addresses
of memory banks of the shared memory can be accessed.
The HMM is a hybrid of the DMM and the UMM, which
can be used to design and evaluate parallel algorithms using
multiple streaming multiprocessors in a CUDA-enabled GPU.
The HMM has multiple DMMs each of which has a shared
memory. It also has a global memory which can be accessed
by all threads in DMMs. The reader should refer to Figure 1
illustrating the HMM with width 4 and 3 DMMs. We use
parameters �, �, and � to denote the number of memory banks,
the global memory access latency, and the shared memory
access latency. By using the HMM, we can give a theoretical
analysis of performance of algorithms developed for CUDA-
enabled GPUs using these parameters. Theoretical analysis
of algorithms on the HMM approximates the performance of
them on CUDA-enabled GPUs. For example, we have shown
in [14] an offline permutation algorithm on the HMM and
implemented it in GeForce GTX-680. The experimental results

2014 Second International Symposium on Computing and Networking

978-1-4799-4152-0/14 $31.00 © 2014 IEEE

DOI 10.1109/CANDAR.2014.14

86

NoC and MMU

MB MB MB MB

address line

data line

MMU

MB MB MB MB

T T T T T T T
T T T T T T T

MMU

MB MB MB MB

T T T T T T T
T T T T T T T

MMU

MB MB MB MB

T T T T T T T
T T T T T T T

DMM DMM DMM

UMM

shared memory
latency=�

global memory
latency=�

MB:Memory bank

T:Tread

Fig. 1. The Hierarchical Memory Machine (HMM) with 3 DMMs.

showed that theoretical analysis approximates the performance
on the GPU.

The dynamic programming is an important and sophisticated
algorithmic technique to find an optimal solution of a problem
over an exponential number of solution candidates [15]. A
naive solution for such problem needs exponential time. The
dynamic programming enables us to solve such problems in
polynomial time. For example, the longest common subse-
quence problem, which requires finding the longest common
subsequence of given two sequences, can be solved by the dy-
namic programming [16]. Since a sequence has an exponential
number of subsequences, a straightforward algorithm takes an
exponential time to find the longest common subsequence.
However, it is known that this problem can be solved in
����� time by the dynamic programming, where � and �

are the lengths of two sequences. Many important problems
including the edit distance problem, the matrix chain product
problem, and the optimal polygon triangulation problem can
be solved by the dynamic programming [15].

��

��

��

�� ��

��

��

��

1

1

1

2

1

� 3 4 5 6

�

2

4

1

3

3

1

1

0

1

2

3

4

5

3

4

5

2

3

3

2

4

1

2

2

5

5

1

0

7

����

Fig. 2. An example of a triangulation of a convex 8-gon

The main contribution of this paper is to show an efficient
implementation of the dynamic programming algorithm solv-
ing the optimal polygon triangulation problem (OPT) on the
HMM. In the OPT problem, a convex �-gon with each chord

being assigned a weight is given. The problem is to find a
triangulation (i.e. a set of � � � non-crossing chords) with
minimum total weight. Figure 2 shows an example of a convex
8-gon with nodes ��� ��� � � � � �� with each chord ���� having
weight ���� . It also shows the optimal triangulation with total
weight 6. It is known that the OPT problem for a convex �-gon
can be solved in ����� time using the dynamic programming
technique [6], [15], [17], [18], [19]. Since a straightforward
algorithm takes an exponential time, this problem is often used
to introduce the dynamic programming technique. Although
this algorithm is efficient, the memory access operation is
complicated. To find an efficient parallel implementation of
the dynamic programming is not easy. It is often the case that
the acceleration rate is limited to the bandwidth � of the global
memory for problems involves complicated stride memory
access. Quite surprisingly, our implementation of the dynamic
programing technique for solving the optimal triangulation
problem achieves the acceleration rate of more than �. It
runs �� �

�

�� � time units using �����	���
� threads on the
HMM. Since the sequential algorithm runs ����� time units,
our implementation achieves a speed-up factor of ��.

In our previous paper [19], we have shown that the OPT
problem for a convex �-gon can be solved in ���

�

�
� using

�	 threads on the UMM with width � and latency 	. Note
that the UMM has the global memory with bandwidth �, but
it does not have a shared memory. Hence, this implementation
is optimal in the sense that �� memory access operations to
the global memory with bandwidth � take at least ���

�

�
� and

it is not possible to solve the OPT in less than ���
�

�
� time

units. Our new implementation running �� �
�

�� � time units on
the HMM implies that the bandwidth limitation of a factor
of � can be broken even if the number of threads is still
�����	���
�. We also prove that this algorithm is time
optimal whenever 	 � ����
�.

There are several published works on the implementa-

87

tion of the dynamic programming [5], [6], [20], [21], [22].
Their implementations have been optimized mainly by the
developer’s experience. Hence, these implementations are very
complicated and they have no concrete theoretical analysis of
the performance. Although the experimental results have been
presented, the optimality of the implementation has not been
shown. Actually, it can be proved that some of the presented
implementations are not optimal from the theoretical point of
view. The performance of the implementation on the GPUs
depends on a lot of factors, say, programmer’s skill, compiler
version and optimization option, GPU model numbers, host PC
performance, etc. It is very hard to compare the experimental
results and hence the theoretical analysis independent of them
is very important.

The rest of this paper is organized as follows. Section II
introduces three memory machines, the Discrete Memory
Machine (DMM), the Unified Memory Machine (UMM), and
the Hierarchical Memory Machine (HMM), which are theo-
retical parallel computing models for CUDA-enabled GPUs
and shows several fundamental memory access operations.
In Section III, we review the dynamic programing algorithm
for solving the OPT problem in ����� time for a convex
�-gon. Section IV shows an implementation of the dynamic
programming algorithm on the DMM. The resulting algorithm
runs ���

�

�
� ���

�
� time units using � (� � � � ��)

threads on the DMM with width � and latency �. Using
this implementation, we show that the OPT problem can be
solved in �� �

�

�� � ���
�

� time units on the HMM using ��

threads. The latency overhead ���
��
�

� is dominant if � � ��.
Section VI reduces the latency overhead and shows that the
OPT problem can be solved in �� �

�

�� � on the HMM using
����������� threads. It also proves the time optimality.
Section VII concludes our work.

II. THE DMM, THE UMM, AND THE HMM

The main purpose of this section is define three memory
machine models: the Discrete Memory Machine (DMM), the
Unified Memory Machine (UMM), and the Hierarchical Mem-
ory Machine (HMM), which capture the essence of parallel
computing on CUDA-enabled GPUs.

We first define the Discrete Memory Machine (DMM) [12],
[23] of width � and latency �. Let ��	� (�) denote
a memory cell of address 	 in the memory. Let
���

���������������� �������� ����� � � �� (� � � ��
)
denote the �-th bank of the memory. Clearly, a memory cell
��	� is in the �	 ��� ��-th memory bank. We assume that
memory cells in different banks can be accessed in a time unit,
but no two memory cells in the same bank can be accessed in
a time unit. Also, we assume that � time units are necessary
to complete an access request and continuous requests are
processed in a pipeline fashion through the MMU. Thus, it
takes
� ��
 time units to complete memory access requests
to
 memory cells in a particular bank.

We assume that � threads are partitioned into �

�
groups

of � threads called warps. More specifically, � threads � �	�,
� �
�, � � �, � ���
� are partitioned into �

�
warps � �	��� �
�,

� � �, � � �
�

�
� such that � �	�
 �� �	 � ��� � �	 � � �

�� � � � � � ��	 �
� � � �
�� (� 	 � �

�
�
). Warps are

dispatched for memory access in turn, and � threads in a
warp try to access the memory at the same time. In other
words, � �	��� �
�� � � � �� � �

�
�
� are dispatched in a round-

robin manner if at least one thread in a warp requests memory
access. If no thread in a warp needs memory access, such
warp is not dispatched for memory access. When � �	� is
dispatched, � threads in � �	� send memory access requests,
at most one request per thread, to the memory. We also assume
that a thread cannot send a new memory access request until
the previous memory access request is completed. Hence, if a
thread sends a memory access request, it must wait at least �
time units to send a new memory access request.

We next define the Unified Memory Machine (UMM) [12],
[19] of width � and latency �. Let ����
 ���� � ������ �
��
�� � � � ������
� ���
�� denote the �-th address group.
We assume that memory cells in the same address group
are processed at the same time. However, if they are in the
different groups, one time unit is necessary for each of the
groups. Also, similarly to the DMM, � threads are partitioned
into warps and each warp accesses the memory in turn.

Figure 3 shows examples of memory access on the DMM
and the UMM. We assume that each memory access request is
completed when it reaches the last pipeline stage. Two warps
� �	� and � �
� access to ��� ��
�� 	� and �
	�

�
�� ��, re-
spectively. In the DMM, memory access requests by � �	� are
separated into two pipeline stages, because addresses 7 and 15
are in the same bank
���. Those by � �
� occupies 1 stage,
because all requests are in distinct banks. Thus, the memory
requests occupy three stages, it takes ����

 � time units
to complete the memory access. In the UMM, memory access
requests by � �	� are destined for three address groups. Hence
the memory requests occupy three stages. Similarly those by
� �
� occupy two stages. Hence, it takes � � ��

 � time
units to complete the memory access.

Finally, we define the Hierarchical Memory Machine
(HMM). The HMM consists of � DMMs and a single UMM
as illustrated in Figure 1. Each DMM has � memory banks
and the UMM also has � memory banks. We call the mem-
ory banks of each DMM the shared memory and those of
the UMM the global memory. All DMMs work in parallel.
Threads are partitioned into warps of � threads, and each warp
are dispatched for the memory access for the shared memory
in turn. Further, each warp of � threads in all DMMs can
send memory access requests to the global memory. Figure 1
illustrates the architecture of the HMM with �
 � DMMs
and �
 �. Each DMM and the UMM has �
 � memory
banks. The shared memory of each DMM and the global
memory of the UMM correspond to “the shared memory” of
each streaming multiprocessor and “the global memory” of
CUDA-enabled GPUs. Also, it makes sense to assume that the
shared memory in each DMM can store up to ����� words
of data because CUDA enabled-GPUs can store
��� words
of data. The capacity of the shared memory in a streaming
multiprocessor of CUDA enabled-GPUs is up to 48Kbytes [8].

88

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

�-stage pipeline registers

�

057 15

10 11 12 9

� ���

� ���UMM

0

5

715

10

11

12

9

�-stage pipeline registers

057 15

10 11 12 9

� ���

� ���DMM

0

5

715

10

11

12

9

����

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

�

���� ���� ���� ����

����

����

����

Each pipeline stage stores
memory access requests

destined for the different
banks

Each pipeline stage stores
memory access requests

destined for the same address
group

Fig. 3. Examples of memory access on the DMM and the UMM

Since the number of memory banks and the number of threads
in a warp is � � ��, an array of �� 32-bit integers occupies
4K bytes. Thus, a streaming multiprocessor cannot have more
than 12 such arrays. We use � and � to denote the memory
access latencies of the shared memory in a DMM and the
global memory of the UMM. The memory access latency of
the global memory of CUDA-enabled GPUs is several hundred
clock cycles, while that of the shared memory of a streaming
multiprocessor is several clock cycles [8]. Hence, it makes
sense to assume that �� �.

For later reference, we will evaluate the time necessary
to complete fundamental memory access operations. Suppose
that � (� �) threads in �

�
warps in a DMM of the HMM access

� elements in the shared memory, �
�

elements each in turn.
If all memory access requests by � threads in all warps are
conflict-free, the first � elements can be accessed in �

�
� �� �

time units. Since this access operation is repeated �
�

times, it
takes �

�
� � �

�
� � � �� � �� �

�
� ��

�
� time units to access �

elements. Hence, we have,
Lemma 1: If � memory access requests by � (� �) threads

in a DMM with width � and latency � are conflict-free, then
they can be completed in �� �

�
� ��

�
� time units.

Suppose that the HMM has � DMMs with � threads each
and they copy � elements in the global memory to the shared
memory of the DMMs such that each shared memory has �

	

elements. Each thread works for copying �
�	

elements and we
assume that memory access to the global memory is coalesced
and that to the shared memory is conflict-free. Hence, the first
�� elements can be read from the global memory in �	

�
����

time units. After that, they can be written in the shared memory
in �

�
� � � � time units. Thus, the first �� elements can be

copied in ���	
�
��� time units. This operation is repeated �

�	

times, we have
Lemma 2: The task of copying � elements in the global

memory to the shared memory of � DMMs with � threads
each takes �� �

�
� ��

�	
� time units of the HMM.

Clearly, the task of copying � elements in the shared memory
of � DMMs �

	
elements each to the global memory can be

done in the same time units.

III. THE OPTIMAL POLYGON TRIANGULATION AND THE

DYNAMIC PROGRAMMING

This section defines the optimal polygon triangulation
(OPT) problem and reviews an algorithm solving this problem
by the dynamic programming technique [6], [15], [19].

Let ��	 ��	

 	 ���� be vertices of a convex �-gon. Clearly,
the convex �-gon can be divided into � � � triangles by
a set of � � � non-crossing chords. We call a set of such
� � � non-crossing chords a triangulation. Figure 2 shows
an example of a triangulation of a convex 8-gon. The convex
8-gon is separated into 6 triangles by 5 non-crossing chords.
Suppose that a weight �
�� of every chord �
�� in a convex
�-gon is given. The goal of the OPT problem is to find
an optimal polygon triangulation that minimizes the total
weight of selected chords for the triangulation. Actually, the
corresponding optimal triangulation (i.e. a set of � � � non-
crossing chords) can be obtained by a few extra bookkeeping
steps to obtain the actual triangulation, using the data structure
to compute the minimum total weight.

Let � be a matrix such that �
��

�
�� � � if
 � � � �, (1)

�
�� � 	
�

�
����

��
�
 ��
	���� � �
����

otherwise. (2)

By computing all �
��s, we can obtain the optimal trian-
gulation. Please see [6], [19] to confirm that we can obtain
the optimal triangulation by � . We say that the � � � � �
elements ����	�	����	�	

 	���������� of � constitute
diagonal �. Clearly, elements in diagonal � can be computed
if all elements in diagonals 0, 1,

, � � � are computed.
Using this idea, the simple parallel algorithm, Algorithm DP-
OPT computes all values in � in �� � stages. Each Stage �

89

(� � � � �� �) computes the values in diagonal � using the
recursive formula for ���� . Since Stages 0, 1, � � �, �� � have
computed elements in diagonal 0, 1, � � �, ���, this is possible.
Figure 4 shows elements computed in each Stage � for 8-gon
illustrated in Figure 2. The details of Algorithm DP-OPT is
spelled out as follows:

[Algorithm DP-OPT]
for �� � to �� � do // Loop A

for � � �� � to �� � do
���� � ��

for �� � to �� � do // Loop B (Stage 0)
���� � �

for � � � to �� � do //(Stage �)
for �� � to �� � � � do // Loop C

for � � � to �� � � � do
������ � ��������������� ���������	

for �� � to �� � � � do // Loop D
������ ������� � ��������

In Loop A of Algorithm DP-OPT, all elements in � are
initialized by ��. Loop B corresponds to Stage 0, which
stores 0 in all ���� (� � � � � � �). Loop C computes
���������� ����� � ��������	 for all � and stores it in
������. Figure 5 illustrates how ������ is computed. Clearly,
������
 ����������������� ���������	 � �������� holds
at the end of Stage �. Thus, Algorithm DP-OPT solves the
OPT problem correctly.

diagonal 6

0

0

0

0

0

0

0

3 4 5 62 71

����

�
1

2

3

4

5

6

7

diagonal 5

diagonal 4

diagonal 3

diagonal 2

diagonal 1

diagonal 0

4

5

8

4

1

3

3

1

1

3

4

7

6

7

4

8

6

9

11

6

6

�

Fig. 4. The computation of ������ and the resulting values of ����

Let us evaluate the computing time. Each Stage � (� � � �

�� �) performs
� �� � � � �	 ����’s, �������������� � � � � ����������

are computed, and
� the computation of each ���� involves the computation

of the minimum over � values, each of which is the sum
of two ����’s.

Thus, each Stage � takes

��� � � �	 � 	��	
 	��� � ��	

time. Therefore, Algorithm DP-OPT runs in
�

�������

	��� � ��	
 	���	

������

��������

��������

������������

Fig. 5. The computation of ������ by Algorithm DP-OPT

time.

IV. A PARALLEL DYNAMIC PROGRAMMING ALGORITHM

FOR THE DMM

It is possible to implement Algorithm DP-OPT in the DMM
as it is. However, such implementation involves bank conflicts.
The main purpose of this section is to modify Algorithm
DP-OPT such that its implementation performs conflict-free
memory access.

The modified algorithm, Algorithm DMM-OPT, has Stages
0, 1, � � �, � � �. Each Stage � (� � � � � � �) performs
���� � �������� �
 � � 	 for
 and � such that

� one of
 and � is in diagonal � � �, and
� the other is in diagonals 0, 1, � � �, � � �.

Hence, the operation ���� � �������� �
�� 	 is performed
for elements ���� in diagonals �, � � �, � � �, ����� � �� ��	.
Thus, in each Stage �, the values of elements in diagonal � are
determined. Also, the values of elements in diagonals � � �,
� � �, � � �, ������ �� ��	 are partially computed. The reader
should refer to Figure 6 for illustrating diagonals computed
by Algorithm DMM-OPT.

We will show how ���� � �������� �
�� 	 is performed
in Stage �.
Case 1:
 is in diagonal � � �, say,

��������.
We perform ���� � �������� ��������� � ������	 for
�
 ���, �����, � � �, �������� ������	. Let us verify the
reason why � takes value up to �������� ������	. Clearly,
������ in �-th column, and thus, � � ���. Also, since ������

is in diagonal � � ��� �	 and it must be in diagonal � � � or
smaller, �� ����	 � ���, that is, � � ������ be satisfied.
Thus, � � ����� � �� � � �� � �	 holds. Figure 7 illustrates
elements updated in Case 1.
Case 2: � is in diagonal � � �, say, �
 ��������,
����������, � � �, ��������	����������
.
We perform ���� � �������� ������� � ��������	 for
�
 � � �, � � � � �, � � �, ����� � �� � � �� � �	. Figure 8
illustrates elements updated in Case 2.

We are now in a position to write Algorithm DMM-OPT.
The details are spelled out as follows:

[Algorithm DMM-OPT]
for �� � to �� � do in parallel // Loop A

90

diagonal 0

diagonal �

diagonal �� �

diagonal ��

determined

partially computed

diagonal 0

diagonal �

diagonal �� �

determined

partially computed

Fig. 6. Diagonals computed by Algorithm DMM-OPT

diagonal 0

diagonal �

��������������

��������

row �

row �� �

Fig. 7. The computation of Algorithm UMM-OPT for Case 1

for � � �� � to �� � do in parallel
���� � ��

for �� � to �� � do in parallel // Loop B (Stage 0)
���� � �

for � � � to �� � do // (Stage �)
for �� � to �� � � � do in parallel //Loop C (Case 1)

for � � �� � to ������ �� �� �� � �	 do in parallel
���� � �������� ��������� �������	

for �� � to �� � � � do in parallel //Loop D (Case 2)
for � � �� � to ������ �� �� �� � �	 do in parallel

diagonal 0

diagonal �

������

��������

row �

diagonal � � �

Fig. 8. The computation of Algorithm DMM-OPT for Case 2

���� � �������� ������� ���������	
for �� � to �� � � � do in parallel //Loop E
������ ������� � ��������

Loops A and B are the same as those of Algorithm DP-OPT.
Loops C and D correspond to Cases 1 and 2, respectively.
Finally, Loop E adds �������� to ������ to complete the
computation of all elements in diagonal �. We use � (�)

Let us implement Algorithm DMM-OPT in the DMM. We
arrange arrays � and � such that ���� and ���� are arranged
in bank

� ��� 	
 of the shared memory on the DMM with
width 	. Thus, if a warp of 	 thread performs incremental
column access such that ����� , �������, � � �, �����������,
for any integer ��� ��� � � � � ���� and �, then these elements are
in distinct memory banks and the memory access is conflict-
free. Also, if a warp of 	 threads access to the same element,
it is also conflict-free.

Let us evaluate the computing time of Algorithm DMM-
OPT on the DMM with width 	 and latency � using �

(� � � ��) threads. Loop A performs conflict-free writing
operations for less than �� elements. Since the memory access
is conflict-free, Loop A takes at most
��

�

�
� ���

	
	 time units

from Lemma 1. Since the memory access is conflict-free,
Loop B takes
� �

�
� ��

	
	 time units. Let us evaluate the

time of each Stage � (� � � � � � �). Each thread � ��	
(� � � � � � �) accesses ���� , ��������, ������ , ������,
and �������� for each � (� � � � � � � � �) for Loops C
and D. Clearly, the memory access operations are conflict-
free. Since less than
���	 elements are accessed, this takes

��

�

�
� ���

	
	 time units. Since the memory access operations

are conflict-free, Loop E takes
� �
�
� ��

	
	 time units. Hence,

each Stage � takes
��
�

�
� ���

	
	 time units. Thus, we have,

Lemma 3: Algorithm DMM-OPT runs
��
�

�
� ���

	
	 time

units using � (� � � ��) threads on the DMM with width
	 and latency �.

91

���� �� ���� �� ���� �� ���� �� ���� �� ���� ��

���� �� ���� �� ���� �� ���� �� ���� ��

���� �� ���� �� ���� �� ���� ��

���� �� ���� �� ���� ��

���� �� ���� ��

���� ��

�

diagonal 0

diagonal 1

diagonal 2

diagonal 3

diagonal 4

diagonal 5

Fig. 9. Partition � into blocks of size � �� each when � 	 �

V. A PARALLEL DYNAMIC PROGRAMMING ALGORITHM

FOR THE HMM

This section is devoted to show a parallel algorithm that
computes array � for the OPT on the HMM. We assume that
arrays � and � are stored in the global memory of the HMM.
For simplicity, we assume that the number � of nodes is a
multiple of width �.

The idea is to partition � into blocks of size ��� each as
illustrated in Figure 9. In the figure, � for a convex 24-gon
is partitioned into blocks of size � � �. In general, � for a
convex �-gon has �� � rows and �� � columns and thus, �

�

rows and �
�

columns of blocks. Let � � �
�

. As illustrated in
the figure, let ���� 	� (� � � � 	 � � � �) denote a block of
� . As before, we can think that for each
 (� �
 � �� �),
����
�� ����
���� � � � � ����
��� ���� are in diagonal
.
Since we assumed � is a multiple of � and � has ��� rows
and �� � columns, each block in diagonal 0 has �� � rows
and � � � columns. For later reference, we partition array �

with ��� rows and ��� columns into � rows and � columns
in the same way. Similarly, let ���� 	� (� � � � 	 � � � �)
denote a block of �.

If all elements of � in blocks of diagonal 0, 1, � � �,
 � �
are computed, we can compute those in blocks of diagonal
.
Thus, all elements in � can be computed by the following
algorithm:

[Algorithm HMM-OPT]
for
 � � to �� � do // (Stage
)

each block of � in diagonal
 is assigned a DMM
and the DMM compute the values of the block;

In Stage
, � �
 DMMs are used to compute the values of
��
 blocks. Let us show how each stage is performed.

Stage 0 of Algorithm HMM-OPT

In Stage 0, all values of each ���� �� (� � � � � � �)
in diagonal 0 are computed by a DMM. This can be done

by executing Algorithm DMM-OPT in each DMM. Let us
see how all values in ���� �� is computed by a DMM. The
other blocks can be computed in the same manner. To compute
all elements � in ���� ��, the values of ���� in ���� �� are
necessary. The DMM copies all elements of ���� �� from the
global memory to the shared memory. After that, Algorithm
DMM-OPT is executed to compute all values in ���� ��. The
resulting values in ���� �� are copied from the shared memory
to the global memory.

Stage 1 of Algorithm HMM-OPT

In Stage 1, all values of each ���� � � �� (� � � � � � �)
in diagonal 1 are computed by a DMM. Let us see how all
values in ���� �� is computed. To compute ���� ��, the values
of ���� ��, ���� ��, and ���� �� are necessary. A DMM copies
these values from the global memory to the shared memory.
After that, Algorithm DMM-OPT is executed to compute all
values in ���� ��. The resulting values of ���� �� are copied
from the shared memory to the global memory.

Stage 2 of Algorithm HMM-OPT

In Stage 2, all values of each ���� �� �� (� � � � ��) in
diagonal 2 are computed by a DMM. Let us see how all values
in ���� �� is computed. Note that, ���� ��, ���� ��, ���� ��,
���� ��, and ���� �� are used to compute the values in ����.
The reader should refer to Figure 10. Stage 1 consists of 2
substages. In the first substage, for every ���� in ���� ��,

������� ������� ����� is in ���� ��

and ������ is in ���� ���

is computed and stored it in ���� . In other words, ����s in
���� �� are partially computed. For this purpose, ���� �� and
���� �� are copied from the global memory to the shared
memory of the DMM. After that, the DMM executes the
following algorithm:

[The first substage of Stage 2 of Algorithm HMM-OPT]
for �� � to � do in parallel
for 	 � �� to 	� � � do in parallel
���� � ��

for
 � � to �� � � do
for �� � to � do in parallel

for 	 � �� to 	� � � do in parallel
���� �
������� ����� ��������

The reader should have no difficulty to confirm that, in this
algorithm, all ����s are in ���� ��, all ����s are in ���� ��,
and all ������s are in ���� ��.

The second stage determines the final values of ���� in
���� �� using ���� ��, ���� ��, (the current values of) ���� ��
and ���� �� using a DMM. Thus, these values are copied
from the global memory to the shared memory. After that,
the final values of ���� �� are computed in a similar way to
Algorithm DMM-OPT as follows. Elements ���� in ���� ��
are partitioned in �� � � diagonals from 0 to �� � � as
illustrated in Figure 11. The values of ����s are determined
from diagonal 0 to �� � �. Note that, the value of ����� in

92

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

� ��

�

��

���� �� ���� �� ���� ��

���� ��

���� ��

Fig. 10. The first substage of Stage 2 of Algorithm HMM-OPT

diagonal 0 has been already determined when the first stage
terminates. When ����s in diagonal � (� � � � �� � �)
are determined, those in diagonal � � �, � � �, � � �, �� � �
are partially computed. Similarly to two cases of DMM-OPT
illustrated in Figures 7 and 8, ����s are updated by two cases
as illustrated in Figure 11.

Stages 3, 4, � � �, �� � of Algorithm HMM-OPT

In Stage � (� � � � � � �), all values of each ���� �� ��
(� � � � �� � � �) in diagonal � are computed by a DMM.
The values of ���� � � �� are determined in � substages. In
the first substage, ���� �� �� and ���� �� �� �� are used to
compute the values of ���� ���� partially. The second substage
partially computes the values of ���� �� �� using ���� �� ��
and ������ �� ��. The same operation are repeated until the
substage � � � partially computes the values of ���� � � ��
using ���� �� � � �� and ���� � � �� �� ��. After that, the
substage � determines the values of ���� �� �� using ���� ��,
���� �� �� ��, and 	��� �� �� in a similar way to the second
substage of Stage 2.

The reader should have no difficulty to confirm that memory
access performed in all stages are conflict-free. Let us evaluate
the computing time of each stage. We evaluate the computing
time of Algorithm HMM-OPT if we execute it on the HMM
with � � �

�
DMMs with
 � �� threads each. Hence, the

HMM has totally
� � �
�

threads.
In Stage 0, we assign one DMM to compute ���� �� (� �

� � �� �). First, 	��� �� is copied from the global memory to
the shared memory. Since each 	��� �� is arranged in a matrix
of size ���, at most ��� � �� elements are read from the
global memory. This task takes
���

�
� ���

�	
� �
������

time units from Lemma 2. After that, the value of ���� �� is
computed in a DMM in parallel. From Lemma 3, this takes

��

�

�
� ���

�
� �
���� time units. Finally, the resulting values

of all ���� �� are written in the global memory in
������
time units. Hence, Stage 0 takes
��� ��� time units.

Stage 1 has two substages. In the first substage, ���� ��,
��� � �� � � ��, and 	��� � � �� are copied from the global
memory to compute each ���� � � �� by a DMM. This copy
operations takes
������ time units. After that, the values
of each ���� �� �� are computed by a DMM in
���� time
units. Finally, the resulting values of all ���� ���� are written
in the global memory in
������ time units. Hence, Stage 1
also takes
�� � ��� time units.

Let us evaluate the computing time of Stage � (� � � �

���). Stage � has � substages. Each of the first ��� substage
can be done in the same way as the first substage of Stage 2.
The last substage can be done in the same way as the second
substage of Stage 2. Since each substage takes at most
���
��� time units. Thus, Stage � takes
��������� time units.

By summing the computing time of all stages from 0 to ���,
we have that Algorithm HMM-OPT runs
����� � ���� �

� �
�

�� �
���
�

� time units on the HMM. Thus, we have,
Lemma 4: Algorithm HMM-OPT runs
� �

�

�� �
���
�

� time
units on the HMM using �

�
DMMs with �� threads each.

If � � ��, the latency overhead
��
��
�

� is dominant.

VI. REDUCING THE LATENCY OVERHEAD OF ALGORITHM

HMM-OPT

We can reduce
��
��
�

�-time latency overhead of Algorithm
HMM-OPT by computing every block ���� �� in parallel.

Intuitively, we can write the computation performed by
Algorithm HMM-OPT as follows:

���� �� � 	��� �� if � � � � �, (3)

���� �� � 	
�
��
��

����� �� ����� ��� � 	��� ��

otherwise. (4)

Note that Formulas (3) and (4) are informal. Formula (3)
implies that the values of ���� �� can be determined only
from 	��� ��. Formula (4) means that the values of ���� ��
can be computed by taking the minimum of pairwise sums of
elements one from ���� �� and the other from ���� ��. We can
obtain each value of ���� �� by adding the corresponding value
of 	��� �� and the minimum of pairwise sums. These formulas
are essentially the same as Formulas (1) and (2). Thus, we can
apply partial computation technique used in Algorithm DMM-
OPT to Algorithm HMM-OPT. As illustrated in Figure 6,
Algorithm DMM-OPT determines the values in diagonal �

and partially computes the values in diagonals � � �, � � �,
� � �, 	
��� � �� ��� in each Stage � (� � � � � � �). We
apply this technique for blocks in Algorithm HMM-OPT. More
specifically, each Stage � (� � � � ���) determines the values
in block diagonal � and partially computes the values in block
diagonals � � �, � � �, � � �, 	
��� � �� ���, where � � �

�
.

Using this idea, all blocks can be computed as follows:

[Algorithm HMM-OPT2]
for �� � to �� � do in parallel // Loop A
for � � � to �� � do in parallel
���� ��� ��

for �� � to �� � do in parallel // Loop B (Stage 0)

93

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

� ��

�

��

���� �� ���� �� ���� ��

���� ��

���� ��

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

� ��

�

��

���� �� ���� �� ���� ��

���� ��

���� ��

Case 1 Case 2

diagonal 0

diagonal 1

diagonal 2

diagonal 3

diagonal 4

diagonal 5

diagonal 6

���� ��

Fig. 11. The second stage of Algorithm HMM-OPT

���� ��� ���� ��
for � � � to �� � do // (Stage �)

for �� � to �� � do in parallel // Loop C
for � � �� � to ������ �� �� 	�� do in parallel
���� ��� �������� ��� ���� �� �� ����� �� ���
���� � � �� ���� � �� ���

for �� � to �� � � � do in parallel // Loop D
���� �� ��� �������� �� ����� �� �� � ���� �� ���

���� �� �� ����� �� �� �� � ���� �� ���

Loop A initializes all ���� ��s by ��. Loop B, which
corresponds to Stage 0, computes each ���� �� using ���� ��.
In Loop C, all ���� �� are updated using elements in diagonal
�. Figure 12 illustrates how ���� �� are updated. To update
���� ��, the values of ���� � � �� � ��� � � � �� �� and
���� ������������� �� are computed. The values of ���� ��
are updated by their minima. Note that both ���� � � �� and
������ �� are in diagonal � and both ������ �� and ���� ����
are in diagonals 0, 1, � � �, ���. Hence, all values in ���� ����,
������ ��, ���� ����, ������ �� have been already computed.
Loop D, which corresponds to the second substage of Stage 2
of Algorithm HMM-OPT, is illustrated in Figure 11. The
computation of ���� ������� ��������� ���� corresponds to
Case 1, and that of ���� ����������� ��������� ���� cor-
responds to Case 2. Hence, ���� ��, ���� ����, ������ ����,
and ���� � � �� are copied from the global memory to the
shared memory, and the final values of ���� �� are computed
using them.

Let us evaluate the computing time of this algorithm. We
assign one DMM with 	

� threads to update the value
of each ���� ��. Thus, we use �
 ������

� DMMs which
has totally 	� �

�
��

��
threads. In Loop A, � threads in

each DMM write 0 to the global memory. Loop A takes
���

�

�
� ���

��
� � ���

�

�
� ��

�
� time units from Lemma 2.

In Loop B, a DMM is assigned each ���� �� and copies
���� �� from the global memory to the shared memory and

���� ������ �� ��

diagonal �

���� � � ��

��� � �� ��

��� � �� ��

Fig. 12. The update of ���� �� using elements in diagonal � of Algorithm
HMM-OPT2

computes the values of ���� �� using Algorithm DMM-OPT.
The resulting values of ���� �� are copied from the shared
memory to the global memory. Since ����� elements are
copied, the copy operations take ���

�

�
� ���

��
� � ���

�

�
� ��

�
�

time units from Lemma 2. The computation of ���� �� takes
���

�

�
� ���

�
� � ����� time units from Lemma 3. Loop B

takes ���
�

�
� ��

�
� ��� time units. For each value 	 in

Loop C, a DMM is assigned each ����
� and updates the
value of ����
�. For this purpose, it copies ���� � � 	�,
��� � 	�
�, ����
 � 	�, and ��
 � 	�
� from the global
memory to the shared memory. After that, each DMM partially
computes ����
� in a similar way to a substage of Algorithm
HMM-OPT. After that, the resulting values of ����
� are
written in the global memory. Since ����� elements are

94

copied, the copy operations take ���
�

�
� ��

�
� time units.

The computation of ���� �� is performed in parallel, which
takes ����� time units. Hence, all stages of Loop C take
��� �� ����

�

�
� ��

�
� ��� � �� �

�

�� �
��

�
� ��� time units.

Since Loop D is almost the same as the second substage of
Algorithm HMM-OPT, it can be done in ���

�

�
� ��

�
� ���

time units. Thus, we have,
Lemma 5: Algorithm HMM-OPT2 runs �� �

�

�� �
��

�
����

time units on the HMM using less than �
�

�� DMMs with �	

threads each.
Next let us consider the case that we have fewer DMMs.

Let
 be the number of available DMMs and assume that

 �

������
� . Since Loop C dominates the total computing time,

we will evaluate the running time of Loop C. For each value
of loop variable � in Loop C, the computation of
 ���� ��s
are performed using
 DMMs in parallel. This computation
is repeated �� �

�

�
� � �� �

�

���
� times. Since each iteration of

the computation by
 ���� ��s performs the copy operation
for ��
��� elements, each iteration takes ����

�

�
� ��

�
�

���
� �

��
�� ��

�
� time units from Lemma 2. Also, the computation

of ���� �� takes ����� time units from Lemma 3. Hence, for
each � of Loop C, each iteration by
 DMMs takes ��
� �
��

�
���� time units. Thus, for each value of �, Loop C takes

�� �
�

���
� ���
�� ��

�
���� � ���

�

�
� �

�
�

���
� �

�

�
� time units.

Therefore, Loop C of Algorithm HMM-OPT2 runs � ����
�

�
�

�
�
�

���
� �

�

�
� � �� �

�

�� �
�
�
�

����
� �

�

��
� time units. Thus, we have,

Theorem 6: Algorithm HMM-OPT2 runs �� �
�

�� �
�
�
�

����
�

�
�

��
� time units on the HMM
 (� �

�

��) DMMs with �	 threads
each.
From Theorem 6, Algorithm HMM-OPT2 runs �� �

�

�� � time
units if
 � �

�
and
 � � . Hence, we have,

Corollary 7: Algorithm HMM-OPT2 runs �� �
�

�� � time
units on the HMM using �����

�
� �� DMMs with �	 threads

each.
Hence, if the total number of threads is ���������	� the
OPT can be solved in �� �

�

�� � time units on the HMM. When
� � ���	�, the total number of threads is ���������	� �
����	�. Since each thread can send at most one memory
request in 	 time units, it takes at least 	� �

�

�� � time units for
����	� threads to send ����� memory requests. Thus, the
parallel implementation shown for Corollary 7 is time optimal.

VII. CONCLUSION

The main contribution of this paper is to show an efficient
implementation of the dynamic programming on the HMM,
which is a theoretical parallel computing model of CUDA-
enabled GPUs. Our implementation runs �� �

�

�� � time units on
the HMM using ���������	� threads. Since the sequential
algorithm takes ����� time, our implementation achieves a
speed up factor of ��. Further, we have proved that it is time
optimal when � � ���	�.

REFERENCES

[1] W. W. Hwu, GPU Computing Gems Emerald Edition. Morgan
Kaufmann, 2011.

[2] A. Uchida, Y. Ito, and K. Nakano, “Fast and accurate template matching
using pixel rearrangement on the GPU,” in Proc. of International
Conference on Networking and Computing. IEEE CS Press, Dec. 2011,
pp. 153–159.

[3] Y. Takeuchi, D. Takafuji, Y. Ito, and K. Nakano, “Ascii art generation
using the local exhaustive search on the GPU,” in Proc. of International
Symposium on Computing and Networking, Dec. 2013, pp. 194–200.

[4] K. Ogawa, Y. Ito, and K. Nakano, “Efficient Canny edge detection
using a GPU,” in Proc. of International Conference on Networking and
Computing. IEEE CS Press, Nov. 2010, pp. 279–280.

[5] K. Nishida, Y. Ito, and K. Nakano, “Accelerating the dynamic program-
ming for the matrix chain product on the GPU,” in Proc. of International
Conference on Networking and Computing, Dec. 2011, pp. 320–326.

[6] ——, “Accelerating the dynamic programming for the optial poygon
triangulation on the GPU,” in Proc. of International Conference on
Algorithms and Architectures for Parallel Processing (ICA3PP, LNCS
7439), Sept. 2012, pp. 1–15.

[7] A. Uchida, Y. Ito, and K. Nakano, “An efficient GPU implementation
of ant colony optimization for the traveling salesman problem,” in Proc.
of International Conference on Networking and Computing. IEEE CS
Press, Dec. 2012, pp. 94–102.

[8] NVIDIA Corporation, “NVIDIA CUDA C programming guide version
5.0,” 2012.

[9] D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano, “Implementations
of a parallel algorithm for computing Euclidean distance map in mul-
ticore processors and GPUs,” International Journal of Networking and
Computing, vol. 1, no. 2, pp. 260–276, July 2011.

[10] NVIDIA Corporation, “NVIDIA CUDA C best practice guide version
3.1,” 2010.

[11] K. Nakano, “Optimal parallel algorithms for computing the sum, the
prefix-sums, and the summed area table on the memory machine
models,” IEICE Trans. on Information and Systems, vol. E96-D, no. 12,
pp. 2626–2634, 2013.

[12] ——, “Simple memory machine models for GPUs,” International Jour-
nal of Parallel, Emergent and Distributed Systems, vol. 29, no. 1, pp.
17–37, 2014.

[13] ——, “The hierarchical memory machine model for GPUs,” in Proc.
of International Parallel and Distributed Processing Symposium Work-
shops, May 2013, pp. 591–600.

[14] A. Kasagi, K. Nakano, and Y. Ito, “An optimal offline permutation
algorithm on the hierarchical memory machine, with the GPU imple-
mentation,” in Proc. of International Conference on Parallel Processing.
IEEE CS Press, Oct. 2013, pp. 1–10.

[15] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. MIT Press, 1990.

[16] L. Bergroth, H. Hakonen, and T. T. Raita, “A survey of longest common
subsequence algorithms,” in Proc. of International Symposium on String
Processing and Information Retrieval, 2000.

[17] P. D. Gilbert, “New results on planar Triangulations,” in M.Sc. thesis,
July 1979, pp. Report R–850.

[18] G. T. Klincsek, “Minimal triangulations of polygonal domains,” Annals
of Discrete Mathematics, vol. 9, pp. 121–123, July 1980.

[19] K. Nakano, “Sequential memory access on the unified memory machine
with application to the dynamic programming,” in Proc. of International
Symposium on Computing and Networking, Dec. 2013, pp. 85–94.

[20] P. Steffen, R. Giegerich, and M. Giraud, “GPU parallelization of
algebraic dynamic programming,” in Proc. of International Conference
on Parallel Processing and Applied Mathematics: Part II, Sept. 2009,
pp. 290–299.

[21] C.-C. Wu, J.-Y. Ke, H. Lin, and W. chun Feng, “Optimizing dynamic
programming on graphics processing units via adaptive thread-level
parallelism,” in Proc. of International Conference on Parallel and
Distributed Systems, Dec. 2011.

[22] S. Xiao, A. M. Aji, and W. chun Feng, “On the robust mapping of
dynamic programming onto a graphics processing unit,” in Proc. of
International Conference on Parallel and Distributed Systems, Dec.
2009, pp. 26–33.

[23] A. Kasagi, K. Nakano, and Y. Ito, “An implementation of conflict-free
off-line permutation on the GPU,” in Proc. of International Conference
on Networking and Computing, 2012, pp. 226–232.

95

