Leader Election and Pattern Formation in Swarms of Deterministic Robots

Franck Petit

INRIA ENS Lyon Lip6, Univ. UPMC Paris 6

PDCAT

Hiroshima December 8, 2009

Set of independent, autonomous, and mobile robots

Set of independent, autonomous, and mobile robots

→ Characteristics

- Very little
- Very simple
- Very limited capacities:
 - Power resource
 - Processing
 - Memory
 - Anonymity
 - No means of (direct) communication

Set of independent, autonomous, and mobile robots

→ Applications

- Impossible tasks for a single robot
- Fault/Destruction tolerance, Dynamicity
- Examples:
 - Risky area surrounding or surveillance
 - Search and rescue missions
 - Exploration of awkward environments
 - Large-scale construction
 - Environmental monitoring
 - Space exploration
 - Military operations

Set of independent, autonomous, and mobile robots

→ Specific Tasks

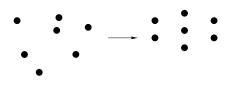
- Movement Management
 - Movement limitation (Performance)
 - Collision avoidance
 - 2D/3D settings
- Distributed control
 - No central coordination
 - Scalability
 - Dynamicity
- Cooperative Tasks

Pattern Formation

Cooperative Tasks

Pattern Formation

- Leader Election
- Gathering
- Scatter
- Deployment



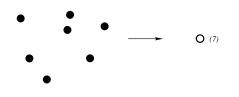
Pattern Formation

- Pattern Formation
- Leader Election
- Gathering
- Scatter
- Deployment

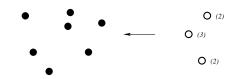


Pattern Formation

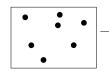
- Pattern Formation
- Leader Election
- Gathering
- Scatter
- Deployment

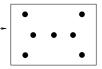


- Pattern Formation
- Leader Election
- Gathering
- Scatter
- Deployment



- Pattern Formation
- Leader Election
- Gathering
- Scatter
- Deployment





→ Approaches

- Emergent Behavior
 - Artificial Intelligence
 - Behavior of Social Animals (Insects)
 - Approximation methods
- Distributed Algorithms
 - Correctness Proofs

→ Approaches

- Emergent Behavior
 - Artificial Intelligence
 - Behavior of Social Animals (Insects)
 - Approximation methods
- Distributed Algorithms
 - Correctness Proofs

→ Approaches

- Emergent Behavior
 - Artificial Intelligence
 - Behavior of Social Animals (Insects)
 - Approximation methods
- Distributed Algorithms
 - Correctness Proofs

Questions

- Which are the elementary tasks that can be achieved deterministically?
- What are the minimal conditions for this?

Questions

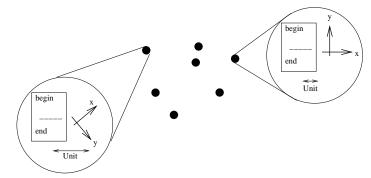
- Which are the elementary tasks that can be achieved deterministically?
- What are the minimal conditions for this?

Pattern Formation

- Leader Election
- Gathering
- Scatter
- Localization
- Deployment
- Exploration

- Homogeneous
- Anonymous
- Autonomous
- Oblivious

- Moving onto the plan
- Deaf and Dumb
- Unlimited Vision



Orientation Capabilities

Sense of Direction

The robots agree on a common direction and orientation, (e.g., North=y)

Chirality

the robots share the same *handedness*, *i.e.*, the orientation of the *y*-axis is inferred *w.r.t.* the *x*-axis

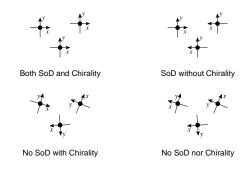
Orientation Capabilities

Sense of Direction

The robots agree on a common direction and orientation, (e.g., North=y)

Chirality

the robots share the same *handedness*, *i.e.*, the orientation of the *y*-axis is inferred *w.r.t.* the *x*-axis

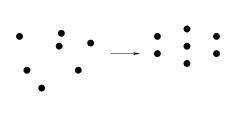


SYm [Suzuki Yamashita 96]

- An inifinite sequence of time instants $\{t_0, t_1, \ldots, t_i, \ldots\}$
- At each time instant t_i , each robot is either active or idle
- In *t_i*, every active robot executes the following phases:
 - Observe all the positions
 - Compute a destination d
 - 3 Move toward *d*

<u>Note</u>: The distance traveled in 1 step by any robot *r* is bounded by σ_r .

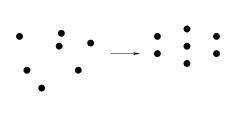
Problem



Definition (Arbitrary Pattern Formation)

Given a swarm of *n* robots scattered on the plan, designing a deterministic algorithm so that, the robots eventually form a pattern \mathcal{P} made of *n* positions and known by each of them in advance.

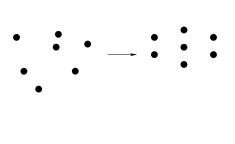
Problem



Definition (Arbitrary Pattern Formation)

Given a swarm of *n* robots scattered on the plan, designing a deterministic algorithm so that, the robots eventually form a pattern \mathcal{P} made of *n* positions and known by each of them in advance.

Problem



Definition (Arbitrary Pattern Formation)

Given a swarm of *n* robots scattered on the plan, designing a deterministic algorithm so that, the robots eventually form a pattern \mathcal{P} made of *n* positions and known by each of them in advance.

In other words, at the end of the computation, the positions of the robots coincide, with the positions of \mathcal{P} , where \mathcal{P} can be translated, rotated, and scaled in each local coordinate system.

SoD and Chirality

[Flocchini et al., 2001]

A solution exists for any n and any \mathcal{P} .

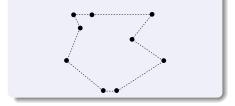
SoD and No Chirality

Flocchini et al., 2002]

SoD and Chirality

[Flocchini et al., 2001]

A solution exists for any n and any \mathcal{P} .



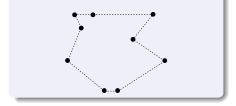
SoD and No Chirality

[Flocchini et al., 2002]

SoD and Chirality

[Flocchini et al., 2001]

A solution exists for any n and any \mathcal{P} .



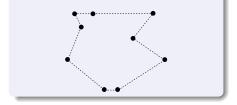
SoD and No Chirality

[Flocchini et al., 2002]

SoD and Chirality

[Flocchini et al., 2001]

A solution exists for any n and any \mathcal{P} .



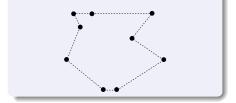
SoD and No Chirality

[Flocchini et al., 2002] If *n* is odd, a solution exists for any \mathcal{P} .

SoD and Chirality

[Flocchini et al., 2001]

A solution exists for any n and any \mathcal{P} .



SoD and No Chirality

[Flocchini et al., 2002] If *n* is odd, a solution exists for any \mathcal{P} .

If *n* is even, a solution exists provided that \mathcal{P} is symmetric.

Question

Assuming no sense of direction (with or without chirality), which kind of patterns can be formed in a deterministic way?

Theorem

[Flocchini et al., 2001]

If the robots share no Sense of Direction, then they cannot solve the Arbitrary Pattern Formation problem deterministically, even having the ability of chirality.

Theorem

[Flocchini et al., 2001]

If the robots share no Sense of Direction, then they cannot solve the Arbitrary Pattern Formation problem deterministically, even having the ability of chirality.

Theorem

[Flocchini et al., 2001]

If the robots share no Sense of Direction, then they cannot solve the Arbitrary Pattern Formation problem deterministically, even having the ability of chirality.

Let Θ be the class of patterns that can be solved deterministically assuming robots devoid of sense of direction.

Corollary

Either Θ is equal to the set of regular polygons (n-gons) or $\Theta = \emptyset$.

Question

Assuming no sense of direction, is it possible to eventually form a regular *n*-gon (circle)?

Previous work

[Défago and Konagaya, 2002] [Chatzigiannakis et al., 2994] [Défago and Souissi, 2008]

Asymptotic convergence toward the *n*-gon.

Previous work

[Défago and Konagaya, 2002] [Chatzigiannakis et al., 2994] [Défago and Souissi, 2008]

Asymptotic convergence toward the *n*-gon.

Previous work

[Défago and Konagaya, 2002] [Chatzigiannakis et al., 2994] [Défago and Souissi, 2008]

Asymptotic convergence toward the *n*-gon.

[Dieudonné and Petit, 2007]

Prime number of robots.

Previous work

[Défago and Konagaya, 2002] [Chatzigiannakis et al., 2994] [Défago and Souissi, 2008]

Asymptotic convergence toward the *n*-gon.

[Dieudonné and Petit, 2007]

Prime number of robots.

Previous work

[Défago and Konagaya, 2002] [Chatzigiannakis et al., 2994] [Défago and Souissi, 2008]

Asymptotic convergence toward the n-gon.

[Dieudonné and Petit, 2007]

Prime number of robots.

[Katreniak, 2005]

Any *n* (in CORDA), but the *n*-gon is not systematically achieved.

Franck Petit

PDCAT — Hiroshima, Dec. 8, 2009

Previous work

[Défago and Konagaya, 2002] [Chatzigiannakis et al., 2994] [Défago and Souissi, 2008]

Asymptotic convergence toward the n-gon.

[Dieudonné and Petit, 2007]

Prime number of robots.

[Katreniak, 2005]

Any *n* (in CORDA), but the *n*-gon is not systematically achieved.

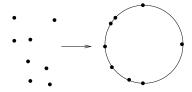
Franck Petit

PDCAT — Hiroshima, Dec. 8, 2009

All previous protocols are based on the two following steps:

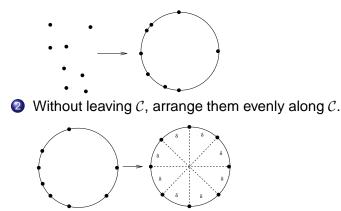
- 1 Move the robots on (the boundary of) a circle C.
- ② Without leaving C, arrange them evenly along C.

If Move the robots on (the boundary of) a circle C.

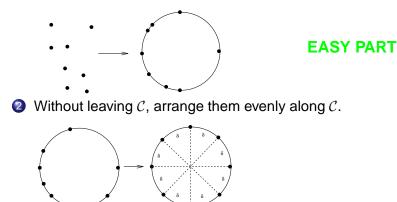


② Without leaving C, arrange them evenly along C.

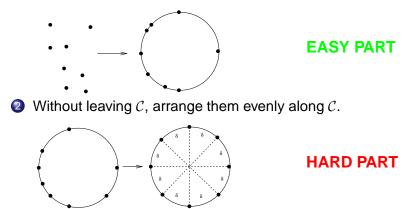
If Move the robots on (the boundary of) a circle C.



If Move the robots on (the boundary of) a circle C.



If Move the robots on (the boundary of) a circle C.

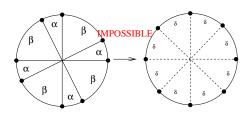


Theorem

[Flocchini et al, 2006] There exists no deterministic algorithm that eventually arrange n robots evenly along a circle C without leaving C.

Theorem

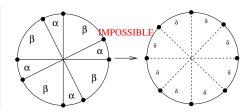
[Flocchini et al, 2006] There exists no deterministic algorithm that eventually arrange n robots evenly along a circle C without leaving C.



Theorem

[Flocchini et al, 2006]

There exists no deterministic algorithm that eventually arrange n robots evenly along a circle C without leaving C.



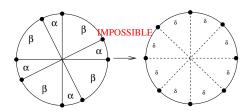
Question

Are we done, *i.e.*, $\Theta = \emptyset$?

Theorem

[Flocchini et al, 2006]

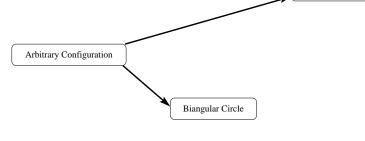
There exists no deterministic algorithm that eventually arrange n robots evenly along a circle C without leaving C.



Question

Are we done, *i.e.*, $\Theta = \emptyset$?

Fortunately, not!

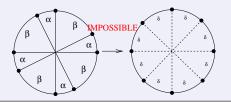


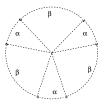
[Katreniak, 2005]

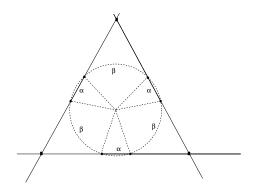
Theorem

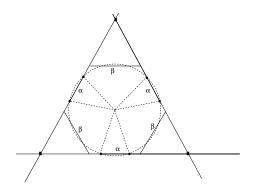
[Flocchini et al, 2006]

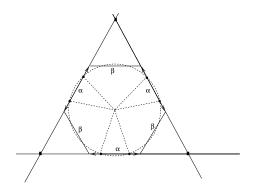
There exists no deterministic algorithm that eventually arrange n robots evenly along a circle C without leaving C.

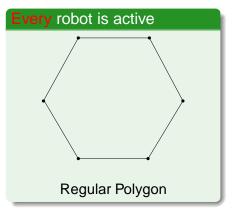


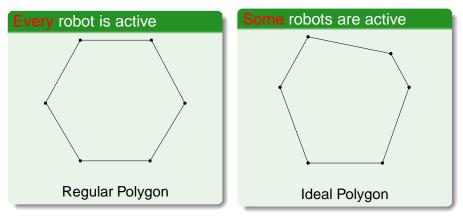




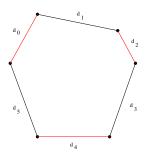








Ideal Polygon

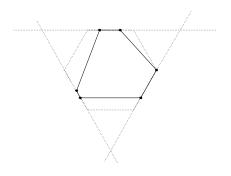


Property 1

• Either $d_0 \ge d_1 \le \cdots \ge d_{n-1} \le d_0$

• or
$$d_0 \leq d_1 \geq \cdots \leq d_{n-1} \geq d_0$$

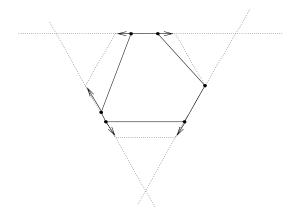
Ideal Polygon

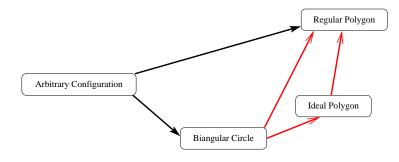


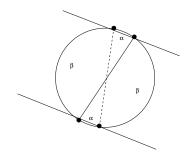
Property 2

A regular *n*-gon can be associated to an Ideal Polygon.

Ideal Polygon

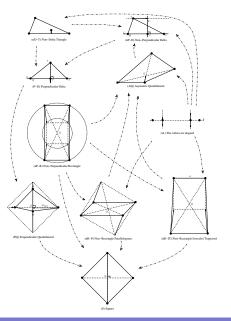






It works if $n \ge 5$ only

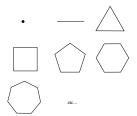
- [Katreniak 2005] works if $n \ge 5$ only
- 2 Difficulty to find an invariant



Franck Petit

PDCAT — Hiroshima, Dec. 8, 2009

Arbitrary Pattern Formation



Theorem

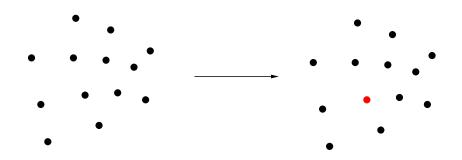
 $\forall n$, the class of patterns that can be solved deterministically assuming robots devoid of sense of direction (Θ) is equal to the set of regular polygons (*n*-gons).

Settings and Motivations		Leader Election	PF vs. LE
Problem			

Question

Given a swarm of *n* robots, what are the minimal geometric conditions to be able to deterministically agree on a single robot?

Settings and Motivations		Leader Election	PF vs. LE
Problem			



Question

Given a swarm of *n* robots, what are the minimal geometric conditions to be able to deterministically agree on a single robot?

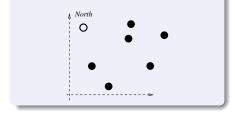
SoD and Chirality

[Flocchini et al., 1999] A solution exists for any *n*.

SoD and No Chirality

SoD and Chirality

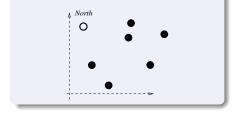
[Flocchini et al., 1999] A solution exists for any *n*.



SoD and No Chirality

SoD and Chirality

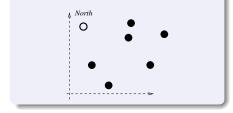
[Flocchini et al., 1999] A solution exists for any *n*.



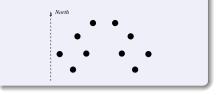
SoD and No Chirality

SoD and Chirality

[Flocchini et al., 1999] A solution exists for any *n*.

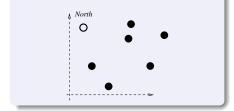


SoD and No Chirality

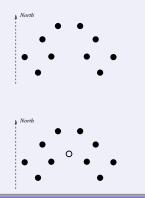


SoD and Chirality

[Flocchini et al., 1999] A solution exists for any *n*.

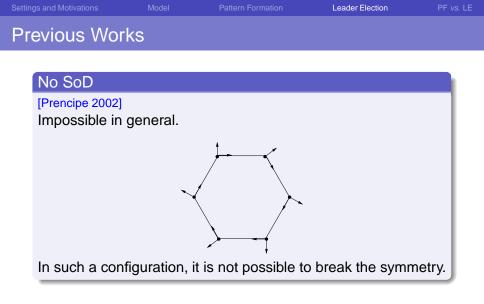


SoD and No Chirality



No SoD

[Prencipe 2002] Impossible in general.



Leader Election With No Sense of Direction

Question

Assuming no sense of direction (with or without chirality), what are the geometric conditions to be able to deterministically agree on a single robot?

To answer to this question, we need tools from the theory on Combinatoric on Words, specifically Lyndon Words.

Leader Election With No Sense of Direction

Question

Assuming no sense of direction (with or without chirality), what are the geometric conditions to be able to deterministically agree on a single robot?

To answer to this question, we need tools from the theory on Combinatoric on Words, specifically Lyndon Words.

Definition (Word)

Let $A = \{a_0, a_1, \dots, a_n\}$ be an alphabet. A word is a (possibly empty) sequence of letters in A.

$A = \{a, b, c, d\}$ abcc $a \in dddddddd \equiv d^8$

Definition (Word)

Let $A = \{a_0, a_1, \dots, a_n\}$ be an alphabet. A word is a (possibly empty) sequence of letters in *A*.

$$A = \{a, b, c, d\}$$

abcc $a \in dddddddd \equiv d^8$

Definition (Concatenation)

Let $u = a_1, \ldots, a_i, \ldots, a_k$ and $v = b_1, \ldots, b_j, \ldots, b_\ell$. The concatenation of u and v, denoted uv, is equal to the word $a_1, \ldots, a_i, \ldots, a_k, b_1, \ldots, b_j, \ldots, b_\ell$.

u = Hiro, v = shima, uv = Hiroshima

Definition (Concatenation)

Let $u = a_1, \ldots, a_i, \ldots, a_k$ and $v = b_1, \ldots, b_j, \ldots, b_\ell$. The concatenation of u and v, denoted uv, is equal to the word $a_1, \ldots, a_i, \ldots, a_k, b_1, \ldots, b_j, \ldots, b_\ell$.

u = Hiro, v = shima, uv = Hiroshima

Definition (Lexicographic Order)

Let *A* be an alphabet totally ordered by \prec , *i.e.*, $a_0 \prec a_1 \prec \ldots \prec a_n$.

A word $u = a_0 a_1 \dots a_s$ is said to be *lexicographically smaller* than or equal to a word $vu = b_0 b_1 \dots b_t$, denoted by $u \leq v$, iff:

- either u is a prefix of v,
- or, $\exists k : \forall i \in [1, \dots, k-1], a_i = b_i \text{ and } a_k \prec b_k.$

 $ab \preceq abc$ $abc \preceq abc$ $\epsilon \preceq abc$ $abc \preceq def$

Definition (Lexicographic Order)

Let *A* be an alphabet totally ordered by \prec , *i.e.*, $a_0 \prec a_1 \prec \ldots \prec a_n$.

A word $u = a_0 a_1 \dots a_s$ is said to be *lexicographically smaller* than or equal to a word $vu = b_0 b_1 \dots b_t$, denoted by $u \leq v$, iff:

• either u is a prefix of v,

• or,
$$\exists k : \forall i \in [1, \ldots, k-1], a_i = b_i \text{ and } a_k \prec b_k.$$

 $ab \leq abc$ $abc \leq abc$ $\epsilon \leq abc$ $abc \leq def$

Definition (Primitive Word)

A word *u* is said to be *primitive* iff $u = v^k \Rightarrow k = 1$. Otherwise, *u* is said to be *periodic*.

Primitive Words ab dabcbc dcba

d ⁸	bcbc	ϵ

Definition (Primitive Word)

A word *u* is said to be *primitive* iff $u = v^k \Rightarrow k = 1$. Otherwise, *u* is said to be *periodic*.

Primitive Words				
ab	dabcbc	dcba		

Perio	dic Word	s
d ⁸	bcbc	ϵ

Definition (Rotation)

A word *u* is said to be a *rotation* of a word *v* iff there exists two words *x*, *y* such that u = xy and v = yx.

u = abcd and v = cdabu = abcd and v = bcda

Definition (Minimality)

A word *u* is said to be a *minimal* iff *u* is lexicographically smaller than any of its rotations.

Definition (Rotation)

A word *u* is said to be a *rotation* of a word *v* iff there exists two words *x*, *y* such that u = xy and v = yx.

u = abcd and v = cdabu = abcd and v = bcda

Definition (Minimality)

A word *u* is said to be a *minimal* iff *u* is lexicographically smaller than any of its rotations.

Definition (Rotation)

A word *u* is said to be a *rotation* of a word *v* iff there exists two words *x*, *y* such that u = xy and v = yx.

u = abcd and v = cdabu = abcd and v = bcda

Definition (Minimality)

A word u is said to be a *minimal* iff u is lexicographically smaller than any of its rotations.

Definition (Lyndon Word)

A word *u* is a Lyndon word iff *u* is primitive and minimal.

Definition (Lyndon Word)

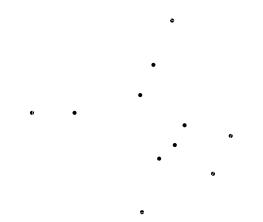
A word *u* is a *Lyndon word* iff *u* is primitive and minimal.

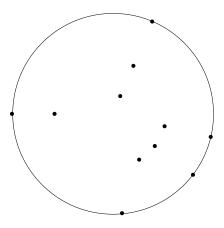
Lyndon Word

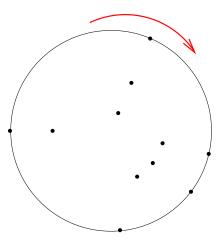
abc (abc \leq cab and abc \leq bca)

Not a Lyndon Word

 $bca (bca \succ abc)$





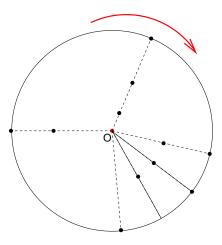


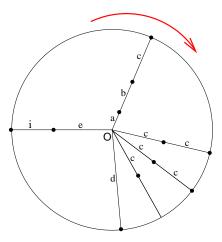
Model

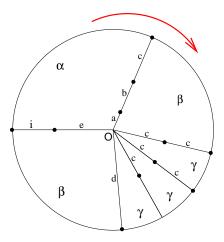
Pattern Formation

Leader Election

PF vs. LE







 α i e a b β i c c r_1 r_1 r_2 r_2 r_2 r_2 r_2 r_2 r_2 r_2 r_3 r_2 r_3 r_4 r_2 r_3 r_4 r_4 r_5 r_5

 $W(\rho_1) = (abc, \beta)(c^2, \gamma)^2(c, \gamma)(d, \beta)(ei, \alpha)$ $W(\rho_2) = (c^2, \gamma)^2(c, \gamma)(d, \beta)(ei, \alpha)(abc, \beta)$

_emma

If two distinct radii ρ_1 and ρ_2 exist such that both $W(\rho_1)$ and $W(\rho_2)$ are Lyndon words, then $\forall \rho$, $W(\rho) = (0, 0)$.

Lemma (\Rightarrow)

If there exists a radius ρ such that $W(\rho)$ is a Lyndon word, then the robots are able to deterministically agree on the same leader.

 $\alpha \qquad c \qquad r_{I}$

 $W(\rho_1) = (abc, \beta)(c^2, \gamma)^2(c, \gamma)(d, \beta)(ei, \alpha)$ $W(\rho_2) = (c^2, \gamma)^2(c, \gamma)(d, \beta)(ei, \alpha)(abc, \beta)$

Lemma

If two distinct radii ρ_1 and ρ_2 exist such that both $W(\rho_1)$ and $W(\rho_2)$ are Lyndon words, then $\forall \rho$, $W(\rho) = (0,0)$.

_emma (\Rightarrow)

If there exists a radius ρ such that $W(\rho)$ is a Lyndon word, then the robots are able to deterministically agree on the same leader.

Model

Pattern Formation

Leader Election with Chirality

 $\alpha \qquad c \qquad r_{I}$

 $W(\rho_1) = (abc, \beta)(c^2, \gamma)^2(c, \gamma)(d, \beta)(ei, \alpha)$ $W(\rho_2) = (c^2, \gamma)^2(c, \gamma)(d, \beta)(ei, \alpha)(abc, \beta)$

Lemma

If two distinct radii ρ_1 and ρ_2 exist such that both $W(\rho_1)$ and $W(\rho_2)$ are Lyndon words, then $\forall \rho$, $W(\rho) = (0, 0)$.

Lemma (⇒)

If there exists a radius ρ such that $W(\rho)$ is a Lyndon word, then the robots are able to deterministically agree on the same leader.

Lemma (⇐)

If there exists no radius ρ such that $W(\rho)$ is a Lyndon word, then the robots are not able to deterministically agree on the same leader.

Property

[Lothaire 1983] If no rotation of a work *u* is a Lyndon word, then *u* is periodic.

Lemma (⇐)

If there exists no radius ρ such that $W(\rho)$ is a Lyndon word, then the robots are not able to deterministically agree on the same leader.

Property

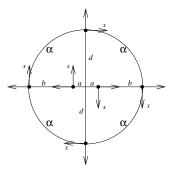
[Lothaire 1983] If no rotation of a work *u* is a Lyndon word, then *u* is periodic.

Lemma (⇐)

If there exists no radius ρ such that $W(\rho)$ is a Lyndon word, then the robots are not able to deterministically agree on the same leader.

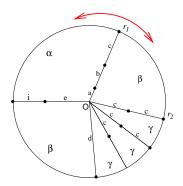
Property

[Lothaire 1983] If no rotation of a work u is a Lyndon word, then u is periodic.



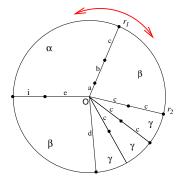
Theorem

Assuming chirality, a swarm of robots is able to deterministically agree on the same leader if and only if there exists a radius ρ such that $W(\rho)$ is a Lyndon word.



 Settings and Motivations
 Model
 Pattern Formation
 Leader Election
 PF vs. LE

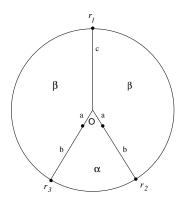
 Leader Election without Chirality



For each ρ , there are 2 ways to compute $W(\rho)$

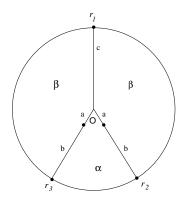
 $W(\rho_1) =$ either $(abc, \beta)(c^2, \gamma)^2(c, \gamma)(d, \beta)(ei, \alpha)$ or

 $(abc, \alpha)(ei, \beta)(d, \gamma)(c, \gamma)(cc, \gamma)(cc, \beta)$ depending on either \circlearrowright or \circlearrowright , respectively.



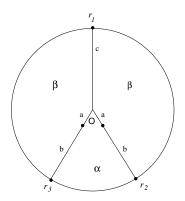
Model

Leader Election without Chirality



The word $W(\rho_2)^{\circlearrowright} = W(\rho_3)^{\circlearrowright} = (ab, \alpha)(ab, \beta)(c, \beta)$ is a Lyndon word. Settings and Motivations Model Pattern Formation Leader Election PF vs. LI

Leader Election without Chirality

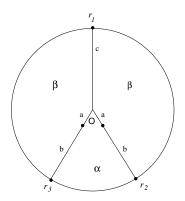


Definition (Type of Symmetry)

A radius ρ_i is of Type (of symmetry) 0 if there exists no radius ρ_j such that $W(\rho_i)^{\circlearrowright} = W(\rho_j)^{\circlearrowright}$. Otherwise, ρ_i is said to be of Type 1. A radius of Type *t* is said to be *t*symmetric.

 ρ_1 is 0-symmetric. ρ_2 and ρ_3 are 1-symmetric. Settings and Motivations Model Pattern Formation Leader Election PF vs. LE

Leader Election without Chirality

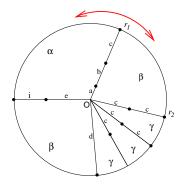


Definition (Type of Symmetry)

A radius ρ_i is of Type (of symmetry) 0 if there exists no radius ρ_j such that $W(\rho_i)^{\circlearrowright} = W(\rho_j)^{\circlearrowright}$. Otherwise, ρ_i is said to be of Type 1. A radius of Type *t* is said to be *t*symmetric.

 ρ_1 is 0-symmetric. ρ_2 and ρ_3 are 1-symmetric.
 Settings and Motivations
 Model
 Pattern Formation
 Leader Election
 PF vs. LE

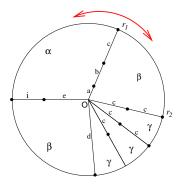
 Leader Election without Chirality



For each radius ρ_i , every robot computes $W(\rho_i)^{\circlearrowright}$ and $W(\rho_i)^{\circlearrowright}$ of the form (*type*, *radiusword*, *angle*).

 Settings and Motivations
 Model
 Pattern Formation
 Leader Election
 PF vs. LE

 Leader Election without Chirality

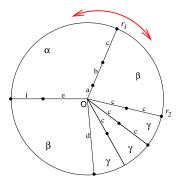


For each radius ρ_i , every robot computes $W(\rho_i)^{\circlearrowright}$ and $W(\rho_i)^{\circlearrowright}$ of the form (*type*, *radiusword*, *angle*).

$$\begin{split} & \mathcal{W}(\rho_1)^{\circlearrowright} = (0, \textit{abc}, \beta)(0, \textit{c}^2, \gamma)^2(0, \textit{c}, \gamma)(0, \textit{d}, \beta)(0, \textit{ei}, \alpha) \\ & \mathcal{W}(\rho_1)^{\circlearrowright} = (0, \textit{abc}, \alpha)(0, \textit{ei}, \beta), (0, \textit{d}, \gamma), (0, \textit{c}, \gamma), (0, \textit{cc}, \gamma), (0, \textit{cc}, \beta) \end{split}$$

Model

Leader Election without Chirality

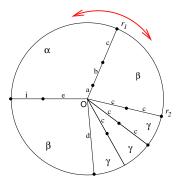


Lemma

If two distinct radii ρ_1 and ρ_2 exist such that both $W(\rho_1)$ and $W(\rho_2)$ are Lyndon words, then $\forall \rho$, $W(\rho) = (0,0,0)$.

_emma

Leader Election without Chirality

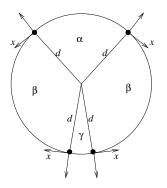


Lemma

If two distinct radii ρ_1 and ρ_2 exist such that both $W(\rho_1)$ and $W(\rho_2)$ are Lyndon words, then $\forall \rho$, $W(\rho) = (0, 0, 0)$.

Lemma

Leader Election without Chirality



No leader exists.

Lemma

If two distinct radii ρ_1 and ρ_2 exist such that both $W(\rho_1)$ and $W(\rho_2)$ are Lyndon words, then $\forall \rho$, $W(\rho) = (0, 0, 0)$.

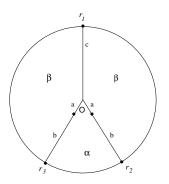
Lemma

Settings and Motivations

Model

Pattern Formation

Leader Election without Chirality



The robot on ρ_1 is the leader.

Lemma

If two distinct radii ρ_1 and ρ_2 exist such that both $W(\rho_1)$ and $W(\rho_2)$ are Lyndon words, then $\forall \rho$, $W(\rho) = (0, 0, 0)$.

Lemma

Leader Election without Chirality

Theorem

Assuming no chirality, a swarm of robots is able to deterministically agree on the same leader if and only if there exists a radius ρ such that $W(\rho)$ is a 0-symmetric Lyndon word.

Question

Given a swarm of *n* robots devoid of sense of direction, does the (arbitrary) pattern formation problem becomes solvable if the robots have the possibility to distinguish a unique leader?

Theorem

Assuming a cohort of $n \ge 4$ robots devoid of sense of direction, the **pattern formation** problem and the **leader election problem** are two equivalent problems, provided that the robots have the property of chirality.

Question

Given a swarm of n robots devoid of sense of direction, does the (arbitrary) pattern formation problem becomes solvable if the robots have the possibility to distinguish a unique leader?

Theorem

Assuming a cohort of $n \ge 4$ robots devoid of sense of direction, the **pattern formation** problem and the **leader election problem** are two equivalent problems, provided that the robots have the property of chirality.

Question

Given a swarm of n robots devoid of sense of direction, does the (arbitrary) pattern formation problem becomes solvable if the robots have the possibility to distinguish a unique leader?

Theorem

Assuming a cohort of $n \ge 4$ robots devoid of sense of direction, the pattern formation problem and the leader election problem are two equivalent problems, provided that the robots have the property of chirality.

Proof of Equivalence

Lemma (<u>⇒)</u>

[Flocchini et al., 2008]

Assuming a cohort of $n \ge 3$ robots devoid of sense of direction, if it is possible to solve the pattern formation problem, then the leader election problem is solvable.

₋emma (⇐

[Yamashita and Suzuki, 2008] [Petit and Dieudonné, 2009]

Assuming a cohort of $n \ge 4$ robots devoid of sense of direction, if it is possible to solve the leader election problem, then the pattern formation problem is solvable, provided that the robots have the property of chirality.

Proof of Equivalence

Lemma (\Rightarrow)

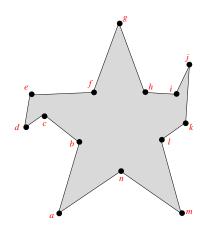
[Flocchini et al., 2008]

Assuming a cohort of $n \ge 3$ robots devoid of sense of direction, if it is possible to solve the pattern formation problem, then the leader election problem is solvable.

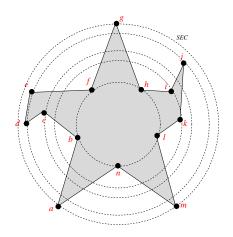
Lemma (⇐)

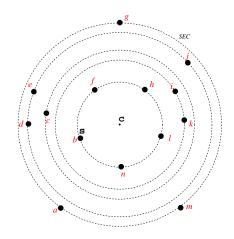
[Yamashita and Suzuki, 2008] [Petit and Dieudonné, 2009]

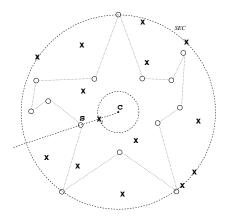
Assuming a cohort of $n \ge 4$ robots devoid of sense of direction, if it is possible to solve the leader election problem, then the pattern formation problem is solvable, provided that the robots have the property of chirality.

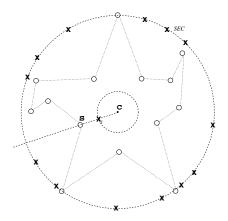


Model

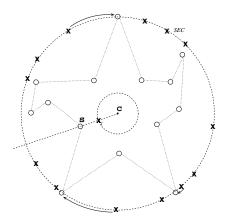


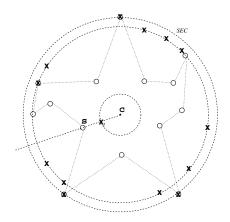


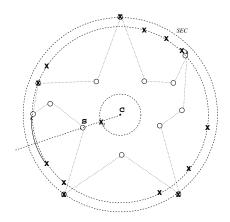


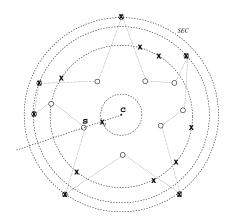


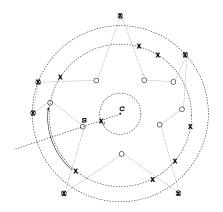
Model

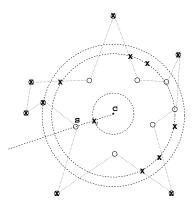




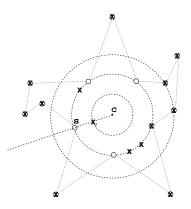


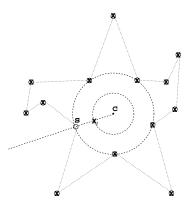


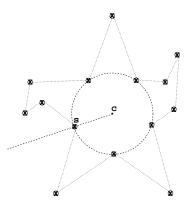




Model







Remark

The equivalence also holds in CORDA. [Petit and Dieudonné, 2009]

Corollary

Assuming a cohort of $n \ge 4$ robots devoid of sense of direction in CORDA, the pattern formation problem and the leader election problem are two equivalent problems, provided that the robots have the property of chirality.

Open Question

Does the theorem still holds without chirality?

Remark

The equivalence also holds in CORDA. [Petit and Dieudonné, 2009]

Corollary

Assuming a cohort of $n \ge 4$ robots devoid of sense of direction in CORDA, the pattern formation problem and the leader election problem are two equivalent problems, provided that the robots have the property of chirality.

Open Question

Does the theorem still holds without chirality?

Remark

The equivalence also holds in CORDA. [Petit and Dieudonné, 2009]

Corollary

Assuming a cohort of $n \ge 4$ robots devoid of sense of direction in CORDA, the pattern formation problem and the leader election problem are two equivalent problems, provided that the robots have the property of chirality.

Open Question

Does the theorem still holds without chirality?

Remark

The equivalence also holds in CORDA. [Petit and Dieudonné, 2009]

Corollary

Assuming a cohort of $n \ge 4$ robots devoid of sense of direction in CORDA, the pattern formation problem and the leader election problem are two equivalent problems, provided that the robots have the property of chirality.

Open Question

Does the theorem still holds without chirality? in CORDA?

Settings and Motivations		PF vs. LE

Thank you.