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Marching by mobile robots

Marching: (∼ transportation; many researches...)

Moving from a start position S to a goal position G

Try to maintain a formation (e.g., line, triangle, etc)

Start position S Goal position G

Focus on two robots case (in this talk):
Keep formation = Keep distance between two robots
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Problem Setup(Not so important in this talk)

Bs

As

Bg

Ag

x

y

LB

LA

α β

S G
Explain a snapshot by

Robot B’s position (x , y) and
angle θ between x-axis and segment AB.

An instance is represented by LB , α, and β
α and β: angles at S and G , resp.
The desirable distance between the robots is set to 1.
x- and y- axes are only for explanation
(Robots do not have any common coordinate system)

7/43



Outline

1 Problem
Marching
Problem Setup
Related Work: A Time-optimal Motion

2 The Goal of Our Research

3 Robot Model

4 Self-stabilizing Algorithm
Self-stability
Simple Algorithm G (Greedy)
Proposed Algorithm G+
Proof Idea for Self-stability
Simulation Results

5 More robots

6 Summary and Further Research

8/43



Related Work: A Time-optimal Motion

The assumption:
2 robots
Correct formation (distance) is always kept
Both robots always move at the maximum speed V

by Chen, Suzuki, Yamashita (1997).

Example Instance I (LB = 2, α = 0◦, and β = 180◦):

Start Goal

X stay?

9/43



Related Work: A Time-optimal Motion

The assumption:
2 robots
Correct formation (distance) is always kept
Both robots always move at the maximum speed V

by Chen, Suzuki, Yamashita (1997).

Example Instance I (LB = 2, α = 0◦, and β = 180◦):

Start Goal

X stay?

9/43



Related Work: A Time-optimal Motion

The assumption:
2 robots
Correct formation (distance) is always kept
Both robots always move at the maximum speed V

by Chen, Suzuki, Yamashita (1997).

Example Instance I (LB = 2, α = 0◦, and β = 180◦):

Start Goal

X stay?

With V = 0.01, finish time of the time-optimal motion is 208
(Motion in left Fig. takes about 314.)
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A Time-optimal Motion

Complicated and basically centralized (whole trajectory
is given before motion starts)

Distributed(?): If control error occurs, i.e., the robots
sometimes deviate from the given paths, re-calculation is
necessary, but it takes a long time:

Theorem (CSY97)

The time-optimal motion satisfies the following formulas.

ẋ = θ̇
2 sin θ + cV cos θ sin(θ + δ)

ẏ = − θ̇
2 cos θ + cV sin θ sin(θ + δ)

θ̇ = 2V
√

1 − c2 sin2(θ + δ)

c and δ in the above meet conditions in the next page.
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Conditions on c and δ
1
2(cos α − cos β)

+ cos δ
2c

(√
1 − c2 sin2(α + δ) −

√
1 − c2 sin2(β + δ)

)

+ sin δ
2c (F (β + δ, c) − F (α + δ, c)− E (β + δ, c) + E (α + δ, c)) = LB

and

1
2(sinα − sinβ)

− sin δ
2c

(√
1 − c2 sin2(α + δ) −

√
1 − c2 sin2(β + δ)

)

+ cos δ
2c (F (β + δ, c) − F (α + δ, c) − E (β + δ, c) + E (α + δ, c)) = 0,

where

F (φ, k) =

∫ φ

0

dθ√
1 − k2 sin2 θ

E (φ, k) =

∫ φ

0

√
1 − k2 sin2 θ.
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Note on the method

Does the assumption Always moving at max speed
derive better motions than Allowing reduced speed?

Answer: We do not know! The assumption makes it
easier to treat such complicated equations...

c and δ are obtained numerically for simulation.
We do not know any easy way to calculate them...

The method can not handle the case α < 180◦ and
180◦ < β, i.e, S and G locate in different sides of x-axis.

Start Goal
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The Goal of Our Research

Designing a motion planning algorithm, s.t,

Distributed and Simple
Each robot individually determines its motion easily
(need not so much time).

Oblivious
Each robot determines its motion only based on current
state and goal state ignoring past motions

Self-stabilizing
Even if there exists a finite number of control errors, the
robots reach the goal position

Reasonably good performance compared to the time
optimal one

Small finish time
Smooth motion: Small formation error
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Robot Model

1 Omni-directional: freely move
2 Identity (ID): but no leader, identical algorithm
3 Oblivious: ignores past motions.
4 Full Visibility with Local Coordinate: know correctly

current and goal positions of other robots
(distinguishable), but only knows their relative positions
based on a local coordinate system (not common among
robots)

5 Repeats a cycle processed in a discrete time step

1 Look other robots and goal positions
2 Compute a vector based on current and goal positions
3 Move according to the produced vector

6 No communication
7 Synchronous: all the robots move at the same time.
8 (Ignore collision between robots; unrealistic but simple)
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Robot Motion and Formation Error

Ideal Formation
(Distance)

Formation
Error Produced Vector

At Time t At Time t+1 At Time t+2

Formation error: Two robots case: (� − D)/2
�: Ideal distance between robots (Correct formation)
D: Current distance between robots
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Self-stability (in our research)

1 From any initial configuration (robot positions),

2 the robots finally reach the goal positions,

3 even if there exists a finite number of control errors.

→ If infinite number of errors occur, it seems impossible
to arrive at any target position.

→ A state right after all errors have occurred can be
considered as the initial configuration, and after that no
errors occur.
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Simple Algorithm G (Greedy)

Robots: R1,R2, . . . ,Rn

Current positions of the robots Ri ’s: S = {s1, s2, . . . , sn}
Goal positions of the robots Ri ’s: G = {g1,g2, . . . ,gn}
The max speed of the robots: V

Algorithm G for Ri

Produce a vector (gi − si) · V
||gi−si || , i.e.,

Move straight towards the goal at the max speed.

This is a self-stabilizing oblivious algorithm! (No surprise)

Theoretically minimum finish time (lower bound)

Bad formation during motion
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G ’s motion

Instance G Time-optimal

???

???
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Algorithm G+ (Fig)

Ideal Formation
(Distance)

Formation f

Current Position

Goal Position

Target  t

Produced Vector  T

Rotation  r

Produce a vector Ti by summing up three vectors

Target vector: ti

Rotation vector: ri

Formation vector: fi

with scaling.
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Algorithm G+ for robot Ri

Step 0: Let Li = ||gi − si || and Lmax = max1≤i≤n{Li}.
Step 1: If Lmax ≤ V , move to gi and halt. Otherwise,

go to Step 2.

Step 2: Set target vector ti = t(gi − si ).

Step 3: If si �= os , then set rotation vector ri to have
magnitude u||si − os || tan(min{|γ|, π/4}), and
direction αi − π/2 (or αi + π/2) Here, αi is the
direction of si − os .

Step 4: Set formation vector fi = s(s′i − si ).

Step 5: Set Ti = ti + ri + hi .

Step 6: Compute Tj , following Steps 2–5 for all robots
Rj , j �= i . Let Tmax = max1≤i≤n{||Ti ||}, and
K = min{ V

Tmax
, 1

3}.
Step 7: Output KTi as a produced vector.

26/43



Outline

1 Problem
Marching
Problem Setup
Related Work: A Time-optimal Motion

2 The Goal of Our Research

3 Robot Model

4 Self-stabilizing Algorithm
Self-stability
Simple Algorithm G (Greedy)
Proposed Algorithm G+
Proof Idea for Self-stability
Simulation Results

5 More robots

6 Summary and Further Research

27/43



Proof Idea for Self-stability (1/2)

Ideal Formation
(Distance)

Formation f

Current Position

Goal Position
Target  t

Rotation  r

The center of the formation moves towards the goal:∑
i si/n,

∑
i gi/n : center of current and goal positions

si + Ti is the position of robot Ri at the next time step.∑
i fi =

∑
i ri = 0∑

i (si + Ti)/n =
∑

i(si + ti + ri + fi )/n =
∑

i (si + ti)/n
=

∑
i (si + K (gi − si ))/n = (1 − K )

∑
i si/n + K

∑
i gi/n,

where K is a scaling factor < 1.
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Proof Idea for Self-stability (2/2)

Finally, center of current form. = center of goal form.

 
Formation f

Current Position

Goal Position

Target  t

Rotation  r

After that

Rot. vector ri ’s adjusts the orientation of the form.

Form. vector fi ’s adjusts the distance between the
robots.

Target vector ti ’s have both effect of ri ’s and fi ’s. �
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G+’s motion

G G+ Time-optimal

F = 200, E = 0.50 F = 228, E = 0.13 F = 208, E = 0

???
F = 224, E = 0.50 F = 314, E = 0.13

???
F = 204,

∑
E = 81 F = 221,

∑
E = 28

F : finish time, E : max form. err.
∑

E = total form. err.
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Results for a Set of Instances

Instances: LB = 2, 0◦ ≤ α ≤ 180◦, β = 180◦ − α
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Finish time of G+ is 5-10% larger than that of the
time-optimal one or theoretical lower bound (G).
Max formation error is very smaller than that of G .

⇒ G+ has three good properties at the same time:
Fast (Small finish time)
Smooth (Maintain formation)
Self-stabilizing
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More Figs with Two Robots

G G+ Time-optimal

F = 400, E = 0.25 F = 412, E = 0.07 F = 400, E = 0

F = 240, E = 0.10 F = 256, E = 0.04 F = 240, E = 0

F : finish time, E : max form. err.
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More robots

Algorithm G+ is self-stabilizing for more than two robots:

In proof,
no assumption on the number of robots.
no assumption on the formation at the beginning.

But, what is the ideal current formation?

In two robots case, the maintained formation is just the
distance. ⇒ easy

Find

Formation 
vector

?
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Place Ideal Formation

center

Rotate

1 Translate the goal form. G to G ′ s.t. its center coincide
with center of current positions of robots si ’s.

2 Rotate G ′ so as to minimize
∑ ||si − g′

i ||2
How to minimize? We can show that

the optimal orientation of the formation
= argument of

∑
sig

′
i (in Gaussian plane)

and is uniquely determined (each robot individually
obtain it).

(
∑

sig
′
i is obtained based on robots’ current positions

and G ′)
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Example Motions (Marching)

Line formation with 4 robots:

Square and wedge formations with 4 robots:
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Example Motions (Morphing?)

G+ G (for comparison)

F = 658 F = 584

F = 681 F = 623
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Summary and Further Research (1/3)

Summary:

Self-stabilizing marching algorithm for a group of
oblivious mobile robots.

Small finish time
Smooth motion

Further Topic:

Self-stability does not help to obtain theoretical
guarantee of finish time and max formation error (at the
worst case)

Is the method to determine “current ideal formation” by
a least square method good enough?

What is a time-optimal motion for more than two robots
(and complicated formations)?
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Further Topic (2/3)

Comparison with other approaches, e.g.,
Leader-follower by Gervasi and Prencipe (2003),
Potential function by Shuneider, Wildermuth and Wolf
(2000),
Practical robots (we do not have...)

Synchronicity
The assumption on synchronization in our model is
necessary to prove the self-stability;

∑
i ri ,

∑
i fi ,

∑
i ti

can be estimated because of synchronicity.

Semi-synchronous model
Basically synchronized but only a subset of robots is
active in each time step.
Current proof does not work.
Asynchronous model

Visibility: Can distinguish the other robots? Asymmetric
formation...
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Further Topic (3/3)

Anonymous robots (do not have IDs)
Usually difficult to make a certain formation (Researches
by Defago and Samia (2008), etc.)

In our problem,

Each robot can not know which position in the goal
formation is its own goal position.
but can choose one of the positions as its goal.

42/43



Further Topic (3/3)

Anonymous robots (do not have IDs)
Usually difficult to make a certain formation (Researches
by Defago and Samia (2008), etc.)

In our problem,

Each robot can not know which position in the goal
formation is its own goal position.
but can choose one of the positions as its goal.

Thank you very much for your attention!
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Road to PDCAT (Left to Right)

43/43


	Problem
	Marching
	Problem Setup
	Related Work: A Time-optimal Motion

	The Goal of Our Research
	Robot Model
	Self-stabilizing Algorithm
	Self-stability 
	Simple Algorithm G (Greedy)
	Proposed Algorithm G+
	Proof Idea for Self-stability
	Simulation Results

	More robots
	Summary and Further Research

