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Abstract. This paper studies linear layouts of generalized hypercubes, a
d-dimensional c-ary clique and a d-dimensional c-ary array, and evaluates
the bisection width, cut width, and total edge length of them, which are
important parameters to measure the com plexity of them in terms of a
linear layout.

1 Introduction

This paper treats two kinds of generalized hypercubes: a d-dimensional c-ary
cligue (abbreviated as Ces) and a d-dimensional c-ary array (abbreviated as
Acq). Ccy has nodes labeled by the ¢ integers from 0 to ¢? — 1. The nodes are
connected by the edges if and only if the c-ary representations of their labels difTer
by one and only one digit (Fig. 1). An n-node c-ary cligue (abbreviated as Ceimy),
which is a more generalized graph, has n nodes labeled by the integers from 0
to n—1 and connected in the same way as Cey. Note that n is not restricted to
a power of ¢. Aey has the same nodes as Cegy. The nodes are connected if and
only if the c-ary representations of their labels differ by one and only one digit
and the absolute value of the difference in that digit is 1 (Fig. 2).

Several algorithms on parallel computers based on Ccy and Acy topologies
have been shown [1, 7]. It is very important to analyze topological properties of
them, because they are very atiractive as network topologies of future parallel
computers. Furthermore, Ccy and Aey include typical topologies which are used
for parallel machines: C¢; corresponds to a e-node clique (or a complete graph),
Aey corresponds to a e-node linear array, Acs corresponds to a ¢ x ec-node &
dimensions array, Acg corresponds to a ¢ X ¢ x c-node J-dimensional array, and
both Cz4 and Az4 correspond to a d-dimensional (binary) hypercube. Therefore,
the results presented in this paper can be applied to these topologies.

A linear layout of a graph G = (V, E) (where V and E are a set of nodes and a
set of edges, respectively) is a one-to-one mapping L : V — {0,1,2,...,|V|-1}.
This means that each u (€ V) is assigned to the position L(u) on the baseline.
Examples of linear layouts of C4, and A4, are illustrated in Figs. 3 and 4, where
each node u is assigned to the position L(u), that is, L(u) = u for all u. We call
such the layout L the label order layout. Note that a linear layout can take any
permutation (i.e. [V|! permutations), not just the label order layout.

The complexity of G = (V, E) in terms of & linear layout is measured by
the following parameters: the (minimum) bisection width, the cul widih, and
the total edge length. These parameters are defined as follows. The cut of a
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Fig.1. A 2-dimensional 4-ary array Fig. 2. A 3-dimensional 3-ary array

graph G under a linear layout L at a gap i is a set of edges connecting a node
al a position less than ¢ and one at a position larger than or equal to i, i.e.
C(G, L, i) = {(u,v) € F|0 < L{u) < i < L(v) < |V| = 1). The bisection width
of a graph G is the minimum number of edges in C(G, L, [|V|/2]) over all linear
layouts, i.e. ming |C(G, L, ||V]/2])]. In other words, the bisection width of a
graph is the minimum number of edges which must be removed to separate the
graph into two disjoint and equal-sized subgraphs. The cut width of a graph
G under a linear layout L is the maximum of |C(C, L, 7)| over all gaps i, ie.
max; |C(G, L,7)|. The cut width of a graph G is the minimum cut width over all
linear layouts, i.e. ming max; |C(G, L,1)]. This parameter indicates the number
of tracks required by the best linear layout. We will define that the lengih of edge
(u,v) € E under a linear layout L is |L(u)— L(v)|. Then, the total edge length of
a graph G under a linear layout L is E V)EE !L(u) — L(v)|. Furthermore, the
total edge length of a graph G is deﬁned as I.lle minimum of this value over all
linear layouls, i.e. ming, Z(u,u e |E(u) = L(v)|. Obviously, the total edge length

is equal to the total cut, i.e. ming Em_l |C(G, L, 1)

i=1

It 1s very important to compute exact values of them, because they determine
the lower bound of the layout area in the VLSI model. For example, the layout
area of a processor network is at least 2(B?) if the corresponding graph has
bisection width B [6, 13], and the number of tracks of a processor network in
a horizontal layouts requires C' layers if the corresponding graph has cut width
C'. The total edge length has applications to the coding theory [5] and storage
management [12]: Minimizing the total edge length of generalized hypercubes
corresponds to minimizing the error of a e-ary channel, and to minimizing the
efficiency of managing a d-dimensional data structure in a paging environment.
However, the problem to compute the exact values of them are hard problem:
For a given graph and an integer k, the problem to determine whether the
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Fig. 3. The label order layout of a 2-dimensional 4-ary clique
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Fig. 4. The label order layout of a 2-dimensional 4-ary clique

bisection width of the graph is al most k is NP-complete [1]. Similarly, the
problem to determine the cut width is NP-complete even if the degree of the
graph is restricted [8].

Several articles have been devoted to the evaluation of them. Brebner [2],
Manabe et al. [9], and Nakano et al. [10] have proved that the bisection width of
a d-dimensional binary hypercube is 29-! using different meihods. Leighton [7]
showed that the bisection width of Acg is ¢=! if ¢ is even by embedding a directed
complete graph in Acy. Wada et al. [14] proved that the bisection width of Cey is
et /4if ¢ is even in a similar way to the Leighton’s proof. [lowever, they did not
get the exact value of it when ¢ is odd: the bisection width of Cey takes a value
between [c?*1/4—1/(4c*1)] and (c+1)(c?—1)/4 (inclusive). Nakano et al. [10]
also proved that the cut width of Cz4 is [2%+1/3]. Wada et al. [15] also proved
that the cut width of Cey is at most ¢*(e? — 1)/{4(c — 1)}. Niepel et al. [11]
showed that the total edge length of an n x 2-node array is 5n—4 and conjectured
that that of an nx m-node array is n(m*+m—1)—m?. Harper [5] showed that the
total edge length of a d-dimensional hypercube is 24-1(29 — 1). DeMillo et al. [3]
showed that the total edge length of 2-dimensional hypercube is at least n3 /6.

In this paper, we will evaluate the bisection width, cut width, and total edge
length of Cey and of Aey. In Section 2, we consider how many edges a subgraph
of Ce(yyy with n (n < m) nodes may have, and show that C'c(ny has the largest
number of edges of all subgraphs with n nodes. In other words, Ceqny is the
maximum subgraph of Cey,) if n < m. Section 3 uses this fact to get the exact
values of the bisection width, cut width, and total edge length of Ceq. Section 4
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presents the method for converting Cea into Acg and get exact value of the
bisection width of Acg, and nearly exact values of the cut width and the total
edge length of Acg. See Table 1 for comparing our results and previously known
results.

Table 1. Qur results and previously known resulls

[ [ Bisection width | Cut width | Total edge length ||
hypercube Brebner [2] Nakano [10] Harper [5] ——|
Manabe [9] exact exact
Nakano [10]
exact
«-dimensional Wada [14] Wada [15]
c-ary clique |exact when c is even| only upper bound
This paper Tlis paper This paper Il
exact exact exacl
d-dimensional Leighton [7] DeMillo [3]
c-ary array  |exact when ¢ is even lower bound when
d=2§
This paper This paper This paper
exact nearly exactf nearly exact} JJ

+The upper bound is about 1+ 2/{(¢ + 2)(c — 1)} times as large as the lower bound.
1The upper bound is about 3¢/{2(c + 1)} times as large as the lower bound.
§DeMillo’s lower bound is ¢’ /6, while that of us is about 25 /3.

2 Maximum subgraph of Cey

The main result of this paper is due to the following theorem:
Theorem 1. Ceq,) s @ mazimum subgraph of Ce(pm) ifn<m.
Theorem 1 can be proved by the following lemmas.
Lemma2. Let fc be the function defined as follows:
n{n—1)/2 ifn<e,

def ] e~1

fe(n) = S {fel(n +i)/e]) + (e —i = 1)|(n+i)/e]} otherwise.
i=0

For alln > 1, Ce(ny has fe(n) edges.
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Lemma3. Let gc be the function defined as follows:

n{n—1)/2 ifn<e,
e—1
def ma.x{z{gc(n,-:} +(c—1i-1)n;}|
ge(n) = i=0
e=1
ng<n; <. <n._1<n= Zn,-} otherwise.
i=0

For any subgraph G = (V, E) of Ce(my, |E| < ge(|V]) holds.
Lemmad. fc= ge holds.

Note that the division of an integer n into the same ¢ values as equally as
possible can be represented as

[n/e], ln+1)/e), [(n+2)/e),..., |(n+c— 1)/e).

In fact, the sequence is ¢ — r ¢’s followed by r (g+1)s wheren = g.c+r
(0 < r < e—1). Thus, while ge(n) is evaluated by computing the maximum over
all divisions of n, fc(n) is evaluated for the equal-sized division of n. Therefore,
cbviously, we have fec < ge. However, Lemma 4 claims fe=ge.

Lemma 2 shows the number of edges of Ce(ay, and Lemma 3 shows the upper
bound of the number of edges of the maximum subgraph. Hence, from Lemma 4,
the number of edges of Ce(,) is equal to the number of edges of the maximum
subgraph with n nodes. Therefore, these lemmas imply Theorem 1. See the ap-
pendix for the proofs of Lemmas 2, 3, and 4.

3  Widths and length of Ce,

To get exact evaluations of the widths of Ceq, we first prove the following lemma:

Lemma5. For any linear layout I and any gapi(l <i<e?—1), the cut of
Cea under L at i is at least as large as that of Ccy under the label order layout
at i.

Proof. For a gap i under L, divide the edges in Ccy into Cez(L,i), CcF(L,i),
and Ceq(L, i) as follows: Cej (L, i) (resp. Ccf(L,i)) is the set of edges connecting
nodes whose positions are less than (resp. larger than or equal to) 7, and Ceq(L, 1)
are the cut under L at a gap i. Obviously, we have

1. Cey(L,i) and Cej(L,i) are subgraphs of Ccy with i nodes and with ¢ — ;
nodes, respectively.

2. Let I L the label order layout, i.e. for all 4, I(i) = i (Fig 3). Since the label
order layout of Ceq is bilateral symmetry, Ceg(1,i) and Ce}(1,1) correspond
to the edges of Ce(iy and Ceg.a_;), respectively.
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Hence, from Theorem 1, |Cej (L,i)| € |Cej(1,1)| and |Ccf (L, )] < |Ced(1,4)]
hold. Furthermore, obviously,

|Ceal L, )] + |Ce3 (L, i)l + |Ccf (L, 1)] = |CealL,i)] + |Ceg (1,8)] + |Cef (1, )]
Thus, |Cea(L,i)| > |Ceal(1,i)] holds. This completes the proof. o

From this lemma, when computing the parameters of Ceq, we do not have to
compute the minimum over all linear layouts but only those of the label order
layout. In other words, we have

Lemma 6. The bisection width, cut width, and total edge length of Ceq are equal
to those of the label order layout, respectively.

It is easy to compute the parameters of the label order layout of Ceq. For

example, the bisection width of the label order layout (ie. |Cea(7, le/2])]) can

be computed as follows: If ¢ is even, since Cea({, [e?/2]) consists of edges along

the dth dimension, [Cea(I, [¢?/2])] is equal to ¢#/2 x ¢/2 = ¢™*! /4. 1f ¢ is odd,

among all edges along each kth dimension (1 < k < d), Cea(/, |¢?/2]) contains

(2 —1)ck=1/4 edges. By summing up, Cea(l, le/2]) has (c+1)(c? —1)/4 edges.
As a result, we have the following theorem:

Theorem 7. The bisection width of Ceg is ¢+ /4 (if ¢ 15 even), and
(c+ 1)(e? = 1)/4 (if ¢ is odd).

Similarly, we can compute the cut width and total edge length of the label
order layout and get the following theorems:

Theorem 8. The cut width of Ceg is c(e+2)(c? — 1)/{d(c + 1)} (if ¢ 1s even
and d is cven), ¢*{(c+2)c?=? = 1}/{4(c + 1)} (if ¢ is even and d is odd), and
(c+ 1)(e? = 1)/4 (if ¢ is odd).

Theorem 9. The total edge length of Ceq is (¢ + 1)c?(c? — 1)/6.

4 Widths and length of Acy

Since Acgny is not always a maximum subgraph, the methed in the previous
section cannot be applied to compute the widths of Acg. llence, we use a method
similar to embedding a directed clique [7]. In other words, Ceq is embedded in
A(.‘lgv

From Theorem 7, the bisection width of a c-node clique is h(c), where h(c)
is ¢*/4 (if ¢ is even) and (¢? — 1)/4 (if ¢ is odd). Since each side of Ccyq can be
considered as a e-node clique, we have

Lemma 10. For any linear layout L and any gapi (1 <1 < ¢?), the cut of Cey
under the label order layout at i is at most h(c) times as large as the cul of Aeq
under L at i
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Proof. Fix a linear layout L and compare L of Acgq and L of Ceyq. It can be
considered that each edge in Aey corresponds to at most h(e) edges in Cey
under L. Therefore, the cut of Cey under L at each gap is at most h(c) times
as large as the cut of Acg under L at the same gap. Thus, from Lemma 5, the
cut of Ccy under the label order layout at each position is at most k(c) times as
large as the cut of Acy under L at the same position. o

From this lemma, we have

Lemma1l. The bisection widlh, cut width, and total edge length of Acy are at
least as large as those of Cey divided by h(c), respectively.

Therefore, the lower bounds of Acy can be obtained from Theorems 'r',. 8, and 9.
On the other hand, from the definition, we have

Lemma 12. The bisection width, cut width, and total edge length of Acy is at
most as large as those of Acy under the label order layout, respectively.

From these relation, the upper bounds of Acy can be obtained by computing
those of the label order layout which can be computed similarly to those of Ce,.
Consequently, we have

Theorem 13. The bisection width of Acy is ¢! (if ¢ is even), and

(c? = 1)/(c=1) (ifc is odd).

Theorem 14. The cut width of Acq (c > 3) is at least (c + 2)(c? — 1)/{e(c+1)}
(if ¢ is even and d is even), at least {(c + 2)ct~1 — 1}/(e+1) (if ¢ is even and
d is odd), at least (¢" - 1)/(c = 1) (if c is odd), and at most (¢? —1)/(c — 1).

If ¢ = 2, the cut width of Acy is equal to that of Ceg.

Theorem 15. The total edge length of Acy is at least 2(c + 1)e?=2(c4 - 1)/3 (if
¢ is even), ot least 2c9(e® — 1/{3(c— 1)} (if ¢ is odd), and at mosi cd=1(cd—1).

Fortunately, the upper bound of the bisection width is equal to the lower
bound. However, the upper bounds of the cut width and total edge length of
Acq do not match the lower bounds of them. But the difference is not so large;
The upper bound of the cut width is at most approximately 1+2/{(c+2)(c—1)}
times as large as the lower bound and the upper bound of the total edge length
is approximately 1.5 times as large as the lower bound.

5 Conclusions

We have presented the exact or nearly exact values of the bisection width, cut
width, total edge length of generalized hypercubes. Lemma 5 implies that the
label order layout of a d-dimensional c-ary clique is the optimal layout in the
sense that the cut of the label order layout at each gap is smaller than or equal
to that of any other layout at the same gap. Similarly to the Acy case, this result
makes it easy to prove that the upper and lower bounds of the widths and the
total length of Acg with wraparound cdges (referred to as a d-dimensional c-ary
torus [7]) are twice as large as those of Acg. The exact values of the cut width
and total edge length of Acy remain to be solved.
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Appendix

In the appendix, we will prove Lemmas 2, 3, and 4. First, we will prove Lerma 2.

Proof. The proof is by induction on n. Obviously for all n < ¢, C¢(n) has fe(n)
edges. We assume that for all k < n—1, C'e(r) has fe(k) edges, and will prove that
Ce(n) has fe(n) edges. Foralli (0 < i< e— 1), let Ve, be the set of nodes such
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that the LSD’s (Least Significant Digits) of the c-ary representations of them are
LSD
¢—1—1. In other words, Vc[n) contains the nodes [- .- (¢ — 1 — 1)]. Hence, 'l-"c(n)

consists of | (n+1)/c] nodes. Let Fr{n] (i < j) be the edges connecting Vc(n) and
Vc" . Since for all 1, Gc{") = (Vc’{n),Ec[n}) and Cc,:un_i,,-),‘” are isomorphic,
we ha.ve |bc(n)| = fe(|(n+1i)/c]) from the inductive assumption. For all i and j
(i < j), no two edges in ECE{;) share a node in VCEH} and every node in Vc‘é"} is
connected by an edge in ECE{aJ' Thus [Ec:{‘ﬂ E= |Vc’én)| = |(n + i)/c|. Therefore,
we have

| Ee(nyl Hch(,,u +3 B, | = ch Ln+i)/c)) + 3 (n+i)/e]

i=0 i<j i=0 <]
c—=1

=Y {fe(l(n+i)/e]) + (e =i = D(n+i)/ec]} = fe(n).
i=0

Secondly, we will show the proof of Lemma 3.

Proof. The proof is by induetion on the number of nodes in V. Obviously, for
any subgraph G .= (V, E), if |V] < ¢ then |E| <€ ge(|V]). We assume that
|E| < ge(|V]) if |V| < n—1, and will show that |E| < ge(|V]) if [V]| = n. We
select any digit s and divide V into VO, V', ... V1 as follows: V* consists of

the nodes such that the sth digit of the - m.f representation of them is i. In
other words, V' contains the nodes [- --SLh Ehglt -++]. Since we can select s such
that there are at least two V's which are not empty, we can assume, for all i,
|[Vi| < |V|. Furthermore, by renumbering the indices of Vs, we can assume that
VO] < [V} < - < |V < |V]| without loss of generality. Let E¥ (i < j) be
the edges in E connecting V¥ and V7. Since |V < [V} < ... < |V} < n, we
have, for all i, E* < ge(|V'|) from the inductive assumption. Since no two edges
in EY (i < j) share a node in V', |EY| is at most as large as |V*|. Therefore,
we have

|E| = ZIE“'I+ZIE"t < ch Vi + > IV
i<y i<j
< T toe1V 1) + (n i = DIV} < g1V

=0

a

We have to prove several lemmas as preparation for the proof of Lemma 4.
From now on, for given ng,ny,...,n._1, let n = ng+ny + -+ + n._; and
n; =gice+r; (0 <7 <e—1). For convenience, let n_; = —oo and n, = +oo0.
Under this notation, the following lemma holds obviously:
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Lemma 16, For all ng,ny, ..., ne_y,

e—=1 Tl-!-j c=1ec=1 n-+j
n=y (P =y YR
. - bt 4 ¢
ji=0 i=0 j=0
Let us consider that for given ng,ny,...,n._y (ng < ny < ... < MNeoq),

the set {(1,j)[0 < i,j < e — 1} is sorted by [(n; + j)/c|, and let the (ic + i)th
(0 <14,j < ¢~ 1) smallest element! and its value be (a(i, ), b(¢, j)) and a(i, ),
respectively. In other words, for all i and j, let (i, j) = [(nagi gy + 8(3,5))/c],
and for all 4, j, ¥/, j* such that ic 4+ j < i'c + j*, we find that a(i,j) < a(’, j)
holds. Figure 5 illustrates an example of the values of |(n; + j)/c| and a(i, j).

Consider the following procedure that determines two mappings 4, B : {0, 1,
e =1px {0,1,--,e =1} = {0,1,-++,e = 1}:

Stepl Let 5j .= |[(n+j)/c|/forall j (0<j<e—1), andi:=0.

Step 2 Sort Sg,51,...,S.1 by their values and let p : {0,...,e=1} = {0,...,
¢— 1} be the one-to-one mapping so that for each j, Spijy is the jth smallest
element.

Step 3 Forall j, determine A and B so that A(7, p(§)) = a(i, j) and B(i, p(j)) =
b(i, 7).

Step 4 Tor all j, let 5,(;) := Sp(5y — (i, j).

Step 5 Leti:=i+ landifi<c—1then go to Step 2.

L (% 4k | (i) B )

NI rl gl s of 1] 2] 3] af s| e] 7L o] 1| 2] 3[ 4] 5] 6| 7§ O] 1] 2] 3] 4] 5] 6] 7
ofzif 2 sp 2] 2[ 2| 3] 3] 3] 3] 3} 2| 2| 2| 3[ 3 3| 3] 2| 21 2] 2] 3] 3] 3] 31 3
V34 4| 2 4 4| a] 4| 4| 4| 5| ) a] a| o] a| a| a| a| a o[ <] 4| a| a| 4| &] 4
26| af 4f 4f 4| 4| 4] 5] 5] 5] sY a] a| s[ 5[ 5| 5| 5] sf 5| 5] 5] 4| 4] 5| 51 5
HE RN EEEEEEE D B EE R EEEEEE
OO HEEEEEE N EEE HEEEEEEE
sfeol [ af 71 7| 7] 7| 8] & = &} 7[ 7] | &[ &| &] &l 6] 7| 2| 6| &] 8| 7| 8| &
elot| 7| s) 7| 7| 7| 8] 8| | 8| s s| e[ s| &| &| o &[ 8| €| 5| &| 8] 8| 8| 8]
7les| 8| 1] 8] 8| 8| 8| s| 8| 8| of & 8] & 5[ 5[ & =] of o] | & &| &| &| &| ©

SUM | 49]49] 49] 49] 49| 49] 50| 50

Fig. 5. An example of the values of [(n, + 5)/¢], a(i,}), and A1, 1)

Since A and B are determined one by one from the smallest to the largest
element of {(#,7)|0 < i,j € ¢ =1}, A and B have the following two properties
after completion of the procedure.

Property 17. C(i,j) = (A(i,]), B(i,j)) 1s a one-to-one mapping.

! Let the 0th smallest element be the smallest element.
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Property 18. Let 8(i, j) = [(nag 3+ B(i, j))/c). For all j, B(0,7) < A(1,j) <
< Ble-1,4).

These properties can be clearly seen in Fig. 5.

For all 4, ¢; < a(i,0) < a(i,1) £ --- < afi,e = 1) < ¢ + 1 holds. Hence,
after each iteration, for all j and j', |S; — Sj¢| < 1 holds. In particular, from
Lemma 16 and Property 17, for all j, S; = 0 after completion of the procedure.
Therefore, § has the following property:

Property 19. For all j,

e=1
> o B(i§) =
i=0
Let Zr.— = gaac+rsq (0 < vy < ¢—1). For all s,t such that q,_, <
1=
4s = qs+1 = - = @t < ¢e41, let us imagine the three submatrices which can be

obtained by picking up from the s-th to the ¢-th row of the matrices in Fig. 5.
For example, choose s = 3 and ¢t = 6 in Fig. 5. The submatrices of o, 7), B(1, j),
and |(n; + j)/c] have the following property:

Property 20. — They Lave the same number of q,’s and the same number of

gs + 1's.

= In the ith row of the submatriz of [(ni+j)/c|, there are (c—ri) q4’s followed
byri ¢+ 1.

= In the (t = q, (Jth row of the submatriz of a(i,j), there are (e—ret) qu's
followed by vs¢ qs1+ 1's, and the rows above and below are filled with q,’s
and q, + 1's, respectively.

— In the (t — qo1)th row of the submatnz of B(i,j), there are (¢ — ry4) q,’s
and vs ¢ qs0+1's, and the rows above and below filled with q,’s and q, + 1,
respeclively.

From FProperty 20, we have

Lemma21. Forall s and t such that g,_) < gy =qey1 =+ =g < Jis1,
t e=1 t e—=1 +J
Y D i+8 .J)<ZZ=+JJG (i) <Z}:(=+J)[‘
i=a j=0 i=a j=0 i=s j=0

From Lemma 21, we have the following corollary:

Corollary 22,

e—1e-1 e=1c=1 c=1 =1

ZMWU)ZZHMUHZZHHd”
i=0

i=0 =0 5= i=0 ;=0

Now, we will prove Lemma 4.
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Proof. Since fe¢ < ge from the definition, it suffices for the lemma to prove
fc > ge. We prove fe > ge by induction. Obviously, fe(n) = ge(n) if n <c. We
assume that for all 1 (< n), fe(i) > ge(i) holds, and will prove fe(n) > ge(n).
For all ng,ny, ..., ne—y such that ng < ny € ... <Ny <0 and n > ¢, the
following relation holds:

Z{yc(n,—] +(e=1i=1)n;}

i=0

—

G £=

1
< fe(n) + Z{c —i—1)n; (from the inductive assumption)

i=0 i=0
e=]e=1 . ) . e=1
= el B ) 4 o= = DIEE (e =i = D
i=0 j=0 i=0
ce—=1e=—1 ﬂ‘+j c=1ec=1 ﬂ'+j
:ZEIE(['TJ)+{2|:—2)H—ZZ(i+j)l—‘",_J
i=0 j=0 i=0 j=0 ’

(from Lemma 16)

Furthermore, we have

c=1 . .
fem) = L) + e -5 - DI
=0
e=1 . c—1 !
>3 0Ty 4 Se— - 1
§=0 3=0
(from the inductive assumption)
e=1e=1 e=1e=-1
> 573 {9e(Bi, 1) + (e — i = 1)BGEN} + D 3 (e =i = DBGEI)
i=0 j=0 1=0 j=0
(from Properties 18 and 19)
e=1¢e-1 . ; e—1e=1
=3 T el B ) + e -2 3 Yo+ )AGI).
1=0 j=0 i=0 j=0

(from Lemma 16 and Property 17)

Thus, from fc < ge and Corollary 22, we have:
c=1
E{_r;c{n;} +(c—i—1)ni} < fe(n).
i=0

Therefore, ge(n) < fe(n) holds. o



