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Abstract—Depth completion is a fundamental task for many
applications such as autonomous vehicles, 3D cinema, 3D recon-
struction, and others. Many approaches have been proposed to
tackle this problem, from classical models (variational models,
morphological models, etc.) to convolutional networks. Hybrid
models consider the advantages of the convolutional networks to
select features and the generalization capacities of the classical
models to extrapolate data. A hybrid model that considers
convolutional stages and an interpolator has been proposed in
the literature. This model assumes an anisotropic metric gij and
the image domain (Ω), embedding the data in a Riemannian
manifold M = (gij ,Ω). The interpolation task is performed
by solving a degenerated partial differential equation in this
manifold M. The proposed metric gij used in this manifold is
fundamental to correctly estimate distances between points in the
sparse depth data. In this paper, our contributions are two-fold:
first, an empirical evaluation of a metric based on a Positive
Definite Operator Metric to compare color pixels applied to the
depth completion task, and second, a variation of the infinity
Laplacian (also the biased infinity Laplacian), namely unbalanced
infinity Laplacian (unbalanced biased infinity Laplacian). Both
interpolators include a weight map that balances the contribution
of different models in the interpolation process. Experimental
results in the KITTI Depth Completion Suite dataset, which
is publicly available, show that the use of the Positive Definite
Metric Operator performs better than the other two models and
also performs better than similar models in this dataset.

Index Terms—Infinity Laplacian, geodesic metric, depth com-
pletion

I. INTRODUCTION

Depth completion is crucial for many applications such

as 3D reconstruction, 3D cinema, video games, autonomous

vehicles, and others. Many techniques have been used to tackle

the problem of depth completion, from simple interpolation

to more sophisticated techniques such as variational models,

convolution networks, and deep learning. The depth comple-

tion problem starts with a sparse depth image acquired either

by a sensor such as a Kinect sensor, Time of Flight camera,

LiDar sensor, or estimated by a stereo algorithm. In general,

the interpolation of this data follows one of two principal

strategies: strategies that use a reference color image to guide

the interpolation and procedures that do not use the reference

color image.

Our proposal is devoted to models that use the reference

color image. We embedded the data in a manifold constructed

with the image domain Ω ⊂ R
2 and an anisotropic metric gij .

We solved a degenerated partial differential equation in the

Manifold (Ω, gij) to interpolate the depth data. The anisotropic

metric contains spatial and photometric terms to compare the

similarity between two pixels in the manifold.

In this work, we used a variation of the infinity Laplacian or

AMLE model (Absolutely Minimizing Lipschitz Extensions),

namely the unbalanced AMLE model, to interpolate depth

maps. The AMLE model was discovered by Aronsson in the

sixties [1] [2] and revisited in [3]. In [3] AMLE was presented

as the simplest interpolator that holds a set of axioms.

The AMLE and the biased AMLE model (bAMLE) were

already presented in detail in [4], [5], [6], [7], [8]. To avoid

being redundant, we will not present in this manuscript the

details of the AMLE and bAMLE implementation; on the other

hand, we will explain in detail our proposal, the unbalanced

AMLE, and the unbalanced bAMLE.

A. Related works

In [6] authors presented a practical implementation of the

AMLE and bAMLE model using different metrics. L1, L2, and

L 1
2 metric. The authors evaluated the model using different

color spaces: RGB, XYZ, CIE-Lab, and CMY. The authors

also optimized the model’s parameters by comparing Particle

Swarm Optimization and Elephant Herd Optimization. Their

findings were applied to depth completion and optical flow

completion. Given the metric and the domain, the authors

constructed a Manifold. Varying the exponent of the metric is

a way to estimate the shape of the Manifold. A more flexible

metric is needed to obtain a better estimation of the shape of

the Manifold.

In [9] authors present a non-deep learning model. They

filter the available depth data eliminating misaligned points.

Afterward, they segment the image into superpixels. If a

superpixel is not well represented by a plane, they use the
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convex hull of a series of most inline points. Finally, a pin

hole camera model is used to interpolate the filtered data and

the remaining data. The KITTI Depth Completion Suite results

show that the proposed model performs better than other

models based on classical ideas such as variational models

or morphological operations.

Nowadays, spatial propagation networks are affinity-based

methods used for depth completion, but the model in [10]

suffers from the low representation of a fixed affinity and

over smoothing. The standard approach estimates independent

affinity matrices but in an over-parameterized way. In their

work, the authors introduce an efficient model that learns the

affinity in neighboring pixels with an attention-based dynamic

approach. They use a non-linear propagation model, attention

maps, and diffusion suppression. The model requires less

iteration to converge, avoiding over-smoothing of the solution

and reaching better results than traditional spatial propagation

networks.

In [11] authors propose a piecewise depth completion

model. The model segments color images into superpixels

corresponding to the regions with similar depth values. These

superpixels correspond to the same objects and are gathered

using a cost map. Obtained results are comparable to the state-

of-the-art models. In their evaluation, the authors show the

influence of the individual proposed processing stages and the

overall performance on the KITTI dataset.

Recently, AMLE and bAMLE model has been used to fill

in holes in optical flow or to interpolate elevation models.

II. AMLE MODEL

Let us consider I : Ω ⊂ R
2 → R

3 a color reference image,

an incomplete depth map u : Ω→ R and that the sparse data

is located in O ⊂ Ω with a boundary ∂O. We endowed the

domain Ω with an anisotropic metric gij , and we constructed

a Riemannian manifold M = (Ω, gij). Given the manifold,

we solve the problem,

Δ∞,gu = 0 ∈ Ω, (1)

where u is the interpolated depth data and u|∂O = θ the

boundary condition represents the available data.

The biased version of the Laplacian or bAMLE is given by,

Δ∞,gu+ β|∇u|ξ = 0 ∈ Ω, (2)

where β ∈ R. In equation (2) when β = 0 we got the AMLE.

A. Considered metric

Considering the discrete domain Ω as a graph, we take two

points x and y in the grid and its distance should be:

dxy = (κx‖x− y‖p + κc‖I(x)− I(y)‖q)r (3)

where κx, κc, p, q and r are positive real values. The estima-

tion of these parameters defines the shape of the manifold.

Inspired by the work presented in [12], where symmetric

positive definite metric operators are used to estimate the

distance between patterns in a feature space, we decided to

give more flexibility to the computed distances between points

in the discrete grid Ω. The new proposed distance is given by:

dxy = (κx[(x− y)TA(x− y)]p

+ κc[(I(x)− I(y))TC(I(x)− I(y))]q)r
(4)

where A and C are two positive definite matrices whose

elements has to be estimated. The measured distante varies

with the element values of A and C and is oriented in the

features space. This information increases the model’s ability

to calculate the separation between any two points on the

manifold.

As a practical implementation of the distance dxy we also

included the gradient of the image ∇I(x). Comparison of

image gradients instead of intensities or color is a more

robust comparison in real scenarios, where the majority of the

color variations occur due to illumination changes, shadows,

reflections, and other effects,

dxy = (κx[γ(x,y)]
p + κc[δ(x,y) + η(x,y)]q)r, (5)

where γ(x,y) = (x − y)TA(x − y), δ(x,y) =
(I(x) − I(y))TC(I(x) − I(y)), and η(x,y) = (∇I(x) −
∇I(y))TB(∇I(x)−∇I(y)) with A, B and C positive definite

symmetric matrices.

B. Structure of A, B and C positive definite matrices

The matrices A, B and C symmetric and positive definite

in order to xTAx > 0. Let A has the structure,

A =

(
a11 a12
a12 a22

)
,

where a11, a12, and a22 ∈ R. The associated characteristic

equation is given by,

λ2 − Tr(A)λ+ det(A) = 0.

Given that A is symmetric it has real eigenvalues. In order

to assure that the eigenvalues of A be positive a11 > 0 and

det(A) > 0 The solution for λ are given by,

λ =
Tr(A)±√

Tr2(A)− 4 det(A)

2
.

The discriminant of these equation is positive Δ > 0. In order

to assure that the eigenvalues of A be positive, we impose the

following condition,

Tr(A) >
√

Tr2(A)− 4 det(A)

that is to say, a11a22−a212 > 0. We selected ramdomly a11 > 0
and a12 > 0, thus:

a22 >
a212
a11

. (6)

It means that
a2
11

a11
is a lower bound of a22. If we select a22

as:

a22 =
a212
a11

+ 1.0,

the condition in Eq. 6 is satisfied, assuring that A be positive

definite, analogously for B and C.
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III. PROPOSED MODEL

We recall that the average gives the numerical implemen-

tation of the infinity Laplacian between the positive and the

negative eikonal operator,

Δ∞,gu =
1

2

(‖∇u(x)‖+x + ‖∇u(x)‖−x
)
= 0. (7)

where ‖∇u(x)‖+x and ‖∇u(x)‖−x are the positive eikonal

operator and negative eikonal operator, respectively. We will

explain them in the next sub section.

Our proposed model called the unbalanced AMLE o

(uAMLE) considers a weight map α(x) : Ω → [0, 1] as we

show in the following equation,

1

2

(
α(x)‖∇u(x)‖+x + (1− α(x))‖∇u(x)‖−x

)
= 0, (8)

this weight map α(x) is a balance term between positive

eikonal (α(x) = 1.0), infinity Laplacian (α(x) = 0.5) and

also considers the interpolation using negative eikonal operator

(α(x) = 0.0). To state this balance term we followed the ideas

presented in [14].

The Eq. 8 means that we can have a combination of different

interpolation models for every point x ∈ Ω. This weight map

is defined explicitly as:

α(x) =
1

1 + eβα(|‖∇u(x)‖+x |−τα|‖∇u(x)‖−x |)
, (9)

Where βα and τα in R. In one hand, if

|‖∇u(x)‖+x | � τα|‖∇u(x)‖−x | the difference

||∇u(x)‖+x |− |‖∇u(x)‖−x | should be positive, the exponential

value eβα(|‖∇u(x)‖+x |−τα|‖∇u(x)‖−x |) should be large, and the

value of the weight map α(x) ≈ 0, i.e. the interpolation

process is more confident in the positive eikonal operator.

In the other hand, if |‖∇u(x)‖+x | 	 τα|‖∇u(x)‖−x | the

difference |‖∇u(x)‖+x | − τα|‖∇u(x)‖−x | should be negative,

the exponential value eβα(|‖∇u(x)‖+x |−τα|‖∇u(x)‖+x |) should

be small, and the value of the weight map α(x) ≈ 1, it

means that the interpolation process is more confidence in the

negative eikonal operator. Finally, if α(x) = 0.5 we recover

the AMLE model to interpolate the data.

The same balance term α(x) was applied to the bAMLE,

namely the ubAMLE

α(x)Δ∞,gu+ (1− α(x))β|∇u|ξ = 0 (10)

if α(x) = 0.5 we recover the original version of the bAMLE

in Equation 2.

A. Practical model implementation

Given a point x in the grid and let N (x) be a neighborhood

around x. In [13] is defined the positive eikonal operator:

‖∇u(x)‖+x = max
ζ∈N (x)

u(ζ)− u(x)

dxζ
, (11)

and the negative eikonal operator,

‖∇u(x)‖−x = min
ζ∈N (x)

u(ζ)− u(x)

dxζ
. (12)

Let y, z be the location that maximizes the positive eikonal

and minimizes the negative eikonal operator, respectively. With

this definition, it is possible to state the unbalanced infinity

Laplacian,

1

2

(
α

(
u(y)− u(x)

dxy

)
+ (1− α)

(
u(z)− u(x)

dxz

))
= 0,

(13)

where α = α(x).
The solution of equation (13) is given by:

u(x) =
α(x)dxzu(y) + (1− α(x))dxyu(z)

α(x)dxz + (1− α(x))dxy
. (14)

The iterated version of the unbalanced infinity Laplacian is

given by,

uk+1(x) =
α(x)dxzu

k(y) + (1− α(x))dxyu
k(z)

α(x)dxz + (1− α(x))dxy
(15)

with k ∈ N ∪ {0}.
For the ubAMLE we have,

uk+1(x) =
α(x)dxzu

k(y) + α(x)dxyu
k(z) + ak(x,y)

α(x)dxz + α(x)dxy − (1− α(x))βdxz
,

(16)

where ak(x,y) = sgn{u(y) − u(x)}(1 − α(x))βdxzu
k(y).

We observe that the iterative solution of the ubAMLE is very

simple. it is weighted average, which is easy and fast to

implement.

B. Metric approximation

The geodesic distance between two point x and y is given

by,

Lg(x,y) = min{length(L)}, (17)

where L is the trajectory that joins x and y. Practically, we

have approximated the length of the geodesic path (Lg) by the

distance dxy defined in Equation 5, i.e.,

Lg(x,y) ≈ dxy (18)

in order to simplify the computation of the distance between

x and y. As a proof of concept we have compared experiemn-

tally the geodesic distance with our approximation as in [14].

Let us consider a gray level reference image I in Fig. 1. Given

Fig. 1. Squared neighborhoods of the reference image I centered at at pixel
x of radius 4 pixels.

any pair of two pixels x and y, we compute its distance

approximated dxy . This approximation let us to reduce the

processing time. We present here an experimental comparison

with respect the exact dxy given by the Dijkstra algorithm. The

computed geodesic distances from the central pixel x to every
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(a) (b)

Fig. 2. Exact and approximated geodesic distances.

pixel in the neighborhood is displayed in Figure 2, plotted as

a surface in Figure 2. The exact geodesic distances are shown

in Figure 2 (a) while the approximated distances is shown in

(b). Let us notice that the plotted surfaces appear to be similar

and we claim that the error committed in the solution of the

biased AMLE equation produced by this approximation of the

geodesic distance will be small.

IV. RECONFIGURABLE MODEL

In Figure 3 we show a block diagram explaining the

scheme that contains the Convolutional stage-uAMLE model

presented in [5]. Figure 3 shows in the top left corner the color

Fig. 3. Reconfigurable scheme for the Convolutional Stage-Infinity Laplacian
Model.

reference image. The model processed each color component

using Gabor filters, then the model max pool the data in

each color component and reconstructed the color reference

image (SC1). In the center of the figure, the models use the

unbalanced infinity Laplacian (uAMLE), whose inputs are a

color reference image and a sparse depth map to complete.

The processed color image is used as a reference color image

to guide the diffusion process. Then, the uAMLE equation is

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Color reference image and its corresponding sparse depth map.

solved using the model proposed above (see Eq. 15), and their

output u is filtered, and max pooled using a final Convolution

stage (SC2).

A. Implementation

We have implemented our model in CUDA and MATLAB.

The interpolator, the solution of ubAMLE model, was imple-

mented in CUDA 11.5 and gcc compiler 9.4.0 in ubuntu 20.04.

The training stage (PSO algorithm) was impelmented with

script in MATLAB and exuting the ubAMLE. The software

runs in a Laptop i7-8750H in a GPU NVidia Geforce GTX

1060.

V. TRAINING THE MODEL

The proposed model has many parameters that have to be

estimated. We present the parameters model in the following

table:

TABLE I
PARAMETERS OF THE MODEL

Parameter Description Number of
parameters

κc, κx, p, q, r Parameters of the metric 5
radius Neighborhood size of N (x) 1
niter iteration number 1
β bAMLE parameter 1

βα, βtau α(x) map parameters. 2
σj , ωj , j = 1, ..8 Parameters of Gabor filters. 16

w1j , w2j , w3j , w4j weights of square
with j = 1, ..9 average filters 36

a11, a12, b11, b12, Coefficients of
c11 and c12 A, B and C matrices. 6

Total 68

In Table I we observe that we have 68 parameters of the

complete model, where 52 of them are filter parameters.

A. Training set

Taking into account the public available data KITTI Depth

Completion Suite in [15], we extracted three color reference

images and its corresponding ground truth, as we show in

Figure 4.

In Figure 4 (a), (c) and (e) we present three-color reference

images used to train the algorithm. In (b), (d), and (f), we
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present (color-coded) the sparse depth map corresponding to

each color reference image. Black color means no available

data, and depth values are color-coded between small (red)

and large depth values (yellow).

B. Parameter estimation

We defined a vector 
μi that contains all the 68 parameters.

Parameters were estimated using Particle Swarm Optimization

(PSO) algorithm. We start with 50 random instances of vector


μi. Using each vector (parameters), we completed sparse depth

maps of the training data set. Thus, we computed a MSE
(Mean Square Error) and MAE (Mean absolute value) with

the obtained results. The main idea is to minimize a fitness J ,

which is the addition of the MAE and MSE for each image

of the training set,

J(
μi) =

Training images Number∑
k=1

MAEk +MSEk (19)

In each iteration the PSO algoritm minimizes the fitness

J using two evolution equations for each solution μi with

i = 1, ..., 50.

In Figure 5 we show the evolution of the parameter esti-

mation of 50 instances of 
μi. In our cases the training images

number is 3.

(a) (b)

Fig. 5. Learning curve for Positive Definite Operator Metric model. (a)
Evolution of 50 individuals in 30 iterations. (b) Estimation of best individual.

In Figure 5 (a) we show the evolution of 50 individuals in 30

iterations. In (b) we show the evolution of the best individual.

We observe that the best individual converges very fast in less

that 5 iterations.

In Table II we show the MSE +MAE obtained by three

different models we considered in our proposal. We show in

TABLE II
MSE AND MAE IN TRAINING SET

Method Error
MSE+MAE

Unbalanced AMLE 1.3149
Unbalanced bAMLE 1.3162

Positive Definite Metric Operator 1.3217

Figure 6 the completed depth using the training set and PSO

algorithm.

In (b) Figure 6 (b), (d) and (f) sparse depth data and (a),

(c) and (e) completed depth data.

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Completed depth map of the training set. (a) MSE=
1.7153, MAE=0.3951. (b) MSE=0.6788, MAE=0.1989. (c) MSE=0.7622,
MAE=0.1946.

C. Parameters of the PSO

We defined the PSO algorithm considering the following

elements:

i) Number of individuals: 50 instances.

ii) Stop criteria: 30 iterations.

iii) Fitness of the model: The fitness is presented in Eq. 19.

iv) Evolution of each individual: the position and velocity

of each individual is defined according:


νi
t+1 = ω
νi

t + ϕg(
μi
t − 
μg) + ϕb(
μi

t − 
μb), (20)

and,


μi
t+1 = 
μi

t + 
νi
t, (21)

where ω = 0.95 is the evolution parameter for each

solution candidate 
μi, ϕg = 0.5 and ϕb = 1.0 are

positive weight parameters, 
νi is the velocity for each

candidate solution, 
μb best individual of the current

iteration and 
μb is the best individual of all iterations.

A saturation for 
νi is usually incorporated to avoid fast

change of the solutions. Practically, we used νmax = 2
and νmin = −2.

VI. EXPERIMENTS AND DATASET

We have trained three models we will evaluate in the KITTI

data set.

A. Dataset

We used the KITTI Depth Completion Suite dataset avail-

able in [15]. KITTI data set contains 1000 images of urban

scenes, their corresponding depth map acquired by a LiDar,

and their corresponding ground truth. Lidar Scan horizontally

the urban scene. The obtained depth map is a sparse image

with holes and large areas without information. As shown

in Figure 4, the urban scene considers cars, bikes, persons,

buildings, trees, and roads presenting illumination changes,

blur, reflections, and shadows. As we mentioned above, we

selected three reference images and their depth to be used as

our training set. The rest 997 images were used to validate

our trained model.
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(a)

(b)

Fig. 7. Examples of obtained results in the validation set.

B. Experiments

We trained and validated three models using KITTI data set.

The trained models are:

i) Positive defined Metric Operator. We considered Eq.

(15) and we set α(x) = 0.5.

ii) Unbalanced AMLE. We solve numerically Eq. (15).

iii) Unbalanced bAMLE. We solve numerically Eq. (16).

VII. RESULTS

Obtained results were evaluated according to the metrics

defined in [15]. In Table III we show the obtained results

obtained by our models in the validations set. We also present

the results obtained by similar model PDC [9] and [8]. We

observe that the three of our models outperform PDC. The

three models perform similarly, but Positive Definite Operator

performs a bit better than the other two models. where RMSE

TABLE III
RMSE AND MAE IN VALIDATION SET

Method Error
RMSE MAE

PDC [9] 1.2866 0.2932
Lazcano2022 [8] 1.1752 0.3400

Unbalanced AMLE 1.1409 0.3097
Unbalanced bAMLE 1.1422 0.3091

Positive Definite Metric Operator 1.1397 0.3132

is the root mean square error defined as:

RMSE =

√√√√ N∑
i=1

(gt(i)− u(i))2, (22)

where gt is the ground-truth, u is the estimated depth and N

is the number of points of the image.

In Figure 7 we show an example of the obtained results. In

Figure 7 we show in (a) 3D reconstruction and in (b) output

of the model.

VIII. CONCLUSIONS

We have evaluated three models to interpolate sparse depth

data. Our proposal outperforms similar models in the KITTI

data set. Specifically, we show that the model AMLE and

the Positive definite Metric operator perform better than the

uAMLE and ubAMLE. In future work, we will consider

improving the geodesic distance approximation between points

in the manifold. Also, to extend the evaluation to other data

sets.
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