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Abstract—Convolutional Neural Networks (CNNs) have been
successful in various computer vision tasks. However, the size
of state-of-the-art CNN models tends to be tremendous, which
results in very long inference times and high memory usage.
Model compression technology such as unstructured pruning can
prune a significant proportion of parameters without affecting
accuracy, but efficient utilization of sparsity remains a challenge.
Column combining compress unstructurally-pruned CNN models
by combining multiple sparse columns in a convolutional filter
matrix into a single dense column. In addition, pruning all but
the largest magnitude weight in each row of the combined column
further compresses the matrix effectively. However, previous
work did not address the details of partitioning sparse columns
to minimize the negative impact of additional pruning on the
performance of the model. In this work, we first prove that the
column partition problem is an NP-Complete problem. Next,
we propose a column combining scheme based on simulated
annealing and global unstructured pruning to minimize the
adverse effects of additional pruning on model performance. We
implement the acceleration of column-combined CNN models
using the TVM AI compiler without special hardware support.
The proposed scheme achieves more efficient model compression,
leading to a 0.65% improvement in accuracy and a 1.24×
faster inference time on VGG19 under 88% sparsity with the
TinyImageNet dataset.

Index Terms—deep learning, model compression, pruning,
column combining, simulated annealing, TVM

I. INTRODUCTION

Convolutional Neural Networks (CNNs) are an important

technology in deep learning. CNNs have achieved impressive

results in many computer vision problems, such as image

classification [1]–[4], image segmentation [5], [6], and ob-

ject detection [7], [8]. However, state-of-the-art CNN models

become larger for better performance. The huge number of

parameters in the model leads to a long inference time and a

large amount of memory. For instance, CoCa [9], a state-of-

the-art CNN model with 91% top-1 accuracy for the ImageNet

dataset, contains 2100 million parameters.

Model compression techniques such as quantization [10]

and neural network pruning are common techniques to acceler-

ate the speed of CNN models while maintaining high accuracy.

The model pruning methods include structured pruning [11]–

[13], and unstructured pruning [14], [15]. Unstructured prun-

ing prunes at the granularity of a single parameter. Compared

with filter-wise or channel-wise structured pruning, such fine

granularity allows unstructured pruning to prune many param-

eters without loss of accuracy.

We cannot accelerate CNN models by setting the weights

to zeros only. Even if there are many zeros in the filter tensor,

the computation time of the convolution is the same because

the size of the tensor and the number of arithmetic operations

remain the same. Therefore, it is essential to skip the multiply-

accumulate computations (MACs) of the pruned weights to

achieve acceleration. However, unstructured pruning prunes

weights in an irregular manner, so we cannot directly modify

the network’s architecture to skip the computations of these

weights.

The convolution in a CNN model can be transformed into a

matrix multiplication between the feature map matrix and the

convolutional filter matrix. Kung et al. [16] described a novel

unstructured pruning, called column combining, that combines

multiple sparse columns in a convolutional filter matrix into a

single dense column. The column combining only keeps the

weight with the largest magnitude for a row and removes the

elements of the same row from the rest of the columns. As a

result, the column combining compresses each convolutional

filter matrix in CNN models into a dense format, which greatly

improves the utilization of hardware resources.

Previous column combining [16] did not explain how to

partition sparse columns in order to minimize the adverse

effects of column-combine pruning on the performance of the

model. In addition, the heuristic column partition in previous

work [16] has certain limitations. For instance, it can only deal

with one group of columns at a time instead of considering

all columns globally. Despite the fact that it results in a good

performance for those groups partitioned first since there are

more column choices available for finding the best fit, the

performance deteriorates for the later partitioned groups due

to a lack of choices on available columns. Hence, the algorithm

may not find a good solution with such a limited search space.

In this work, we first prove the column partition problem

is an NP-Complete problem. Following that, we propose a

simulated annealing method to combine columns after global
unstructured pruning. We adopt global unstructured pruning

because it leverages sparsity information for each convolu-

tional layer, allowing for the compression of a CNN model

without the requirement of a large number of predetermined
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hyperparameters. We use simulated annealing because it can

explore a wide range of column partitions to minimize the

adverse effects of additional pruning on model performance.

Compared to the previous method, our scheme achieves higher

model compression, improves model accuracy, and runs faster.

Furthermore, previous work [16] proposed special hardware

(i.e., systolic array [17]) to accelerate the matrix multiplication

between the feature map and the compressed filter. In this

work, we implement the matrix multiplication for the com-

pressed filter on the CPU. We design the optimization of tiling,

which partitions the matrices into tiles and computes them

separately, and row rearrangement, which reorders the rows of

the feature map matrix in order for a sequential access pattern.

As a result, the cache utilization becomes more effective and

has a better data locality. We leverage the auto-tuner of the

TVM AI compiler [18] to search for an optimization schedule

of the matrix multiplication and accelerate column-combined

CNN computation without special hardware support.

In summary, the contributions of this paper are as follows:

• We prove the column partition problem is an NP-

Complete problem.

• We propose a column combining scheme based on sim-

ulated annealing and global unstructured pruning.

• We implement and test the optimizations on the CPU

for CNNs after column combining with the TVM AI

compiler.

We organize the remainder of the paper as follows. Section

II introduces the background knowledge of neural network

pruning and column combining. Section III describes that

the column partition problem is an NP-Complete problem.

Section IV describes our column combining scheme in detail.

Section V describes the experimental settings and evaluates the

improvement of our scheme. Section VI concludes the paper.

II. BACKGROUND

This section provides an overview of the model pruning

techniques in this work.

A. Unstructured Pruning

As deep learning models become increasingly larger and

have more parameters, model compression has become a

critical technique to reduce model complexity and inference

time. One of the model compression methods is unstructured

pruning, which involves identifying and removing unimpor-

tant weights to reduce the number of parameters. Han et

al. [15] proposed a scheme that evaluates the importance of

weights globally based on their magnitudes. Weights with

smaller magnitudes in the entire model are considered less

important on model performance and thus can be pruned.

They prune over 90% of the weights from VGG-16 and

AlexNet models on the ImageNet dataset without any loss

of accuracy [15]. However, unstructured pruning results in

irregularly sparse matrices, which require special formats such

as CSC (Compressed Sparse Columns) or CSR (Compressed

Sparse Rows) to accelerate the inference time by skipping

zeros in the matrices. Matrix operations on sparse matrices

(such as matrix multiplication) require specialized hardware

and library support to obtain effective acceleration.

B. Structured Pruning

Structured pruning aims to address the limitations of un-

structured pruning by reducing the number of parameters

in a structured manner. That is, structured pruning removes

weight in logical units. For example, structured pruning may

remove filters [19], channels [11], or stripes [12] from the

model to reduce the number of weights. Hence, structured

pruning reduces model size and inference time without the

need for specialized hardware or library support. However, the

coarse-grained granularity of structured pruning impairs model

performance. Under the same sparsity, structurally pruned

models usually have lower accuracy than unstructurally pruned

models [20].

One of the most commonly used techniques for structured

pruning is filter pruning [19]. As depicted in Figure 1, filter

pruning not only removes filters considered unimportant but

also eliminates the feature maps that are the outputs of pruned

filters.
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Fig. 1: An illustration of filter removal. Let xl,i be the i-th channel of
the input feature map in the l-th convolution layer, Fl,i be the filter which
is convoluted with xl,i, and xl+1 be the output feature map in the l-th
convolution layer. Once Fl,1 has been pruned, xl+1,1 will no longer exist,
and filter pruning will also remove the first channel from all filters Fl+1,j in
the subsequent layer.

C. Column Combining

Kung et al. [16] proposed a novel column-combining

method for compressing an unstructurally pruned CNN model.

This approach first prunes the model in an unstructured

manner to increase its sparsity. Then, it partitions the sparse

columns in every filter matrix into column groups. Finally,

it combines columns in a column group into a single dense

column, resulting in a compressed model that utilizes hardware

resources more efficiently.

A filter matrix typically has tens to hundreds of rows, so it

is common for multiple columns to have non-zero weights at

the same row, which is called conflicts in column combining.

It is almost impossible to combine a large number of columns

without any conflict. As a result, if a conflict occurs in a row

during column combining, we only keep the weight with the

largest magnitude on that row and ignore the rest, and we do

this for all rows. Compared with unstructured pruning, column

combining is more likely to prune weights with larger magni-

tudes and hurt the performance of the model. Figure 2 depicts

an example of column combining. In Figure 2a, Columns of
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the same color are partitioned into the same group. There are

conflicts that occur in the first row of the red column group.

Then Figure 2b shows the result after column combining. In

the combined red column, weight 4 is reserved because of

the largest magnitude, and the nonzero weights 3 and -1 are

removed.
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Fig. 2: An illustration of column combining

Kung et al. [16] introduced a dense-column-first combining

heuristic inspired by the bin packing problem. The dense-

column-first algorithm first sets the maximum number of

columns per group for each filter matrix and determines the

allowed number of conflicts based on the number of filters

in each matrix. Next, the algorithm prunes each filter matrix

individually at various levels based on the maximum number

of columns per group to increase its sparsity. The dense-

column-first policy processes one column group at a time. It

first tries to add every column that has not been assigned to

the current column group and evaluate the number of nonzero

values and conflicts if we assign this column to the current

group. Then it selects the column that has the most nonzero

values in the combined column while the number of conflicts

does not exceed a threshold on the number of conflicts. The

selected column then joins the current column group. The

selection repeats until the number of columns in this group

reaches the maximum number of columns per group, or if

the current column group adds any column that has not been

assigned a group, will cause the number of conflicts to exceed

the maximum number of conflicts allowed. After the algorithm

completes the current column group it goes on to build the

next column group. By repeating the operations above, the

dense-column-first combining policy could partition columns

into column groups while limiting the number of conflicts.

D. GEMM-based Convolution

Convolution is a critical operation in CNN models. Convo-

lutional layers account for the majority of model computation.

Optimizing convolution operations is therefore essential for

model acceleration. Direct convolution slides a kernel map

through a feature map by a stride size and multiplies the

corresponding elements in both maps and sums them up to

obtain the convolution. Since the elements to multiply and

sum in the feature maps (i.e., a block) are not continuous in

memory, memory access efficiency degrades during convolu-

tion computation.

GEMM-based convolution is a technique to improve

the memory access efficiency of convolution. It employs

im2col [21] to expand each block in feature maps into con-

tinuous vectors and reconstruct feature maps into a matrix

to improve spatial locality. In addition, it converts the kernel

map into a two-dimensional filter matrix. The convolution now

becomes a matrix multiplication, which can take advantage of

many existing matrix multiplication optimizations for speedup.

For example, we implement the tiling optimization, which

partitions the matrices into small tiles and multiplies them

separately. As a result, the cache utilization becomes more

effective and has a better data locality, which accelerates the

convolution.

III. PROOF OF COLUMN PARTITION PROBLEM

This section formally establishes the hardness of the column

combining columns. We consider a matrix M of r rows and

c columns. Each element in the matrix is either 0 or 1. Two

columns are conflicted if they both have a 1 in the same row.

Now given a constant k, could we partition the columns of the

matrix into k groups {g1, . . . , gk}, so that any pair of columns

in a group are not conflicted? We will refer to this problem

as the column partition problem.

Before we establish the hardness of the column partition

problem, let us consider a clique cover problem. We are given

an integer Q and graph G = (V,E). Is it possible to partition

V into Q subsets, and all subsets are cliques? It is well-known

that the clique cover problem is NP-complete.

Now we show that the column partition problem is NP-

complete by reducing the clique cover problem to it. We have a

graph G = (V,E) and an integer Q as a clique cover problem

instance. We first construct a complement graph H = (V, F ),
where e ∈ F if and only if e /∈ E. That means G and H have

the same set of nodes, and the edges of H are those missing

in G.

We then construct a matrix M of r = |F | rows and c = |V |
columns. Each row of the matrix represents an edge in F , and

each column of the matrix represents a node in V . We place

two 1’s into two columns of each row, where the two columns

represent the two nodes this edge connects. The rest of the

matrix is 0’s. Finally, we set the number of groups to Q, as

in the clique cover problem. We now consider M and Q as

an instance of the column partition problem.

Theorem 1. The column partition problem is NP-complete.
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Proof. It is easy to see that if we can find a clique cover of at

most Q cliques in G, we can partition V in H into Q subset,

and all pairs of nodes are disconnected in H . That is, the

columns they present are not conflicted in the column partition

problem. As a result, we have asolution to the instance of the

column partition problem. We can also argue that if we have

a solution for the column partition problem instance, we can

find a clique cover with Q cliques. The theorem follows.

We conclude from theorem 1 that it is unlikely that we can

partition a set of columns in such a way that no conflict occurs

in any column partition. As a result, we will use a simple

heuristic, like simulated annealing, for this combinatorial

optimization problem.

IV. SCHEME

In this section, we propose a column-combining scheme

based on simulated annealing and global unstructured pruning.

From the experimental results, we observe that the simulated

annealing method partitions the columns of the sparse filter

matrix and mitigates the impact of conflicts on the model

performance.

A. Column Combining based on Simulated Annealing

Our algorithm uses both global unstructured pruning and

simulated annealing for column pruning. First, the user speci-

fies the final sparsity percentage s and a α percentage of prune

weight for the global unstructured pruning to prune among all

pruned weights. That is, the algorithm will prune s% of the

total weight, among which the global unstructured pruning

accounts for sα% within the total pruned weights and the

simulated annealing accounts for s(1− α)%. For example, if

we want to prune 80% of the total weights and α is 0.6, then

the global unstructured pruning will prune 80%× 0.6 = 48%
of the total weights, and the column combining will prune

80%× (1− 0.6) = 32% of the total weights.

Since our column combining algorithm performs both

global unstructured pruning and column combining with con-

flicts, it is critical to determine how much each of these two

prunings should prune. That is, we need to set α carefully.

For example, it is obvious that most of the weights pruned

by column combining have larger magnitudes than those of

the weights pruned by unstructured pruning. When α is small

and the column combining needs to prune more weights, more

conflicts will occur and the number of column groups in the

combined filter matrix will reduce. This results in a more

aggressive model compression, which reduces the computation

and inference time. However, a denser model compression also

reduces model accuracy. Therefore, setting α to balance the

amount of pruned weights between the global unstructured

pruning and the simulated annealing column combining is

crucial.

Even after we set the correct α, it is still not clear how to

prune weights among all layers between the global unstruc-

tured pruning and the simulated annealing column combining.

The reason is that this α pruning percentage may not be

suitable uniformly for all layers. Therefore we derive a simple

method to determine where this sα and s(1 − α) pruned

weights should be.

We will prune the model twice. First we start from the dense

model, prune away a fixed percentage of remaining weights

from the model, and retrain the model to retain the accuracy.

This is, instead of pruning away s% of the weights in one shot,

we use iterative pruning [15] to prune and retrain the model

until we have pruned s% of the weights. Note that in the last

round of the first pruning we do not retrain the model because

we only want to know the number of weights removed in every

layer. Next we also start from the dense model and stop when

the pruning percentage reaches sα. Now we can compare the

pruned weight in every layer and determine the number of

weights the simulated annealing needs to prune away so that

the total pruning percentage is s%.

After knowing the number of weights to prune in every

layer, we remove them in two steps. First we use a sim-

ulated annealing-based column partition algorithm to parti-

tion columns of each convolutional filter matrix into column

groups. The goal is to minimize the sum of the magnitudes of

the pruned weights due to conflicts for the target layer sparsity

in each convolutional layer. Then we prune the second model

again by combining multiple columns within a column group,

possibly with conflicts, into a single column. This compressing

compact the convolutional filter matrix into a dense format.

Now we summarize the column combining algorithm into

three stages.

1) We prune the models twice – once to remove s% of the

weights to determine the number of weights to remove

in every layer for the next step, and once to remove

sα%.

2) We use a simulated annealing-based column partition

algorithm to partition columns of each convolutional

filter matrix into column groups. Then we prune the

second model again by combining multiple columns

within a column group into a single column so that we

prune away exactly s(1− α)% of the weights.

3) We retrain the model to recover accuracy lost due to

column-combining pruning.

B. Simulated Annealing-based Column Partition

In Section III we show that the column partition problem

is an NP-Complete problem. With hundreds to thousands of

columns in a convolutional filter matrix, it is computationally

impractical to brute-force search the optimal partition of

columns so that the number of conflicts is minimal. In this

work, we use simulated annealing (SA) [22] to efficiently find

a good solution. Simulated annealing is a heuristic algorithm

often used to solve optimization problems, such as the travel-

ing salesman problem [23] or bin packing problem [24].

The pseudo-code of the simulated annealing-based column

partition algorithm is in Algorithm 1. The conflict count target

in the input is the number of weights we want to prune in

this layer. The algorithm starts from a random initial state,

in which all columns are randomly partitioned into groups.

At each iteration, the algorithm generates the neighbor of a
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state by randomly exchanging two columns from two different

groups. We also randomly move a column to a different group

as the neighbor of a state to expand the search space. Then we

evaluate the neighbor of a state. The difference of energy is the

difference of the sum of magnitudes pruned due to conflicts,

and we use it to guide the simulated annealing.

Algorithm 1 SA-based Column Partition Algorithm

Input: Random initial column partition state (s0); Initial and

final temperatures (Tinit, Tend); Cooling factor (f ); Num-

ber of iterations at each temperature (iter); Number of

column groups (group); Number of conflicts (conflict),
The conflict count target(target)

Output: A column partition state after optimization (sk)

1: state ← s0
2: temp ← Tinit

3: loops ← 0
4: while temp > Tend do
5: state′ ← neighbor − state (state)
6: ΔE ← delta− energy (state, state′)
7: if random(0, 1) < e−

ΔE
temp then

8: state ← state′

9: end if
10: loops ← loops+ 1
11: if loops = iter then
12: temp ← temp× (1− f)
13: loops ← 0
14: if conflict > 1.005× target then
15: increase group by one

16: else if conflict < target then
17: decrease group by one

18: end if
19: end if
20: end while
21: sk ← state
22: return sk

Differing from the previous method [16], our partition

algorithm aims to minimize the sum of magnitudes that are

pruned due to conflicts, rather than just focusing on reducing

the number of conflicts. We believe the importance of conflicts

varies depending on their magnitudes. If we only consider the

number of conflicts but not their magnitudes, we may lose

valuable information about the relevance of the conflicts. If

the new state prunes a less sum of magnitudes, the new state

performs better and will always be accepted. Otherwise, there

is still e−
ΔE

temp possibility to accept the new state. Simulated

annealing sometimes accepts worse states, making the solution

less likely to stick to a local optimum.

The simulated annealing starts from a high temperature

Tinit and gradually cools down to Tend. All new states are

likely to be accepted at high temperatures, giving the optimizer

a wide search space. As the temperature slowly decreases,

the state gradually converges. After every iter iterations, the

temperature is multiplied by (1 − f) to simulate a cooling

process. In this work, Tinit, Tend, f , iter are equal to 1, 10−5,

0.01, 106, respectively.

We adjust the number of column groups dynamically from

one temperature to the next. First we verify if the current

number of conflicts is close to our conflict count target. If

the number of conflicts exceeds our conflict count target, then

the current number of column groups is too small, so we add

an empty column group so that the number of conflicts can

be effectively reduced at the next temperature. On the other

hand, if the number of conflicts is below our target, it means

that the current number of column groups is too large and

should be reduced. To do so, we disband the column group

with the highest number of conflicts, and individually reassign

every column in this group to the group that causes the least

conflicts, to minimize the impact of disbanding this group.

Also note that we only add or remove one group at a time. This

minor modification has minimal impact on the current partition

state. In this way, we can dynamically adjust the number of

column groups during the simulated annealing process, and

prune the number of weights we want in this layer.

C. Matrix Multiplication for Combined Matrix

Our column combining complicates the filter matrix multi-

plication. In the matrix multiplication, we compute the inner

product of the rows of the filter matrix and the columns in the

feature map. Within the inner product, we multiply the weight

in the i-th column of the filter and the data in the i-th row of

the feature map. However, a column after combining consists

of weights from various columns. We need to multiply these

weights with the data in the corresponding row of the feature

map. Hence we use an index matrix to store the column index

of each weight for each convolutional layer. That is, the matrix

multiplication for a filter matrix after column combining first

loads the weight and its column index from the index matrix,

then multiplies the corresponding row in the feature map

according to the column index. Formally, let A be an m by n
filter matrix after column combining, B be an o by p feature

map, and D be the m by n index matrix. The output matrix

C (multiplication of A and B) is in Equation 1.

ci,j =

n∑

k=1

ai,k × b(di,k),j (1)

Figure 3 illustrates an example of multiplication after col-

umn combining. The first combined column consists of the

first, the eighth, the tenth, and the fifteenth columns. The first

weight in the combined column is from the first column, so we

multiply it with the first row in the feature map. The second

weight is from the tenth column, so we multiply it with the

tenth row in the feature map, and so on.

The drawback of the column combining is that the rows

that multiply with the same column are not contiguous in

the feature map, and the access order of the rows is different

from that without column combining. It leads to an irregular

access pattern and poor data locality. To improve data locality,

we rearrange the rows required for each combined column
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combined filter index feature map

rearranged feature map

Fig. 3: An illustration of row rearrangement

together, and rearrange the rows according to the access order

of the column groups. That is, we place the required rows

of the first column group first (the rearranged feature map in

Figure 3), then the required rows of the second column group,

and so on. As a result, the matrix multiplication becomes more

cache friendly and has better performance.

V. EVALUATION

In this section, we describe the performance results with

our column combining scheme and compare it with the dense-

column-first combining in previous work [16].

A. Experiment Settings

1) Models: The experiments use VGG19 [2] and ResNet-

50 [3] as our test models. The VGG19 model consists of

sixteen convolutional layers with batch normalization and one

fully connected layer. The ResNet-50 model consists of fifty-

three convolutional layers with batch normalization and one

fully connected layer. ResNet-50 implements residual learning,

allowing the network to learn residual functions instead of

directly learning the underlying mapping.

2) Benchmarks: We evaluate our column combining

scheme on two popular datasets, Imagenet [25] and TinyIma-

genet [26]. Imagenet is one of the largest and most widely used

image classification datasets. It consists of almost 1.3 million

224 × 224 color images in 1000 classes. TinyImagenet is a

smaller version of the original ImageNet dataset. It consists of

200 classes, with each class having 500 training images and

50 validation images. All of these are 64 × 64 color images.

3) Implementation: In this study, we first use the PyTorch

framework [27] to train and fine-tune the CNN models. Then,

we use the auto-tuner in the TVM AI compiler to optimize

the matrix multiplication on the CPU, including the dense

and sparse versions. For the dense-column-first combining

method, we follow [16] to set the hyperparameters to compress

the convolutional layers. Please refer to the experimental

parameters in appendix A. We conduct all the experiments

on a server with a 16-core, 2.9 GHz Intel Xeon Gold 6226R

CPU and 188GB RAM. All models are single-precision. We

measure the inference time of each model by averaging 100

inference runs. Note that our method runs global unstructured

pruning twice. The first pruning, which determines the sparsity

of each layer, requires 20-50 epochs (a large value for higher

sparsity). The second pruning and the retrain after column-

combine pruning require about 100 epochs, which is typical

for training VGG and ResNet on ImageNet.

B. Performance of Different α Percentage
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Fig. 4: Accuracy (red line) and FLOPs (blue line) of VGG19

with various α under 90% sparsity on the TinyImageNet

dataset.

We first evaluate the performance of the models with

different α’s under the same sparsity. Figure 4 illustrates

the accuracy and the FLOPs (floating-point operations) with

various α’s under 90% sparsity on the TinyImageNet dataset.

We observe that the model accuracy is lower with a smaller

α. When α is small, more weights are pruned by the column-

combine pruning due to conflicts. It results in fewer column

groups and FLOPs, but also reduces the model accuracy. On

the contrary, higher accuracy and FLOPs are achieved with a

larger α. By using different α’s, we can adjust the model to

be more computationally efficient or more accurate.

Models with low sparsity have a slight drop in accuracy after

pruning because there are still a large number of weights in the

model. In this case, we choose a smaller α to increase model

compression. On the other hand, models with high sparsity

have a significant drop in accuracy after pruning because there

are few weights left in the model, so we should choose a larger

α to maintain model accuracy.

In the following experiments, we use the following α values

for various sparsity ranges: 0.5 for sparsity less than 60%, 0.6
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for 60-70% sparsity, 0.7 for 70-80% sparsity, 0.75 for 80-90%

sparsity, and 0.8 for sparsity exceeding 90%.

C. Performance of Column Combining Methods

We describe the accuracy result with our column combining

scheme and compare it with the dense-column-first combining

in previous work [16].

Figure 5 and Figure 6 respectively show the accuracy of

VGG19 and ResNet-50 on the TinyImageNet dataset.

We observe that our column combining scheme outperforms

dense-column-first combining on the TinyImageNet dataset.

Our column combining achieves 0.65% accuracy improvement

on VGG19 with 88% sparsity and 1.51% accuracy improve-

ment on ResNet-50 with 90% sparsity. The reason is that our

SA-based column combining can achieve better group partition

than the dense-column-first policy.

Figure 7 and Figure 8 present the result on the ImageNet

dataset. Our method outperforms dense-column-first combin-

ing slightly on VGG19 for most levels of sparsity. As for

ResNet-50, it shows a similar accuracy to that of dense-

column-first combining.

D. Acceleration of Column Combining Methods

Figure 9 depicts the FLOPs on VGG19 with TinyImageNet.

Figure 10 depicts the inference time to process a batch of

32 images in TinyImageNet on VGG19. We observe that our

method has significantly less amount of computation than

dense-column-first combining at low sparsity, but the FLOPs

of both combining methods are similar at high sparsity.

We find that our method prunes the first few convolutional

layers, except for the first layer, of the model more aggres-

sively at low sparsity. Although these convolutional layers have

a small number of weights, they contain a high proportion of

weights with small magnitudes. Global unstructured pruning

tends to prune more weights in these layers. Therefore, we

compress these layers more aggressively based on the infor-

mation obtained from global unstructured pruning. As a result,

our method achieves less computation and more acceleration

on inference at low sparsity.

As the sparsity increases, the sparsity of each layer becomes

closer to that of the dense-column-first combining. Moreover,

we observe that when the model is further compressed, fewer

zero weights remain in the combined filter matrix. That means

it becomes less likely we can reduce conflicts through a better

partitioning. This is the reason for similar computation and

inference time between the two methods when the sparsity

is high. Figure 11 and Figure 12 show the results with

the ImageNet dataset, which are similar to the results on

TinyImageNet.

Figure 13 depicts the FLOPs on ResNet-50 with TinyIma-

geNet. Figure 14 depicts the inference time to process a batch

of 32 images in TinyImageNet on ResNet-50. We observe that

our method has slightly less computation than dense-column-

first combining at low sparsity, and at higher sparsity our

method can even have more computation. This is different

from the case of VGG19 that our method prunes the first
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Fig. 5: Accuracy on VGG19 with TinyImageNet dataset.
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Fig. 6: Accuracy on ResNet-50 with TinyImageNet dataset.
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Fig. 7: Accuracy on VGG19 with ImageNet dataset.
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Fig. 8: Accuracy on ResNet-50 with ImageNet dataset.
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Fig. 9: FLOPs on VGG19 with TinyImageNet dataset.

0.5 0.6 0.7 0.8 0.9 0.95

40

60

80

100

120

140

Sparsity

T
im

e
(m

s)

VGG19 on TinyImageNet

Dense

Dense-column-first Combining

Column Combining based on SA

Fig. 10: Inference time required to process a batch of 32

images in the TinyImageNet on VGG19.
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Fig. 11: FLOPs on VGG19 with ImageNet dataset.
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Fig. 12: Inference time required to process a batch of 4 images

in the ImageNet on VGG19.
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Fig. 13: FLOPs on ResNet-50 with TinyImageNet dataset.
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Fig. 14: Inference time required to process a batch of 32

images in the TinyImageNet on ResNet-50.
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Fig. 15: FLOPs on ResNet-50 with ImageNet dataset.

0.5 0.6 0.7 0.8 0.9 0.95

35

40

45

50

55

60

65

Sparsity

T
im

e
(m

s)

ResNet-50 on ImageNet

Dense

Dense-column-first Combining

Column Combining based on SA

Fig. 16: Inference time required to process a batch of 4 images

in the ImageNet on ResNet-50.
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few convolutional layers of ResNet-50 more conservatively

at low sparsity. These layers contain a high proportion of

weights with huge magnitudes, which are usually considered

important, and few weights are pruned. Because these layers

are only slightly compressed, the reduced computation time

from column combining cannot compensate the additional

latency caused by memory access. Therefore, we skip the

compression of the early layers when performing inference

at low sparsity, the same as the dense-column-first combining

method. For example, compared to compressing all layers

which require 43ms at 50% sparsity, the inference time is

reduced to 34ms by skipping those early layers. However, it

is important to note that if the compression of the early layers

is skipped, we are unable to accelerate the model through

computation reduction in those layers. This results in our

method having less computation but higher inference time at

low sparsity.

Figure 15 and Figure 16 show the results with the ImageNet

dataset, which are similar to the results on TinyImageNet.

E. Performance of Row Rearrangement
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Fig. 17: The speedup of each convolutional layer of VGG19

with and without row rearrangement

To study the effects of the row rearrangement, we con-

duct the experiments on VGG19 under 88% sparsity with

the TinyImageNet dataset. Figure 17 shows the speedup of

row rearrangement for the convolutional layers in VGG19,

compared to that without row rearrangement.

The result indicates that the deeper convolutional layers (i.e.,

the layers close to the output layer) achieve significant perfor-

mance gain from row rearrangement, but no improvement is

observed in the earlier layers. For deeper convolutional layers,

the feature maps have more input channels, which lead to more

rows. Therefore, the required rows by the combined column

group are more likely to be distant from each other, since our

column combining scheme can select any column in the filter.

As a result, a significant speedup is achieved with improved

cache locality by rearranging the rows together.

We also observe that the performance of the second, third,

and fourth convolutional layers degrades slightly. The reason is

that these layers might not exhibit poor cache locality because

they have fewer rows compared with the deeper layers. In

addition, the row rearrangement incurs runtime overhead. As

a result, the execution time of these layers is increased.

VI. CONCLUSION

This paper proposes a column combining scheme based

on global unstructured pruning and simulated annealing to

compress a CNN model. Our method applies global unstruc-

tured pruning to leverage model sparsity information and uses

simulated annealing search for better partition to minimize the

adverse effects of conflict pruning. We introduce a parameter

α for users to balance model accuracy and computation effi-

ciency. Furthermore, we implement the matrix multiplication

for the combined matrix and optimize it with row rearrange-

ment. We leverage the auto-tuner of the TVM AI compiler

to search optimization schedules and accelerate the inference

of column-combined CNN on the CPU. Experimental results

show that our method achieves a 0.65% improvement in

accuracy and a 1.24× faster inference time on VGG19 under

88% sparsity with the TinyImageNet dataset, compared to the

dense-column-first method.

There are some possible future works for our column com-

bining. For example, we may prune weights with other metrics

instead of magnitudes. There have been several other metrics

to determine the importance of weights, such as gradient [28],

saliency [29], or entropy [30]. These metrics may identify the

importance of weights more precisely or determine the number

of weights to be pruned in each layer more accurately. By

pruning with these new metrics, we may reduce accuracy loss

or achieve more acceleration from the column combining.
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APPENDIX A

THE EXPERIMENTAL PARAMETERS FOR

DENSE-COLUMN-FIRST COMBINING

VGG19
Max pruning rate 0.5 0.6 0.7 0.8 0.85 0.9
layers 5, 11 5, 4, 7 5, 4, 7 5, 4, 7 5, 4, 7 5, 4, 7
groups 1, 2 2, 3, 4 3, 4, 6 4, 6, 8 6, 9, 12 8, 12, 16
gamma 0.9 1.4 1.6 1.75 1.85 2

ResNet-50
Max pruning rate 0.5 0.6 0.7 0.8 0.85 0.9
layers 24, 29 11, 13, 19, 10 1, 10, 13, 19, 10 1, 10, 13, 19, 10 1, 10, 13, 19, 10 1, 10, 13, 19, 10
groups 1, 2 1, 2, 3, 4 1, 2, 3, 4, 6 1, 2, 4, 6, 8 2, 3, 5, 8, 12 2, 4, 8, 12, 16
gamma 0.9 1.4 1.6 1.75 1.85 2
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