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Abstract—Recent years have witnessed the emergence of Feder-
ated Learning (FL) as a viable learning paradigm that permits the
training of models without revealing sensitive data. FL systems
typically consist of numerous clients that utilize their data to
train models locally and an orchestration server responsible
for combining local updates from the clients to produce a
global model. Thus, the performance of a Federated learning
system is highly dependent on the client data and the local
model trained on these data. In this study, we present an
early attempt at addressing the sparsity and scarcity of client
data, which may lead to the overfitting phenomenon of local
models and substantially reduce the overall accuracy of the
global model. Specifically, we propose a novel local training
strategy that explores transfer learning and allows each local
model to be trained using the data of two randomly paired
clients. The proposed method is orthogonal to other Federated
Learning algorithms and can be integrated into most Federated
Learning systems. Extensive experiments in various settings on
MNIST, CIFAR-10, and CIFAR-100 datasets showed that using
our proposed method can relatively enhance the accuracy of the
global model by up to 12.48%. Our work, for the first time,
offers a simple yet effective solution that reduces the undesired
effects of data sparsity and scarcity in FL.

Index Terms—Federated Learning, Data sparsity, Data
scarcity, Transfer Learning, Model-agnostic Methods.

I. INTRODUCTION

Conventionally, machine learning models are generated by
collecting massive amounts of data and training on a cen-
tralized server system. Despite the fact that this method may
produce highly accurate models thanks to a pool of data and
computing resources, it suffers from the critical issue of pri-
vacy leakage. Federated Learning (FL) has recently emerged
as a promising alternative for training machine learning models
in a decentralized and privacy-guaranteed manner [1]. In an
FL paradigm, multiple clients train models using their data
locally and then send those local models to an orchestration
server. The server aggregates all the local updates received
from the clients to form a global model. The two factors that
have the greatest impact on the performance of an FL model

§Corresponding authors

Fig. 1. Illustration of the conventional (a) quantity skew [2], (b) label-
skew [16] non-IID types. In this work, We target to a hard scenario (c) where
clients hold small number of classes (data sparsity) and a tiny amount of data
(local data scarcity).

are the client-side training scheme and server-side aggregation
algorithm.

One of the most common FL algorithm is FedAvg [2],
which trains the client models by using gradient descent
and aggregates local updates through the weighted averaging.
FedAvg works quite well if the clients’ data are independent
and identical (iid) and each client’s data is large enough [2].
In practice, however, client data distribution is frequently not
independent and identical (non-iid), i.e., in many instances
[3], [4]. Such non-iid data may pose a challenge in designing
an effective aggregation mechanism [5]. Specifically, standard
FL methods such as FedAvg [2] has been reported to be not
well-designed to address the challenges of non-IID data. It
could degrade the training accuracy and increase the training
time in practice [3], [5], [6]. In this context, numerous efforts
have been devoted to tackle the non-iid issue in FL including
(i) actively selecting clients involved in a training round for
balancing the data distribution [7]–[9], (ii) re-weighting each
client’s impact factor when aggregation at the server-side [10]–
[13], and (iii) optimizing the algorithms of local training
scheme at the client-side [6], [11], [14], [15].

However, the existing approaches do not fully cover com-
mon patterns of data distribution encountered in practice.
Indeed, most previous approaches regard non-IID data as a
context of (i) quantity skew non-IID, i.e., different clients
hold different amounts of data, e.g., [2], [6], [10], [17]
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or (ii) label skew non-IID, i.e., the label distribution differs
between clients such as by distributing samples of a particular
label1 to the clients following the power-law or Dirichlet
distribution [5], [11], [12]2. Unfortunately, none of the existing
approaches inadequately considered the issue of data sparsity
and scarcity. This is a situation in which each client may hold
only a tiny amount of data (scarce data) and/or a small number
of data labels (sparse data), i.e., a hard case of label skew
non-IID. As shown in Figure 1(c) the number of labels in a
client’s dataset is significantly smaller compared to that of the
collective labels among all clients. Furthermore, the number
of samples per client is also small, e..g, less than 50 samples.
Such data problem is rather intrinsic to FL, as edge devices
can only retain a limited quantity of raw data, especially in
the medical domain. In contrast to centralized techniques, we
can not augment or enrich the local data due to restricted
data accessibility. Thus, it relies on novel strategies to take
advantage of collaborative training to alleviate the problem.
Sparse and scarce data typically result in rapid overfitting
phenomenon in the local training on the client side (i.e., local
models overfit after only a few training epochs), resulting in
a severe degradation in global model accuracy [19].

To bridge this gap, this paper is an early attempt at inves-
tigating the Data Sparsity and Scarcity problems (hereafter,
we name this problem as DSS) in FL, and proposes a novel
training and aggregation approach that considerably enhances
the FL model’s accuracy. Notably, our proposed solution is
orthogonal and can be combined with other FL algorithms to
enhance the model’s overall performance.

Our primary idea is to make each local model trained by
the data from several clients before aggregating by the server.
To accomplish this, the most naı̈ve method is to exchange
the client’s data with each other. Nevertheless, this approach
contradicts the privacy premise of the FL paradigm. To this
end, we employ the transfer learning technique and propose
a two-step training strategy on the client side. Particularly,
the local training process in each communication round is
divided into two steps: initial training and transfer learning.
Intuitively, in the first step, every client receives the global
model from the server and trains using their local data. The
trained models obtained from the first step are not delivered
to the server but rather passed to other clients to perform the
second step. In the second step, upon obtaining a trained model
from another client, each client executes transfer learning and
incrementally trains the model using its own local data. This
way, after the second step, all the local models are trained
with the data from two clients. Finally, these trained models
are uploaded to the server for aggregation.

Our main contributions are as follows.
• We investigate the data sparsity and scarcity in FL. We

propose a simple yet efficient novel FL model named
SEM, that can mitigate the challenges posed by data
sparsity and scarcity and enhance the accuracy of the

1We use the terms labels and classes interchangeably in this work.
2See more detail of non-IID data’s categories in [3], [16], [18].

final global model. Our proposed method is orthogonal
and can be combined with other techniques in FL.

• We perform extensive experiments against various data
sparsity and scarcity settings to evaluate the proposed
method’s efficacy. The experiment results on MNIST,
CIFAR-10 and CIFAR-100 demonstrate that SEM can
improve the global model’s accuracy by up to 12.48%.

The remainder of the paper is organized as follows. In Section
II-B, we briefly discuss relevant works and their limitations
in dealing with data sparsity and scarcity. We describe the
detail of our proposed method in Section III, and evaluate its
performance in Section IV section. Finally, we conclude our
work in Section V.

II. BACKGROUND AND RELATED WORKS

A. Overview of Federated Learning

A traditional FL model [2] constitutes of a global server and
N clients, each with its private data. Let C = {c1, c2, ...cN},
D := {D1,D2, ...DN} denote the set of clients and their
corresponding local datasets, respectively. The workflow of the
conventional FL is as follows. For every communication round
t, the server samples a subset St of K clients participating in
the training process, and sends the global model ωt

g to those
clients. The participating clients, upon receiving the global,
perform local training on its data and update the local model
using the following gradient descent algorithm:

ω
(t,e+1)
i ← ω

(t,e)
i − η∇Li(ω

(t,e)
i ), ω

(t,0)
i ← ωt

g, (1)

where, e denotes the epoch, η represents the learning rate, and
Li(x) := Eζ∈Di [l(x, ζ)] is the empirical error. After finishing
the training process in E epochs, the clients send back the
local upates to the server for aggregation:

ωt+1
g = Aggregate

(
{ω(t,E)

i },∀i ∈ St

)
. (2)

The explicit expression of the aggregating function may vary
and is the subject of study in many works [3], [4], [10], [13].
The procedure iterates until convergence or when a desirable
model is found. Generally, the objective of an FL system is to
produce a model that minimizes the total empirical error over
all clients:

ω∗ = arg min
x∈Rd
{f(x) := 1

N

N∑
i=1

(
Li(x)

)
}. (3)

B. Federated Learning with non-IID data

Federated Averaging (FedAvg) [2] is arguably the most
widely used algorithm in Federated Learning paradigm due to
its simplicity. However, such simplicity comes at the expense
of data heterogeneity tolerance: FedAvg is sensitive towards
non-iid data distribution amongst clients.

Regarding the ubiquity of data heterogeneity in real-world
scenarios, later works have proposed many techniques to
mitigate its effects. Authors in [3], [10]–[13] proposed an
approach to dynamically assign an impact factor ai for each
client i when aggregating the global model at the server, i.e.,
ωt+1
g = 1

N

∑K
i=1 aiω

(t,E)
i . Especially, FedDRL [3] trained a
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reinforcement learning agent to re-weigh each client’s impact
factor based on their inference loss. The authors in [10]
mitigated the impacts of non-iid data by reducing the gra-
dient conflicts between local models based on their updating
similarity. In another approach, FedProx [6] introduces an
L2-normalization term between the global model and the
local model as a proximal regularization loss. FedDyn [14]
is based on the same client-side regularization approach, but
rather uses an adaptive strategy to dynamically compute the
regularization term. Scaffold [15] tries to correct the gradient-
descent’s direction at client-side using the collective gradient
sum of all clients.

However, the aforementioned studies assume that each client
has sufficient data to adequately train a model of average size.
Nonetheless, this is rarely the case [20]–[24]; Data Sparsisty
and Scarcity (DSS) is always present. Despite the fact that
data scarcity is not a novel topic of study in Computer
Science, it has not been thoroughly investigated in the context
of Federated Learning. Traditionally, two viable ways for
centralised training are data augmentation [25] and domain
adaption transfer learning [26], [27]. Although the former
attempts to expand the amount of data by applying various
data transformations, the later utilises pretrained large models
and then applies few-shot training techniques to transfer the
model to the new domain. Both of these approaches are highly
effective at mitigating the effect of data scarcity, but neither is
feasible within the Federated Learning framework. Firstly, data
augmentation necessitates the compromising of client data,
whose confidentiality is a core principle of FL. Secondly, client
devices are not affordable for large pretrained models due
to hardware-related computational limitations. On the other
hand, data sparsity (or label sparsity) has several metrics that
are specialised to particular disciplines (e.g. graph sparsity,
matrix sparsity). In this work, we adopt the matrix sparsity
measurement to the data distribution matrix across all clients,
which is the ratio of non-zero elements to the total number of
elements.

The problem of DSS in Federated Learning has been raised
occasionally in recent works [20]–[24]. However, only the
authors in [21] proposed a standalone solution for the issue.
In contrast, we focus on utility, as our solution is a plug-in
extension that can be integrated into any existing methods to
improve their ability to withstand DSS’s havoc.

III. PROPOSED METHOD

In the following, we first introduce our motivation in Section
III-A and then present the details of our proposed method in
Section III-B.

A. Motivation

As stated previously, in the conventional FL approach,
each client trains its local model using only its own data.
However, when a client’s data is sparse and/or scarce, local
models usually overfit the client’s local data. This issue can be
alleviated by training each local model with data from as many
clients as possible. A naive method to accomplish this is to let
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Fig. 2. Overview of SEM. 1⃝ Global model dissemination 2⃝ Initial Learning
3⃝ Random matching 4⃝ Transfer Learning 5⃝ Aggregation

the clients exchange their data. However, this solution violates
the privacy constraint of FL. To this end, our idea is to exploit
the transfer learning technique, whereby each client will train
a local model with its dataset and then send that trained model
to another client, where it will be incrementally trained with
the dataset of the new client. Delivering the learned local
model to several clients and performing transfer learning can
benefit the local model in acquiring more knowledge from
numerous datasets. However, on the other hand, this transfer
learning mechanism also may result in a so-called catastrophic
forgetting phenomenon, in which the model forgets previously
learned knowledge while attempting to acquire new informa-
tion from a new dataset. Therefore, through empirical studies,
we recommend using two clients to train each local model
in each communication round. This number of clients strikes
a balance between obtaining new knowledge from the new
training data set while alleviating the catastrophic forgetting.

B. Two-step Local Training Mechanism

In the following, we present the details of our proposed
method, SEM, which stands for Simple yet Efficient local
training Mechanism, to tackle the DSS (i.e., Data Sparsity and
Scarcity) problem in FL. SEM comprises two training steps:
initial training and transfer learning. Figure 2 illustrates the
workflow of SEM, and Algorithm 1 provides the pseudo-code.

Let St ⊆ [N ] (|St| = K) represent the set of participating
clients at communication round t and E be the number of
training epochs on the client side for each communication
round. At the beginning of each communication round t, the
server provides each client i ∈ St the global model ωt

g . In addi-
tion, the server employs a so-called random pairing algorithm
that randomly identifies each client’s pairing partner and sends
this information to every participating client. Specifically, for
each client, i ∈ St, its pairing partner in round t is denoted by
pti. Each client executes the initial training step by training ωt

g

with its own data in E/2 epochs to produce the local model
ω̃t
i . At the end of the initial training step, each client i delivers

its trained local model ω̃t
i to its pairing partner, pti. During the
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Algorithm 1: SEM: Two-step training mechanism
Input : N clients with separated data-set, the number of

clients performs training each round K, a pairing
method SEM(·) and a baseline algorithm BASE.

1 Server: Initiate global model ω0;
2 for communication round t from 0 to T do
3 Select a subset St of random K clients;
4 Server computes the matching map {i, SEM(i)} for all

client i ∈ St;
5 for each client i in St in parallel do
6 Receive the global model ωt

g and its matching
SEM(i);

7 Initialize ω
(t,0)
i ← ωt

g

8 A performs local training in E/2 epochs with batch
b following BASE

9 Send (ni, ω̃t
i ) to its matching SEM(i);

10 end
11 for each matching client SEM(i) in St in parallel do
12 Receive the model ω̃t

i and the corresponding trained
volume ni;

13 Initialize ω
(t,0)

SEM(i) ← ω̃t
i

14 Perform local training in E/2 epochs with batch b
following BASE

15 Send (ni + nSEM(i), ωt
SEM(i)) to the Server;

16 end
17 Server performs aggregation following BASE
18 end

transfer learning step, each client will use the model received
from its pairing partner and incrementally train the model
using its own data 3. Finally, the locally trained models from
our two-step training strategy are transmitted to the server for
aggregation.

C. Assumption and Limitations

The assumptions and limitations of the SEM are as follows:
Targeted Federated Learning model: It is worth noticing

that SEM does not require any adjustments or assumptions to
the FL model. Consequently, it is compatible with any FL sys-
tem. We demonstrate the flexibility of SEM in integration into
various existing state-of-the-art FL methods in our evaluation
in Section IV.

Client pairing algorithm: Although in this study we
employ a random pairing policy to identify the paired partner
for each client, different pairing methods may be used. In
addition, in this work, we empirically recommend using only
two clients to train a local model in each communication round
to balance the knowledge gaining and forgetting in the transfer
learning scheme. How to choose (dynamically) this number for
different deep learning models, datasets, and DSS scenarios
will be (theoretically) discussed in our future work.

Strategy for communication between clients: To ad-
dress the issues of data sparsity and scarcity, we proposed
a paradigm where different clients exchange their local model

3Similar to the transfer learning scheme, where a model, which is pre-
trained on a big dataset, is trained on another dataset. The knowledge that the
model learned from the first dataset is transferred to the training process of
the second dataset.

with other clients in each communication round. In some
conventional centralized federated learning frameworks, direct
communication between clients may not be permitted due to
security and privacy issue. In this case, we suggest allowing
clients to communicate through the server. That is, after the
first step of the communication round t, the local models
from K participated clients are sent to the server. The server
then forwards these K local models to k other randomly-
selected clients without aggregating. After that, the second
step (transfer learning step) and aggregation are performed
as usual.

IV. EVALUATION

In this section, we evaluate the effectiveness of SEM when
integrated into various existing state-of-the-art FL methods in
different datasets and DSS scenarios. In this evaluation, we
choose the state-of-the-art FL methods that focus on design-
ing both aggregation mechanism at the server (FedAvg [2],
FedFA [28], and FedFV [10]) and training algorithm at clients
(FedProx [6] and Scaffold [15]) To ease the presentation, we
refer to the original FL methods as (Base) and those with
SEM as w/SEM. We demonstrate that w/SEM outperforms
Base with respect to all scenarios. In the following, we first
introduce the details of the DSS scenarios and the FL settings
used in our experiments in Section IV-A. We then report
and compare the testing accuracy of w/SEM and Base in
Section IV-B. In all the experiments, SingleSet (the setting of
gathering all the local data of clients into a centralized server
and training) is used to refer to the testing accuracy’s upper
bound.

A. Datasets and Experimental Settings

In this work, we pick up datasets and DNN models used
from prior works in FL [2], [3], [6], [14], [28]. In detail,
we use three different FL datasets, i.e., MNIST [29], CIFAR-
10, and CIFAR-100 [30]. For each dataset, we simulate the
non-iid setting by partitioning the dataset and distributing the
training samples among N clients according to the Dirichlet
distribution. To study the efficiency of our method with
different data sparsity and scarcity scenarios, we define the
data sparsity and scarcity as follows. Let A be the matrix in
which an element in column i and row j is the number of
samples of client i belonging to the data label j. The fraction
of zero elements in the matrix A is called the data sparsity. In
addition, data scarcity is defined as the number of clients (in
percentage) that have total samples no greater than a threshold
T 4.

To adjust the data sparsity for each setting, we vary
the hyper-parameter α of the Dirichlet distribution in
{0.1, 0.3, 0.5, 100}. Fig. 3 illustrates the data distribution of
the CIFAR-10 dataset (10 data labels or classes) in the case
of 100 clients with different α and data sparsity. The bigger
α, the fewer data sparsity. When α = 100, any client holds all
the data labels, leading to zero data sparsity. Furthermore, we

4We select T = 50 in this evaluation.
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Fig. 3. Illustration of data distribution of CIFAR-10 dataset in the case of 100 clients with different non-IID degree α and data-sparsity.

TABLE I
TOP-1 TESTING ACCURACY IN PERCENTAGES OF OUR PROPOSED METHOD (W/SEM) AND THE BASELINE FL METHOD (BASE). THE VALUES SHOW THE
BEST ACCURACY THAT EACH ALGORITHM REACHES WITHIN 1000 COMMUNICATION ROUNDS. IMPR. REFERS TO THE RELATIVE IMPROVEMENT OF OUR

METHOD OVER THE BASELINE. SP : DATA SPARSITY.

Baseline
Method

α = 0.1 α = 0.3 α = 0.5

Sp Accuracy Sp Accuracy Sp Accuracy

Base w/SEM Impr. Base w/SEM Impr. Base w/SEM Impr.

M
N

IS
T

SingleSet

0.63

99.05 - -

0.33

98.99 - -

0.20

98.98 - -

FedAvg 97.75 98.10 0.36% 98.13 98.31 0.18% 98.13 98.30 0.17%

FedProx 97.77 98.07 0.31% 98.13 98.28 0.15% 98.14 98.32 0.18%

FedFA 97.77 98.04 0.28% 98.01 98.26 0.26% 98.17 98.27 0.10%

FedFV 97.74 98.10 0.37% 98.05 98.27 0.22% 98.16 98.32 0.16%

Scaffold 98.63 98.62 0.00% 98.50 98.48 0.00% 98.58 98.65 0.07%

C
IF

A
R

-1
0

SingleSet

0.61

78.72 - -

0.38

78.04 - -

0.22

78.00 - -

FedAvg 64.05 66.13 3.24% 65.15 67.39 3.44% 67.90 68.96 1.56%

FedProx 64.00 65.76 2.75% 65.41 67.26 2.83% 67.66 68.42 1.12%

FedFA 63.55 65.33 2.80% 65.79 67.55 2.68% 67.69 69.01 1.95%

FedFV 64.03 65.33 2.03% 65.54 67.48 2.96% 67.63 69.04 2.08%

Scaffold 67.05 67.44 0.58% 68.88 69.92 1.50% 70.07 71.21 1.63%

C
IF

A
R

-1
00

SingleSet

0.78

44.94 - -

0.64

44.48 - -

0.58

44.79 - -

FedAvg 29.72 33.01 11.06% 30.79 34.24 11.20% 31.05 34.34 10.60%

FedProx 29.81 32.87 10.27% 30.76 34.09 10.83% 30.97 33.96 9.65%

FedFA 29.33 32.99 12.48% 30.41 33.75 10.98% 31.11 34.54 11.03%

FedFV 29.84 33.04 10.72% 31.40 33.73 7.42% 31.32 33.96 8.43%

Scaffold 32.30 35.63 10.31% 33.46 36.97 10.49% 34.04 37.45 10.99%

introduce an additional parameter U% (named data volume
ratio) to adjust the data scarcity. That is, we use only U% of
the data samples of the targeted dataset when distributing it
to the N clients. Data scarcity is higher when U is smaller or
N is bigger.

In this evaluation, we use the hyper-parameter picked up
from the prior work. Especially, we train simple convolutional
neural networks (CNNs) on MNIST [2] and ResNet-9 [31]
network on CIFAR-10/CIFAR-100 dataset using stochastic
gradient descent (SGD) as the local optimizer. We set the local
epochs E = 8, a learning rate of 0.001, and a local batch size
B = 8. We also use the suggested hyper-parameters from the
original papers of the baseline FL methods. For example, we
set the proximal term µ = 0.01 for the FedProx method. We
use γ = 0 and β = 1.0 for FedFA; and τ = 0 for FedFV. For

Scaffold, we set η = 1.0.

B. Experimental Results

1) Top-1 Accuracy: Table I presents the experimental re-
sults of the best top-1 testing accuracy that a method reaches
within 1000 communication rounds. Specifically, integrating
our proposed method with all the baseline FL methods
(w/SEM) achieves better testing accuracy than those using
only the original baseline FL methods (Base) in most of the
experiment settings. For example, when α = 0.1, using the
proposed method helps to relatively increase the accuracy
around 0.28 − 0.37%, 2.03 − 3.24%, and 10.27 − 12.48%
for MNIST, CIFAR-10, and CIFAR-100 datasets, respectively.
The accuracy improvement in the MNIST dataset is trivial
in comparison with the improvement in the CIFAR-10 and
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Fig. 4. Top-1 testing accuracy vs. communication round on the CIFAR-10
(α = 0.3, sparsity = 0.38) and CIFAR-100 dataset (α = 0.3, sparsity =
0.64). The results are plotted with the average-smoothed of every 20 round
to have a better visualization.

Fig. 5. Top-1 testing accuracy vs. communication round on the CIFAR-10
and CIFAR-100 dataset with α = 100 and sparsity of 0 and 0.37 respectively.
The results are plotted with the average-smoothed of every 20 round to have
a better visualization.

CIFAR-100 datasets. Especially, there is no improvement
in accuracy by using our random matching method in the
case of the Scaffold method with the MNIST dataset. Be-
cause of the simplicity of the image classification tasks on
the MNIST dataset, all the baseline FL methods, especially
Scaffold, achieve accuracy nearly asymptotic to the upper
bound (SingleSet), thus no/trivial room for improvement. In
harder classification tasks, e.g., in CIFAR-10 and CIFAR-
100, there is more room for improvement, and our proposed
method achieves significant improvements in accuracy. This
result emphasizes that our proposed method can address the
challenge of non-iid or heterogeneous data more effectively.

2) Convergence Analysis: In the previous sub-section, we
focus on the top-1 testing accuracy to gauge the goodness
of the trained model over the global distribution. We now
estimate the number of communication rounds necessary to
achieve the desired top-1 accuracy to show how the proposed
method effectively reduces local computation at clients. Figure
3 displays the trend of top-1 accuracy versus communication
rounds for the CIFAR-10 and CIFAR-100 datasets and the non-
iid degree α of 0.3. We smoothed the curve by averaging the
accuracy in the last 20 communication rounds to have a better
visualization. As shown in Figure 4, the convergence rate of
the methods that used random matching is faster than those
of the corresponding baseline method. For instance, Scaffold
requires 887 communication rounds to reach its best top-1
accuracy, i.e., 68.88%. With the same setting, the Scaffold
method with random matching needs only 507 communication

TABLE II
IMPACT OF RANDOM MATCHING WITH FEDAVG WITHIN 1000

COMMUNICATION ROUND IN CIFAR-10 DATASET WHEN VARYING THE
DATA VOLUME RATIO U .

N K α U Sp ScarcityT=50 SingleSet FedAvg FedAvg
w/SEM Impr.

100 10 0.1

5% 0.72 0.85 67.69 52.40 53.61 2.31%

10% 0.67 0.58 73.00 57.44 59.04 2.79%

15% 0.63 0.45 76.56 61.16 63.43 3.71%

20% 0.61 0.30 78.72 64.05 66.13 3.25%

100% 0.54 0.08 88.55 71.05 73.81 3.88%

TABLE III
IMPACT OF RANDOM MATCHING WITH FEDAVG WITHIN 1000

COMMUNICATION ROUND IN CIFAR-10 DATASET WHEN THE NUMBER OF
CLIENT N INCREASES.

N K α U Sp ScarcityT=50 SingleSet FedAvg FedAvg
w/SEM Impr.

500 50

0.5 80%

0.23 0.21 87.03 75.43 77.27 2.44%

1000 100 0.34 0.74 86.74 74.45 76.31 2.50%

1500 150 0.40 0.94 86.07 73.59 75.81 3.02%

2000 200 0.45 0.99 86.15 72.55 74.94 3.29%

rounds, yielding 1.75× speedup. We confirm the same trends
with other baseline methods and all the settings mentioned in
Table I.

3) Robustness to the Data Sparsity and Scarcity: We study
the robustness of the proposed method with different degrees
of data sparsity. Table I shows that the data sparsity decreases
when reducing the non-iid level, i.e., by increasing α. It
leads to a higher top-1 accuracy achieved by all the baseline
methods. It also shows that our proposed method helps to
improve the accuracy not only in the case of high data sparsity,
e.g., CIFAR-100, α = 0.1 but also in the case of low data
sparsity, e.g., CIFAR-10, α = 0.5. Even with the zero data
sparsity 5, e.g., in the case of CIFAR-10, α = 100, our
proposed method still outperforms the accuracy of FedAvg
around 1.2% (Figure 5). This result proves the effectiveness
of the proposed method in both non-iid and iid datasets.

To study the impact of data scarcity on our method, we
vary the data volume ratio U and the number of clients N
while fixing α. Table II (Table III) presents the data scarcity
and the top-1 accuracy of our method versus FedAvg in
1000 communication rounds when U (N ) is changed. The
result shows that the higher the data scarcity, the lower the
accuracy achieved. For example, with the data scarcity of
0.85, i.e., (U = 5%) FedAvg and our method reach 52.4%
and 53.61% of accuracy, respectively. Those are 71.05% and
73.81% when the data scarcity is 0.08 (U = 100%). However,
It is worth noting that with all the significance of data scarcity,
the proposed method still helps to improve the accuracy around
2−3%. The result implies that our proposed method has a good
performance with different types of datasets and FL settings.

5the data distribution is nearly iid (Figure 3).
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V. CONCLUSION

In this paper, we addressed the DSS problem in FL. We
proposed SEM, a simple yet effective training mechanism
on the client side to enhance the data trained for each local
model in every communication round. The main idea is to train
each local model with data from two randomly paired clients
in every round. We performed extensive experiments with
various data sparsity and scarcity settings on MNIST, CIFAR-
10, and CIFAR-100. The experiment findings indicated that by
integrating SEM, the global model’s accuracy can be relatively
increased by up to 0.37% against MNIST, 3.44% against
CIFAR-10, and 12.48% against CIFAR-100, respectively. The
future effort will be devoted to improving the algorithm for
pairing clients.
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