
A Serverless Signaling Scheme for WebRTC Using
Bluetooth LE

Takuto Hashibe, Makoto Murakoshi, Teruaki Kitasuka, and Toru Nakanishi
Hiroshima University

Graduate School of Advanced Science and Engineering
Hiroshima, Japan

m235586@hiroshima-u.ac.jp, m226181@hiroshima-u.ac.jp, kitasuka@hiroshima-u.ac.jp, t-nakanishi@hiroshima-u.ac.jp

Abstract— In recent years, the widespread use of smart-
phones has increased the demand for image file sharing tools.
Image files are highly private data that often show people’s faces,
and it is desirable that they be shared securely. Therefore, the
final objective of this study is to implement an application that
can share image files between iOS and Android devices via a
secure P2P communication path using the WebRTC technology.
In this paper, as a preliminary step to the final objective, we
propose a serverless signaling scheme for WebRTC using BLE. In
this scheme, the role of exchanging terminal information, which
was played by WebSocket communication via a signaling server,
is replaced by the BLE standard specifications of advertise,
scan, and connect. In addition, the role of exchanging SDP
and ICE Candidates is replaced by bidirectional communication
using BLE write. We also verified that P2P communication was
established by the serverless signaling and that image files could
actually be shared between Android smartphones.

Index Terms—WebRTC, BLE, Serverless Signaling

I. INTRODUCTION

A. Research background

Smartphones are widely popular in Japan, with iOS and

Android accounting for most of the OS in use. According

to Statcounter GlobalStats [1], as of December 2022, iOS

and Android account for 99% of the mobile operating system

market share in Japan. Thus, most Japanese use one of these

two OSs for their smartphones. In daily life, we see many

scenes of people taking two-shot or group photos, and the

following three are representative methods of sharing the

photos taken.

• AirDrop

• Nearby Share

• LINE

AirDrop and Nearby Share can share images directly be-

tween devices without a server, but cannot be used across

operating systems between iOS and Android. Unlike these two

methods, LINE can share photos between iOS and Android

devices across operating systems, but it cannot be used directly

between devices, so photos are shared via a server.

As of August 2022, LINE uses a unique end-to-end en-

cryption protocol called “Letter Sealing” for text message

and location data communications, and messages cannot be

decrypted by the server [2]. However, for image and video file

communications, only the communication layer is encrypted,

Fig. 1. Final objective

and there is no guarantee that the image and video files stored

on the server are protected.

B. Research Objective

As shown in Fig. 1, the final objective of this research

is to implement an application that straddles the iOS and

Android operating systems and allows users to share image

files with people nearby easily and over a secure commu-

nication channel, similar to AirDrop. Image files are highly

private information that often contain people’s faces. Since

such information is often exchanged, it is necessary to use

secure communication channel. In this research, P2P (Peer-

to-Peer) communication is used as a secure communication

channel. P2P communication is direct communication between

terminals without a server, and is secure because it reduces

the risk of eavesdropping. In this research, we are considering

establishing a P2P communication path between nearby peers

in a local network as a use case for users, and we believe

that if this is achieved, easy sharing similar to AirDrop will

be possible. To realize this cross-OS P2P communication

function, WebRTC technology is adopted in this research.

There is another way to send files using bluetooth serial

port profile, but it could not be used because iOS does not

support this profile. [3] There are other bidirectional communi-

cation technologies such as WebSocket, but WebSocket excels

in client-server bidirectional communication, while WebRTC

excels in p2p bidirectional communication. In the future, when

extending the functionality, communication between terminals

303

2023 Eleventh International Symposium on Computing and Networking Workshops (CANDARW)

2832-1324/23/$31.00 ©2023 IEEE
DOI 10.1109/CANDARW60564.2023.00057

connected to different networks can be envisioned. In such

cases, WebRTC is easier to extend because it has a mechanism

for crossing NATs in p2p communication. For these reasons,

we chose to use WebRTC for file sharing.

As we will discuss in Chapter IV, we have confirmed

that p2p data communication between iOS and Android is

possible with the WebRTC demo application [4] that we

refer to. In other words, although signaling is implemented

between Android devices in this paper, the possibility of data

communication between iOS and Android is guaranteed when

implemented on iOS as well.

WebRTC generally requires a signaling server to be set up

for P2P connection between terminals. If WebRTC can be

serverless, the risk of application functionality shutdown due

to sudden server down can be ignored, thereby improving us-

ability. Therefore, this study proposes a method and algorithm

for serverless WebRTC between mobile terminals using BLE.

Since BLE has been installed in many mobile terminals in

recent years and can be used in many terminals, it was adopted

as the communication method for serverless signaling.

In this paper, the technology that forms the basis of this

research is explained in Chapter II. In Chapter III, we explain

the general method and the proposed method, and in Chapter

IV, we describe the design of the application. Furthermore,

in Chapter V, we will check the operation of the actual

application, and in Chapter VI, we will conclude.

II. BACKGROUND TECHNOLOGY

A. WebRTC

WebRTC stands for Web Real Time Communication [5].We-

bRTC is a technology that enables web applications and

web browsers to send and receive arbitrary data directly

between browsers without the need for an intermediary. The

architecture of WebRTC is divided into two major phases: the

signaling phase and the data transfer phase [6].

1) Signaling Phase: In the signaling phase, an operation

called signaling is performed. Signaling is the process of

making P2P communication possible between two peers. SDP

and ICE protocols are used in the signaling phase.

SDP stands for Session Description Protocol [7]. SDP is

a format that stores information on the media description

part and the session description part. Specifically, it stores

information such as the codec information for audio and video,

and the transfer rate for data communication. By exchanging

this information, the terminals can select the codecs that can

be used by each other and establish a P2P communication

path.

ICE stands for Interactive Connectivity Establishment Pro-

tocol [8], which provides a mechanism to automatically search

for available communication paths under various user environ-

ments (whether they are the same network or not) and set the

optimal communication path.

The current WebRTC uses the Offer-Answer model as the

negotiation pattern. This is explained in detail in the example

of sender Alice and recipient Bob. Alice sends an SDP Offer to

Bob through the signaling server, which contains information

on her available codecs, etc. When Bob receives the SDP

Offer, then creates an SDP Answer containing information on

codecs that he can receive, and sends SDP Answer back to

Alice through the signaling server. In this way, both parties

determine the available formats, etc.
When both peers have finished exchanging SDPs, they then

send ICE candidates to each other according to the ICE pro-

tocol. This is information containing possible communication

paths, which are shared with the peer as soon as they are

found. Then, among the multiple candidates, the route with

the smallest network overhead is preferentially selected.
2) Data Transfer Phase: After the signaling phase, the data

transfer phase begins. For data transfer, WebRTC provides two

types of channels: a media channel and a data channel. In the

media channel, video and audio stream data is communicated.

In the data channel, any data can be exchanged. The two types

of data available in the data channel are strings and binary

data, which can be sent and received in both directions. We

use only data channel, since the purpose of this research is to

transfer image files. Therefore, the media channel is not used

in this research.

B. BLE
BLE stands for Bluetooth Low Energy and was first in-

troduced by the Bluetooth Special Interest Group (SIG) in

2010 as part of the Bluetooth 4.0 specification [9], defining

the overall architecture and implementation details of BLE.

As the name suggests, BLE is a standard dedicated to low

power consumption and low cost, and is not compatible with

the previous Bluetooth standard (Bluetooth classic). The BLE

architecture is described below.
central and Peripheral are the roles in BLE communication.

BLE provides communication between these two parties. The

central is responsible for controlling the communication, and

generally a smartphone plays this role. Peripherals, on the

other hand, communicate in response to requests from the cen-

tral, such as BLE beacons. Peripherals are defined by services

and characteristics. A service represents a functional unit, and

a characteristic exists within it. The characteristic contains

the data that is actually used. Central devices communicate

by reading and writing data by specifying these services and

characteristics.
The flow of BLE communication is as follows. First, the

peripheral device periodically broadcasts information about

itself to make the central device aware of its presence. This

operation is called advertise. Then, the central equipment scans

the transmitted information to recognize peripheral devices

in the vicinity and searches for devices with which it can

communicate. Data communication begins when the central

device finishes its search, selects a connection target, and

issues a request to start the connection. At this time, the

peripheral device stops advertising and moves into the data

communication phase with the connected device.

III. DESIGN OF BLE SIGNALING

This section describes both general and proposed signal-

ing design. The changes on the proposed signaling is also

304

Alice's terminal Bob's terminal
Alice Bob

Server address

Server Address

WebSocket connect

WebSocket connect

Tap Bob's terminal

Broadcast terminal info

Send terminal info

Send terminal info

Broadcast terminal info Broadcast Terminal info

SDP OfferSDP Offer

SDP AnswerSDP Answer

ICE CandidatesICE Candidates

ICE Candidates ICE Candidates

 P2P Connect
Signaling completed

Signaling Server

Fig. 2. General Signaling with a Server

described. Fig. 2 and Fig. 3 show sequence diagrams sum-

marizing each method. These sequence diagrams show the

exchange of terminal information in the yellow-green area and

the exchange of SDP and ICE Candidates in the orange area.

A. General Signaling with a Server

The sequence diagram shown in Fig. 2 illustrates general

signaling techniques using a signaling server. In Fig. 2, the

general method is illustrated with the example of Alice and

Bob being the sender and receiver, respectively. Both Al-

ice and Bob’s terminals connect the signaling server using

WebSocket. When Alice’s terminal connects to the server, it

sends information about its own terminal to the server. Then,

the server broadcasts Alice’s information to the all connected

terminals. When Bob’s terminal connects to the server, the

server broadcasts as in the Alice case. This broadcast allows

users to recognize the users with whom they can currently

communicate. When Alice selects Bob’s terminal, Alice’s

terminal begins signaling. Alice sends an SDP Offer to Bob via

the server, and Bob returns an SDP Answer. Then, they send

ICE candidates to each other and initiate P2P communication

on that route. In this way, the signaling server is used as a

bridge to exchange SDP and other information between two

terminals before P2P communication begins.

B. Proposed BLE Signaling

In this study, we propose to use BLE for signaling instead

of a signaling server. The sequence diagram shown in Fig. 3

illustrates the proposed method of WebRTC signaling using

BLE.

In Fig. 3, the proposed method is illustrated with the

example of Alice and Bob being the sender and receiver,

respectively. When Alice and Bob launch the application on

their respective terminals, each terminal starts sending the

Alice's
terminal

Bob's
terminal

Alice Bob
turn on turn on

BLE Advertising
(terminal info)

BLE Scan
tap Bob's terminal

Accept offer

BLE Advertising
(terminal info)

BLE write(SDP Offer)

BLE write(ICE candidates)

BLE write(SDP Answer)

BLE write(ICE candidates)

 P2P Connect
Signaling completed

 BLE Connect
 BLE Connect

BLE write(ID Offer)

BLE write(ID Answer)

tap Scan

Fig. 3. Proposed BLE Signaling

advertisements with its own terminal information. Then, when

Alice’s terminal scans and receive an advertisement of Bob’s

terminal, she can retrieve the terminal information of Bob’s.

Alice selects Bob and makes a BLE connection request. When

Alice selects Bob as her communication counterparty, her

terminal makes a BLE connection request to Bob’s terminal.

In this way, the proposed method enables the exchange of

terminal information through the standard BLE specifications

of advertise, scan, and connect, whereas in the general method,

terminal information is deliberately sent and broadcasted to

the server. The above process enables BLE data commu-

nication between Bob and Alice’s terminals. Since Alice’s

terminal plays the role of central and Bob’s terminal plays

the role of peripheral, Alice’s terminal can read and write the

characteristics of Bob’s terminal, but Bob’s terminal cannot

actively transmit data. Therefore, immediately after Alice’s

terminal connects to Bob’s terminal via BLE. Bob’s terminal

sends a connection request to Alice’s terminal to connect,

thereby enabling both terminals to play the roles of central and

peripheral, and to send data at any desired timing. Once the

BLE connection is established, the SDP and ICE candidates

are sent to each other over the established connections. When

sending data to the other terminal, data is sent using write,

which writes data to the other terminals characteristic.

The proposed method adds two actions, ID Offer and ID

Answer, which did not exist in the general signaling method.

This is because a unique ID, which is an identifier of each ter-

minal, is required when exchanging SDP and ICE Candidates,

and a phase to exchange IDs is provided in order to understand

each IDs. This ID is a six-digit integer ID randomly generated

by the terminal itself and exchanged with the communication

305

TABLE I
DEVELOPMENT ENVIRONMENT

Category Content

Terminal OS Android 13
Terminal model Google Pixel 7

Framework Flutter 3.10.5
Language Kotlin 1.8
Language Dart 3.0.5

IDE Android Studio Electric Eel 2022.1.1 Patch 2

partner using ID Offer and ID Answer. Another method is to

use a dynamically generated MAC address as a unique ID.

However, due to the BLE specification, it is not possible to

obtain its own MAC address, so it is necessary to ask the

communication partner to tell it [10]. The number of times

data is sent and received is the same between using the MAC

address as the ID and generating and using a random ID.

After the exchange of SDP and ICE candidates is complete, a

route with low network overhead is selected as in the general

method, and P2P communication begins on that route.

IV. IMPLEMENTATION

A. Development environment

The development environment is shown in TABLE I. Since

the final objective is to implement an application that can be

used on both iOS and Android operating systems, we used

the Flutter [11] framework and Dart language for develop-

ment, which are suitable for multi-platform development. For

development, we used two open source WebRTC software [4]

[12]. For the application itself, we used the flutter-webrtc-

demo program [4] as a reference. We also used flutter-webrtc-

server [12] as the server-side program. These two programs are

demo versions of WebRTC applications that use a signaling

server for signaling, which We describe as the general method.

We implemented serverless signaling by modifying the flutter-

webrtc-demo program.

In this study, we tested with various packages that are

publicly available for using BLE with Flutter, but they did

not work well on Android devices. Therefore, we used the

Flutter method channel API provided in Flutter. We wrote the

code for BLE communication in Kotlin, and called it from the

Flutter side.

We implemented serverless signaling between Android de-

vices that did not work well with the BLE package.

The important parts of the implementation are explained in

the following sections IV-B and IV-C.

B. method channel

The BLE library for the Android platform must be called

in Kotlin or Java language. To call the BLE library from

Flutter app, we use Flutter method channel [13] [14]. The

method channel allows us to pass messages between Flutter

app written in Dart and Android host written in Kotlin. In this

study, the Android BluetoothLeChat sample code [15] was

used as a reference when implementing BLE functionality

in Kotlin. Data transfer using method channel is shown in

Fig. 4. Data transfer using method channel

Fig. 4. Black arrows indicate data exchange between Flutter

and Kotlin through method channel. The green arrows indicate

data exchange through BLE. This application uses the String

type when sending SDP and other data via BLE write. The

reason for using the String type is that it supports both method

channel data passing and BLE data passing. When sending

data from Flutter to Kotlin, the data is converted to JSON

format as a String and sent.

C. Data transfer rate of BLE

There is a limit to the number of bytes of data that can

be recived/sent at one time in a BLE read/write operation,

which is set to 20 bytes by default. When tested with the

Google Pixel 7 used in this study, only 18 bytes could be

transmitted at a time. In addition, the BLE specification does

not allow the next read/write operation to be performed before

the response is returned after one read/write operation, so an

appropriate interval must be provided when sending multiple

packets. In this regard, testing on the Google Pixel 7 used in

this study showed that data could be received after an interval

of at least 120 ms. However, the SDP Offer to be sent in

the signaling performed in this study has approximately 600

characters, and it takes approximately 4 seconds to send one

of these characters, which is quite slow. To solve this problem,

the MTU of the BLE data communication was extended using

the ATT MTU extension protocol. When tested on the Google

Pixel 7a used in this study, the MTU could be extended up to

512 bytes. This significantly increased the data transfer rate of

BLE. Specifically, An SDP of approximately 600 characters

takes 240 ms because the write is divided into two writes.

V. PROTOTYPE

In this section, we will check the operation of a serverless

application realized by BLE with actual screenshots.

First, when the application is launched, the screen looks

like Fig. 5a, and BLE advertisement starts automatically. This

process takes place at both terminals, whether they are senders

or receivers. Then, tapping the button with the magnifying

glass icon in the lower right corner starts a scan, and when

the scan is complete, the names of nearby devices that can

communicate are listed and displayed as shown in Fig. 5b.

When sender tap the device you want to start communicating

with, the sender’s terminal issues a BLE connect request to the

306

(a) first screen of both
central and peripheral

devices

(b) screen after
scanning on the
central device

(c) confirmation dialog
of invitation on the
peripheral device

(d) Image sharing
screen of both central

and peripheral devices

(e) Confirmation
dialog to receive an

image on both central
and peripheral devices

Fig. 5. Screenshot of Signaling Serverless Fileshare

receiver’s terminal, and when the connection is established, the

receiver’s terminal also issues a connect request. Then, when

mutual connection is established, exchange of IDs starts. ID

exchange begins with the sender terminal sending an ID Offer

to the receiver terminal. This ID Offer contains a randomly

issued unique ID of the terminal and the name of the terminal

that sent it. When the receiving terminal receives this ID Offer,

it displays the name of the terminal that sent the ID Offer

as shown in Fig. 5c, and outputs a dialog asking whether

to continue signaling. If the receiver presses Accept on this

dialog, ID Answer is returned and signaling begins. On the

other hund, if the receiver presses Ignore, the signaling is

discarded.

When signaling is completed, the two terminals enter the

data transfer phase and transition to the screen shown in Fig.

5d. When the terminal transitions to this screen, the P2P data

channel has already been opened and binary data can be sent

and received at any time. Then press the Select button to select

an image from the device’s gallery and press the Send button

to send the image to the recipient using the P2P data channel.

As you can see in Fig. 5e, we confirmed that the image files

were shared over the P2P data channel.

VI. CONCLUSION

We proposed a serverless method of WebRTC using BLE,

implemented it, and confirmed that it works. Specifically, the

role of exchanging terminal information through WebSocket

communication via a signaling server was replaced with

advertise, scan, and connect, which are specifications of the

BLE standard. In addition, the role of exchanging SDP and

ICE Candidates, which is the main part of signaling, was

replaced with two-way communication using BLE write, and

an ID exchange phase was added in the middle of serverless

signaling. In this way, we realized serverless signaling by using

the BLE function that is standard in mobile terminals. By

using this method, there is no risk of the application stopping

due to server failure. As a result, the usability of file-sharing

apps has improved. A future work is to implement BLE-based

serverless signaling so that it can be used on iOS terminals as

well. Since the final objective of this research is to perform file

sharing across operating systems, file sharing between Android

terminals at the current stage is not sufficient. In the future,

we must implement BLE-based signaling on iOS terminals in

the same way as in this study, and confirm whether P2P file

sharing between iOS and Android is possible.

REFERENCES

[1] Statcounter GlobalStats
https://gs.statcounter.com/os-market-share/mobile/japan (accessed Jan-
uary 12, 2023).

[2] LINE Corporation, LINE Encryption Report, December 2022
https://linecorp.com/en/security/encryption/2022h1 (accessed July 28,
2023).

[3] Apple, Bluetooth profiles that iOS and iPadOS support, May 8 2023
https://support.apple.com/en-us/HT204387 (accessed October 11, 2023).

[4] Flutter WebRTC community, flutter-webrtc-demo, Github
https://github.com/flutter-webrtc/flutter-webrtc-demo (accessed July 31,
2023).

[5] WebRTC API, Mozilla Developer Network web docs
https://developer.mozilla.org/ja/docs/Web/API/WebRTC API (accessed
July 28, 2023).

[6] Kensaku Komatsu. “What Impact Does WebRTC Has?; Innovative
game changer on web business”. The Journal of the Institute of Image
Information and Television Engineers. vol.70, no.3, pp.215–219, March
2016. (in Japanese)
https://www.jstage.jst.go.jp/article/itej/70/3/70 215/ pdf (accessed Jan-
uary 12, 2023).

[7] Ali C. Begen, Paul Kyzivat, Colin Perkins, Mark J. Handley, “SDP:
Session Description Protocol”, RFC8866, January 2021
https://datatracker.ietf.org/doc/html/rfc8866 (accessed July 28, 2023).

[8] Ari Keränen, Christer Holmberg, Jonathan Rosenberg, “Interactive
Connectivity Establishment (ICE): A Protocol for Network Address
Translator (NAT) Traversal”, RFC8445, July 2018
https://datatracker.ietf.org/doc/html/rfc8445 (accessed July 28, 2023).

[9] Bluetooth® Low Energy Primer, Bluetooth SIG, 2023
https://www.bluetooth.com/ja-jp/bluetooth-resources/
the-bluetooth-low-energy-primer/ (accessed July 28, 2023).

[10] Android developers, Android 6.0 Changes,January 2023
https://developer.android.com/about/versions/marshmallow/android-6.
0-changes.html#behavior-hardware-id (accessed August 9, 2023).

[11] Flutter:
https://flutter.dev/ (accessed July 28, 2023).

[12] Flutter WebRTC community, flutter-webrtc-server, Github
https://github.com/flutter-webrtc/flutter-webrtc-server (accessed July 31,
2023).

[13] Flutter, Writing custom platform-specific code
https://docs.flutter.dev/platform-integration/platform-channels (accessed
July 28, 2023).

[14] javadoc flutter MethodChannel
https://api.flutter.dev/javadoc/io/flutter/plugin/common/MethodChannel.
html(accessed July 28, 2023).

[15] Android BluetoothLeChat Sample, Github
https://github.com/android/connectivity-samples/tree/main/
BluetoothLeChat (accessed July 28, 2023).

307

