2023 Eleventh International Symposium on Computing and Networking Workshops (CANDARW)

A Serverless Signaling Scheme for WebRTC Using
Bluetooth LE

Takuto Hashibe, Makoto Murakoshi, Teruaki Kitasuka, and Toru Nakanishi
Hiroshima University
Graduate School of Advanced Science and Engineering
Hiroshima, Japan
m?235586 @hiroshima-u.ac.jp, m226181@hiroshima-u.ac.jp, kitasuka@hiroshima-u.ac.jp, t-nakanishi @hiroshima-u.ac.jp

Abstract— In recent years, the widespread use of smart-
phones has increased the demand for image file sharing tools.
Image files are highly private data that often show people’s faces,
and it is desirable that they be shared securely. Therefore, the
final objective of this study is to implement an application that
can share image files between iOS and Android devices via a
secure P2P communication path using the WebRTC technology.
In this paper, as a preliminary step to the final objective, we
propose a serverless signaling scheme for WebRTC using BLE. In
this scheme, the role of exchanging terminal information, which
was played by WebSocket communication via a signaling server,
is replaced by the BLE standard specifications of advertise,
scan, and connect. In addition, the role of exchanging SDP
and ICE Candidates is replaced by bidirectional communication
using BLE write. We also verified that P2P communication was
established by the serverless signaling and that image files could
actually be shared between Android smartphones.

Index Terms—WebRTC, BLE, Serverless Signaling

[. INTRODUCTION

A. Research background

Smartphones are widely popular in Japan, with iOS and
Android accounting for most of the OS in use. According
to Statcounter GlobalStats [1], as of December 2022, iOS
and Android account for 99% of the mobile operating system
market share in Japan. Thus, most Japanese use one of these
two OSs for their smartphones. In daily life, we see many
scenes of people taking two-shot or group photos, and the
following three are representative methods of sharing the
photos taken.

o AirDrop
o Nearby Share
o LINE

AirDrop and Nearby Share can share images directly be-
tween devices without a server, but cannot be used across
operating systems between iOS and Android. Unlike these two
methods, LINE can share photos between iOS and Android
devices across operating systems, but it cannot be used directly
between devices, so photos are shared via a server.

As of August 2022, LINE uses a unique end-to-end en-
cryption protocol called “Letter Sealing” for text message
and location data communications, and messages cannot be
decrypted by the server [2]. However, for image and video file
communications, only the communication layer is encrypted,

2832-1324/23/$31.00 ©2023 IEEE
DOI 10.1109/CANDARW60564.2023.00057

303

LAN

f Server %
S—)

D P2P file sharing ANDTo

Fig. 1. Final objective

and there is no guarantee that the image and video files stored
on the server are protected.

B. Research Objective

As shown in Fig. 1, the final objective of this research
is to implement an application that straddles the iOS and
Android operating systems and allows users to share image
files with people nearby easily and over a secure commu-
nication channel, similar to AirDrop. Image files are highly
private information that often contain people’s faces. Since
such information is often exchanged, it is necessary to use
secure communication channel. In this research, P2P (Peer-
to-Peer) communication is used as a secure communication
channel. P2P communication is direct communication between
terminals without a server, and is secure because it reduces
the risk of eavesdropping. In this research, we are considering
establishing a P2P communication path between nearby peers
in a local network as a use case for users, and we believe
that if this is achieved, easy sharing similar to AirDrop will
be possible. To realize this cross-OS P2P communication
function, WebRTC technology is adopted in this research.

There is another way to send files using bluetooth serial
port profile, but it could not be used because iOS does not
support this profile. [3] There are other bidirectional communi-
cation technologies such as WebSocket, but WebSocket excels
in client-server bidirectional communication, while WebRTC
excels in p2p bidirectional communication. In the future, when
extending the functionality, communication between terminals

connected to different networks can be envisioned. In such
cases, WebRT(C is easier to extend because it has a mechanism
for crossing NATSs in p2p communication. For these reasons,
we chose to use WebRTC for file sharing.

As we will discuss in Chapter IV, we have confirmed
that p2p data communication between iOS and Android is
possible with the WebRTC demo application [4] that we
refer to. In other words, although signaling is implemented
between Android devices in this paper, the possibility of data
communication between iOS and Android is guaranteed when
implemented on iOS as well.

WebRTC generally requires a signaling server to be set up
for P2P connection between terminals. If WebRTC can be
serverless, the risk of application functionality shutdown due
to sudden server down can be ignored, thereby improving us-
ability. Therefore, this study proposes a method and algorithm
for serverless WebRTC between mobile terminals using BLE.
Since BLE has been installed in many mobile terminals in
recent years and can be used in many terminals, it was adopted
as the communication method for serverless signaling.

In this paper, the technology that forms the basis of this
research is explained in Chapter II. In Chapter III, we explain
the general method and the proposed method, and in Chapter
IV, we describe the design of the application. Furthermore,
in Chapter V, we will check the operation of the actual
application, and in Chapter VI, we will conclude.

II. BACKGROUND TECHNOLOGY
A. WebRTC

WebRTC stands for Web Real Time Communication [5].We-
bRTC is a technology that enables web applications and
web browsers to send and receive arbitrary data directly
between browsers without the need for an intermediary. The
architecture of WebRTC is divided into two major phases: the
signaling phase and the data transfer phase [6].

1) Signaling Phase: In the signaling phase, an operation
called signaling is performed. Signaling is the process of
making P2P communication possible between two peers. SDP
and ICE protocols are used in the signaling phase.

SDP stands for Session Description Protocol [7]. SDP is
a format that stores information on the media description
part and the session description part. Specifically, it stores
information such as the codec information for audio and video,
and the transfer rate for data communication. By exchanging
this information, the terminals can select the codecs that can
be used by each other and establish a P2P communication
path.

ICE stands for Interactive Connectivity Establishment Pro-
tocol [8], which provides a mechanism to automatically search
for available communication paths under various user environ-
ments (whether they are the same network or not) and set the
optimal communication path.

The current WebRTC uses the Offer-Answer model as the
negotiation pattern. This is explained in detail in the example
of sender Alice and recipient Bob. Alice sends an SDP Offer to
Bob through the signaling server, which contains information

304

on her available codecs, etc. When Bob receives the SDP
Offer, then creates an SDP Answer containing information on
codecs that he can receive, and sends SDP Answer back to
Alice through the signaling server. In this way, both parties
determine the available formats, etc.

When both peers have finished exchanging SDPs, they then
send ICE candidates to each other according to the ICE pro-
tocol. This is information containing possible communication
paths, which are shared with the peer as soon as they are
found. Then, among the multiple candidates, the route with
the smallest network overhead is preferentially selected.

2) Data Transfer Phase: After the signaling phase, the data
transfer phase begins. For data transfer, WebRTC provides two
types of channels: a media channel and a data channel. In the
media channel, video and audio stream data is communicated.
In the data channel, any data can be exchanged. The two types
of data available in the data channel are strings and binary
data, which can be sent and received in both directions. We
use only data channel, since the purpose of this research is to
transfer image files. Therefore, the media channel is not used
in this research.

B. BLE

BLE stands for Bluetooth Low Energy and was first in-
troduced by the Bluetooth Special Interest Group (SIG) in
2010 as part of the Bluetooth 4.0 specification [9], defining
the overall architecture and implementation details of BLE.
As the name suggests, BLE is a standard dedicated to low
power consumption and low cost, and is not compatible with
the previous Bluetooth standard (Bluetooth classic). The BLE
architecture is described below.

central and Peripheral are the roles in BLE communication.
BLE provides communication between these two parties. The
central is responsible for controlling the communication, and
generally a smartphone plays this role. Peripherals, on the
other hand, communicate in response to requests from the cen-
tral, such as BLE beacons. Peripherals are defined by services
and characteristics. A service represents a functional unit, and
a characteristic exists within it. The characteristic contains
the data that is actually used. Central devices communicate
by reading and writing data by specifying these services and
characteristics.

The flow of BLE communication is as follows. First, the
peripheral device periodically broadcasts information about
itself to make the central device aware of its presence. This
operation is called advertise. Then, the central equipment scans
the transmitted information to recognize peripheral devices
in the vicinity and searches for devices with which it can
communicate. Data communication begins when the central
device finishes its search, selects a connection target, and
issues a request to start the connection. At this time, the
peripheral device stops advertising and moves into the data
communication phase with the connected device.

III. DESIGN OF BLE SIGNALING

This section describes both general and proposed signal-
ing design. The changes on the proposed signaling is also

s

Bob's terminal

Signaling Server

Alice's terminal

Alice Bob
Server address M = :
—— > | WebSocket connect |

Send terminal info :
>

Broadcast terminal info Server AddressE

< €<

WebSocket connect H

_Send terminal info

Broadcast terminal info
<
<

Broadcast Terminal info
N

Tap Bob's terminall
F——

: SDP Offer SDP Offer
—>
SDP Answer SDP Answer

A

ICE Candidates ICE Candidates
> >

_ ICE Candidates __ICE Candidates
< <

<:: P2P Connect ____ N|
Signalingﬁompleted_l/

Fig. 2. General Signaling with a Server

described. Fig. 2 and Fig. 3 show sequence diagrams sum-
marizing each method. These sequence diagrams show the
exchange of terminal information in the yellow-green area and
the exchange of SDP and ICE Candidates in the orange area.

A. General Signaling with a Server

The sequence diagram shown in Fig. 2 illustrates general
signaling techniques using a signaling server. In Fig. 2, the
general method is illustrated with the example of Alice and
Bob being the sender and receiver, respectively. Both Al-
ice and Bob’s terminals connect the signaling server using
WebSocket. When Alice’s terminal connects to the server, it
sends information about its own terminal to the server. Then,
the server broadcasts Alice’s information to the all connected
terminals. When Bob’s terminal connects to the server, the
server broadcasts as in the Alice case. This broadcast allows
users to recognize the users with whom they can currently
communicate. When Alice selects Bob’s terminal, Alice’s
terminal begins signaling. Alice sends an SDP Offer to Bob via
the server, and Bob returns an SDP Answer. Then, they send
ICE candidates to each other and initiate P2P communication
on that route. In this way, the signaling server is used as a
bridge to exchange SDP and other information between two
terminals before P2P communication begins.

B. Proposed BLE Signaling

In this study, we propose to use BLE for signaling instead
of a signaling server. The sequence diagram shown in Fig. 3
illustrates the proposed method of WebRTC signaling using
BLE.

In Fig. 3, the proposed method is illustrated with the
example of Alice and Bob being the sender and receiver,
respectively. When Alice and Bob launch the application on
their respective terminals, each terminal starts sending the

305

Alice's Bob's
terminal terminal
Alice : : Bob
. turn on i :
: > . _ turnon
0 BLE Advertising <
H (terminal info)
BLE Advertising
tap Scan [€— (terminal info)

BLE Scan—>|

tap Bob's terminal
—— BLE Connect :>
<: BLE Connect —]

BLE write(ID Offer)
| BLE write(ID A y

<

BLE write(SDP Offer)
>

_Accept offer
<

e e 1Y

| _ BLE write(SDP Answer)
<

BLE write(ICE candidates)
>

_ BLE write(ICE candidates)
<

P2P Connect

<:Signaling completed

Fig. 3. Proposed BLE Signaling

advertisements with its own terminal information. Then, when
Alice’s terminal scans and receive an advertisement of Bob’s
terminal, she can retrieve the terminal information of Bob’s.
Alice selects Bob and makes a BLE connection request. When
Alice selects Bob as her communication counterparty, her
terminal makes a BLE connection request to Bob’s terminal.

In this way, the proposed method enables the exchange of
terminal information through the standard BLE specifications
of advertise, scan, and connect, whereas in the general method,
terminal information is deliberately sent and broadcasted to
the server. The above process enables BLE data commu-
nication between Bob and Alice’s terminals. Since Alice’s
terminal plays the role of central and Bob’s terminal plays
the role of peripheral, Alice’s terminal can read and write the
characteristics of Bob’s terminal, but Bob’s terminal cannot
actively transmit data. Therefore, immediately after Alice’s
terminal connects to Bob’s terminal via BLE. Bob’s terminal
sends a connection request to Alice’s terminal to connect,
thereby enabling both terminals to play the roles of central and
peripheral, and to send data at any desired timing. Once the
BLE connection is established, the SDP and ICE candidates
are sent to each other over the established connections. When
sending data to the other terminal, data is sent using write,
which writes data to the other terminals characteristic.

The proposed method adds two actions, ID Offer and ID
Answer, which did not exist in the general signaling method.
This is because a unique ID, which is an identifier of each ter-
minal, is required when exchanging SDP and ICE Candidates,
and a phase to exchange IDs is provided in order to understand
each IDs. This ID is a six-digit integer ID randomly generated
by the terminal itself and exchanged with the communication

TABLE I
DEVELOPMENT ENVIRONMENT

Content

Android 13
Google Pixel 7

\ Category I
Terminal OS
Terminal model

Framework Flutter 3.10.5
Language Kotlin 1.8
Language Dart 3.0.5
IDE Android Studio Electric Eel 2022.1.1 Patch 2

partner using ID Offer and ID Answer. Another method is to
use a dynamically generated MAC address as a unique ID.
However, due to the BLE specification, it is not possible to
obtain its own MAC address, so it is necessary to ask the
communication partner to tell it [10]. The number of times
data is sent and received is the same between using the MAC
address as the ID and generating and using a random ID.
After the exchange of SDP and ICE candidates is complete, a
route with low network overhead is selected as in the general
method, and P2P communication begins on that route.

IV. IMPLEMENTATION
A. Development environment

The development environment is shown in TABLE I. Since
the final objective is to implement an application that can be
used on both iOS and Android operating systems, we used
the Flutter [11] framework and Dart language for develop-
ment, which are suitable for multi-platform development. For
development, we used two open source WebRTC software [4]
[12]. For the application itself, we used the flutter-webrtc-
demo program [4] as a reference. We also used flutter-webrtc-
server [12] as the server-side program. These two programs are
demo versions of WebRTC applications that use a signaling
server for signaling, which We describe as the general method.
We implemented serverless signaling by modifying the flutter-
webrtc-demo program.

In this study, we tested with various packages that are
publicly available for using BLE with Flutter, but they did
not work well on Android devices. Therefore, we used the
Flutter method channel API provided in Flutter. We wrote the
code for BLE communication in Kotlin, and called it from the
Flutter side.

We implemented serverless signaling between Android de-
vices that did not work well with the BLE package.

The important parts of the implementation are explained in
the following sections IV-B and IV-C.

B. method channel

The BLE library for the Android platform must be called
in Kotlin or Java language. To call the BLE library from
Flutter app, we use Flutter method channel [13] [14]. The
method channel allows us to pass messages between Flutter
app written in Dart and Android host written in Kotlin. In this
study, the Android BluetoothLeChat sample code [15] was
used as a reference when implementing BLE functionality
in Kotlin. Data transfer using method channel is shown in

306

Alice Bob
I Flutter Flutter I
r r 3
JSON JSON
v v
Y :f
| Kotlin | JSON | Kotlin

=p BLE = Method Channel

Fig. 4. Data transfer using method channel

Fig. 4. Black arrows indicate data exchange between Flutter
and Kotlin through method channel. The green arrows indicate
data exchange through BLE. This application uses the String
type when sending SDP and other data via BLE write. The
reason for using the String type is that it supports both method
channel data passing and BLE data passing. When sending
data from Flutter to Kotlin, the data is converted to JSON
format as a String and sent.

C. Data transfer rate of BLE

There is a limit to the number of bytes of data that can
be recived/sent at one time in a BLE read/write operation,
which is set to 20 bytes by default. When tested with the
Google Pixel 7 used in this study, only 18 bytes could be
transmitted at a time. In addition, the BLE specification does
not allow the next read/write operation to be performed before
the response is returned after one read/write operation, so an
appropriate interval must be provided when sending multiple
packets. In this regard, testing on the Google Pixel 7 used in
this study showed that data could be received after an interval
of at least 120 ms. However, the SDP Offer to be sent in
the signaling performed in this study has approximately 600
characters, and it takes approximately 4 seconds to send one
of these characters, which is quite slow. To solve this problem,
the MTU of the BLE data communication was extended using
the ATT_MTU extension protocol. When tested on the Google
Pixel 7a used in this study, the MTU could be extended up to
512 bytes. This significantly increased the data transfer rate of
BLE. Specifically, An SDP of approximately 600 characters
takes 240 ms because the write is divided into two writes.

V. PROTOTYPE

In this section, we will check the operation of a serverless
application realized by BLE with actual screenshots.

First, when the application is launched, the screen looks
like Fig. 5a, and BLE advertisement starts automatically. This
process takes place at both terminals, whether they are senders
or receivers. Then, tapping the button with the magnifying
glass icon in the lower right corner starts a scan, and when
the scan is complete, the names of nearby devices that can
communicate are listed and displayed as shown in Fig. 5b.
When sender tap the device you want to start communicating
with, the sender’s terminal issues a BLE connect request to the

w1 1 vi 5o 4 vi

Pixel 7FCS 2 <

&

[« o« |
(a) first screen of both
central and peripheral
devices

&
[< o]
(b) screen after
scanning on the
central device

wor 1 #
WeBRTC Drop BLE.

(d) Image sharing
screen of both central

(c) confirmation dialog
of invitation on the
peripheral device

(e) Confirmation
dialog to receive an
and peripheral devices image on both central
and peripheral devices

Fig. 5. Screenshot of Signaling Serverless Fileshare

receiver’s terminal, and when the connection is established, the
receiver’s terminal also issues a connect request. Then, when
mutual connection is established, exchange of IDs starts. ID
exchange begins with the sender terminal sending an ID Offer
to the receiver terminal. This ID Offer contains a randomly
issued unique ID of the terminal and the name of the terminal
that sent it. When the receiving terminal receives this ID Offer,
it displays the name of the terminal that sent the ID Offer
as shown in Fig. 5c, and outputs a dialog asking whether
to continue signaling. If the receiver presses Accept on this
dialog, ID Answer is returned and signaling begins. On the
other hund, if the receiver presses Ignore, the signaling is
discarded.

When signaling is completed, the two terminals enter the
data transfer phase and transition to the screen shown in Fig.
5d. When the terminal transitions to this screen, the P2P data
channel has already been opened and binary data can be sent
and received at any time. Then press the Select button to select
an image from the device’s gallery and press the Send button
to send the image to the recipient using the P2P data channel.
As you can see in Fig. 5e, we confirmed that the image files
were shared over the P2P data channel.

VI. CONCLUSION

We proposed a serverless method of WebRTC using BLE,
implemented it, and confirmed that it works. Specifically, the
role of exchanging terminal information through WebSocket

307

communication via a signaling server was replaced with
advertise, scan, and connect, which are specifications of the
BLE standard. In addition, the role of exchanging SDP and
ICE Candidates, which is the main part of signaling, was
replaced with two-way communication using BLE write, and
an ID exchange phase was added in the middle of serverless
signaling. In this way, we realized serverless signaling by using
the BLE function that is standard in mobile terminals. By
using this method, there is no risk of the application stopping
due to server failure. As a result, the usability of file-sharing
apps has improved. A future work is to implement BLE-based
serverless signaling so that it can be used on iOS terminals as
well. Since the final objective of this research is to perform file
sharing across operating systems, file sharing between Android
terminals at the current stage is not sufficient. In the future,
we must implement BLE-based signaling on iOS terminals in
the same way as in this study, and confirm whether P2P file
sharing between iOS and Android is possible.

REFERENCES

[1] Statcounter GlobalStats

https://gs.statcounter.com/os- market-share/mobile/japan (accessed Jan-
vary 12, 2023).

LINE Corporation, LINE Encryption Report, December 2022
https://linecorp.com/en/security/encryption/2022h1 (accessed July 28,
2023).

Apple, Bluetooth profiles that iOS and iPadOS support, May 8 2023
https://support.apple.com/en-us/HT204387 (accessed October 11, 2023).
Flutter WebRTC community, flutter-webrtc-demo, Github
https://github.com/flutter- webrtc/flutter- webrtc-demo (accessed July 31,
2023).

WebRTC API, Mozilla Developer Network web docs
https://developer.mozilla.org/ja/docs/Web/API/WebRTC_API (accessed
July 28, 2023).

Kensaku Komatsu. “What Impact Does WebRTC Has?; Innovative
game changer on web business”. The Journal of the Institute of Image
Information and Television Engineers. vol.70, no.3, pp.215-219, March
2016. (in Japanese)
https://www.jstage.jst.go.jp/article/itej/70/3/70_215/_pdf (accessed Jan-
uary 12, 2023).

Ali C. Begen, Paul Kyzivat, Colin Perkins, Mark J. Handley, “SDP:
Session Description Protocol”, RFC8866, January 2021
https://datatracker.ietf.org/doc/html/rfc8866 (accessed July 28, 2023).
Ari Kerdnen, Christer Holmberg, Jonathan Rosenberg, “Interactive
Connectivity Establishment (ICE): A Protocol for Network Address
Translator (NAT) Traversal”, RFC8445, July 2018
https://datatracker.ietf.org/doc/html/rfc8445 (accessed July 28, 2023).
Bluetooth® Low Energy Primer, Bluetooth SIG, 2023
https://www.bluetooth.com/ja-jp/bluetooth-resources/
the-bluetooth-low-energy-primer/ (accessed July 28, 2023).

Android developers, Android 6.0 Changes,January 2023
https://developer.android.com/about/versions/marshmallow/android- 6.
0-changes.html#behavior-hardware-id (accessed August 9, 2023).
Flutter:

https://flutter.dev/ (accessed July 28, 2023).

Flutter WebRTC community, flutter-webrtc-server, Github
https://github.com/flutter- webrtc/flutter- webrtc-server (accessed July 31,
2023).

Flutter, Writing custom platform-specific code
https://docs.flutter.dev/platform-integration/platform-channels (accessed
July 28, 2023).

javadoc flutter MethodChannel
https://api.flutter.dev/javadoc/io/flutter/plugin/common/MethodChannel.
html(accessed July 28, 2023).

Android BluetoothLeChat Sample, Github
https://github.com/android/connectivity-samples/tree/main/
BluetoothLeChat (accessed July 28, 2023).

—

[2

@
&

[4

=

[5

[6

—

[7

—

[10]

[11]

[12]

[13]

[14]

[15]

