
Randomized Pattern Formation Algorithm for Autonomous

Mobile Robots

Yukiko Yamauchi∗ Masafumi Yamashita†

Abstract

We present a randomized pattern formation algorithm for asynchronous oblivious (i.e., memory-
less) mobile robots that enables formation of any target pattern. As for deterministic pattern forma-
tion algorithms, the class of patterns formable from an initial configuration I is characterized by the
symmetricity (i.e., the order of rotational symmetry) of I, and in particular, every pattern is formable
from I if its symmetricity is 1. The randomized pattern formation algorithm ψPF we present in this
paper consists of two phases: The first phase transforms a given initial configuration I into a con-
figuration I ′ such that its symmetricity is 1, and the second phase invokes a deterministic pattern
formation algorithm ψCWM by Fujinaga et al. (DISC 2012) for asynchronous oblivious mobile robots
to finally form the target pattern.

1 Introduction

Consider a distributed system consisting of anonymous, asynchronous, oblivious (i.e., memory-less) mobile
robots that do not have access to a global coordinate system and are not equipped with communication
devices. We investigate the problem of forming a given pattern F from any initial configuration I, whose
goal is to design a distributed algorithm that works on each robot to navigate it so that the robots as
a whole eventually form F from any I. However, a stream of papers [2, 3, 4, 5, 6, 7] have showed that
the problem is not solvable by a deterministic algorithm, intuitively because the symmetry among robots
cannot be broken by a deterministic algorithm. Specifically, let ρ(P) be the (geometric) symmetricity of
a set P of points, where ρ(P) is defined as the number of angles θ (in [0, 2π)) such that rotating P by
θ around the center of the smallest enclosing circle of P produces P itself.1 Then F is formable from I
by a deterministic algorithm, if and only if ρ(I) divides ρ(F), which suggests us to explore a randomized
solution.

This paper presents a randomized pattern formation algorithm ψPF . Algorithm ψPF is universal in
the sense that for any given target pattern F , it forms F from any initial configuration I (not only from
I such that ρ(I) divides ρ(F)). We however need the following assumptions; the number of robots n ≥ 5,
and both I and F do not contain multiplicities. The idea behind ψPF is simple and natural; first the
symmetry breaking phase realized by randomized algorithm ψSB translates I into another configuration I ′

such that ρ(I ′) = 1 with probability 1 if ρ(I) > 1, and then the second phase invokes the (deterministic)
pattern formation algorithm ψCWM in [5], which forms F from any initial configuration I ′ such that
ρ(I ′) = 1.2 Since randomization is a traditional tool to break symmetry, one might claim that ψPF is
trivial. It is not the case at all, mainly because our robots are asynchronous.

∗Faculty of Information Science and Electrical Engineering, Kyushu University, Japan. Email: yamauchi@inf.kyushu-
u.ac.jp

†Faculty of Information Science and Electrical Engineering, Kyushu University, Japan. Email: mak@inf.kyushu-u.ac.jp
1That is, P is rotational symmetry of order ρ(P).
2Of course we can also use the pattern formation algorithm in [2] since it keeps the terminal agreement of ψSB (i.e., the

leader), during the formation.

1

2 System model

Let R = {r1, r2, . . . , rn} be a set of anonymous robots in a two-dimensional Euclidean plane. Each robot
ri is a point and does not have any identifier, but we use ri just for description.

Each robot repeats a Look-Compute-Move cycle, where it obtains the positions of other robots (in
Look phase), computes the curve to a next position with a pattern formation algorithm (in Compute
phase), and moves along the curve (in Move phase). We assume that the execution of each cycle ends
in finite time. We assume discrete time 0, 1, . . ., and introduce three types of asynchrony. In the fully-
synchronous (FSYNC) model, robots execute Look-Compute-Move cycles synchronously at each time
instance. In the semi-synchronous (SSYNC) model, once activated, robots execute Look-Compute-Move
cycles synchronously. We do not make any assumption on synchrony for the asynchronous (ASYNC)
model.

A configuration is a set of positions of all robots at a given time. 3 Let pi(t) (in the global coordinate
system Z0) be the position of ri (ri ∈ R) at time t (t ≥ 0). P (t) = {p1(t), p2(t), . . . , pn(t)} is a
configuration of robots at time t. The robots initially occupy distinct locations, i.e., |P (0)| = n.

The robots do not agree on the coordinate system, and each robot ri has its own x-y local coordinate
system denoted by Zi(t) such that the origin of Zi(t) is its current position.4 We assume each local
coordinate system is right-handed, and it has an arbitrary unit distance. For a set of points P (in Z0),
we denote by Zi(t)[P] the positions of p ∈ P observed in Zi(t).

An algorithm is a function, say ψ, that returns a curve to the next location in the two-dimensional
Euclidean plane when given a set of positions. Each robot has an independent private source of ran-
domness and an algorithm can use it to generate a random rational number. A robot is oblivious in the
sense that it does not remember past cycles. Hence, ψ uses only the observation in the Look phase of
the current cycle.

In each Move phase, each robot moves at least δ > 0 (in the global coordinate system) along the
computed curve, or if the length of the curve is smaller than δ, the robot stops at the destination.
However, after δ, a robot stops at an arbitrary point of the curve. All robots do not know this minimum
moving distance δ. During movement, a robot always proceeds along the computed curve without stopping
temporarily. We call this assumption strict progress property.

An execution is a sequence of configurations, P (0), P (1), P (2), The execution is not uniquely
determined even when it starts from a fixed initial configuration. Rather, there are many possible
executions depending on the activation schedule of robots, execution of phases, and movement of robots.
The adversary can choose the activation schedule, execution of phases, and how the robots move and
stop on the curve. We assume that the adversary knows the algorithm, but does not know any random
number generated at each robot before it is generated. Once a robot generates a random number, the
adversary can use it to control all robots.
Pattern Formation. A target pattern F is given to every robot ri as a set of points Z0[F] = {Z0[p]|p ∈
F}. We assume that |Z0[F]| = n. In the following, as long as it is clear from the context, we identify
p ∈ F with Z0[p] and write, for example, “F is given to ri” instead of “Z0[F] is given to ri.” It is enough
emphasizing that F is not given to a robot in terms of its local coordinate system.

Let T be a set of all coordinate systems, which can be identified with the set of all transformations,
rotations, uniform scalings, and their combinations. Let Pn be the set of all patterns of n points. For
any P, P ′ ∈ Pn, P is similar to P ′, if there exists Z ∈ T such that Z[P] = P ′, denoted by P ' P ′.

We say that algorithm ψ forms pattern F ∈ Pn from an initial configuration I, if for any execution
P (0)(= I), P (1), P (2), . . ., there exists a time instance t such that P (t′) ' F for all t′ ≥ t.

3In the ASYNC model, when no robot observes a configuration, the configuration does not affect the behavior of any
robots. Hence, we consider the sequence of configurations, in each of which at least one robot executes a Look phase. In
other words, without loss of generality, we consider discrete time 1, 2,

4During a Move phase, we assume that the origin of the local coordinate system of robot ri is fixed to the position where
the movement starts, and when the Move phase finishes, the origin is the current position of ri.

2

For any P ∈ Pn, let C(P) be the smallest enclosing circle of P , and c(P) be the center of C(P).
Formally, the symmetricity ρ(P) of P is defined by

ρ(P) =
{

1 if c(P) ∈ P,
|{Z ∈ T : P = Z[P]}| otherwise.

We can also define ρ(P) in the following way [6]: P can be divided into regular k-gons centered at c(P),
and ρ(P) is the maximum of such k. Here, any point is a regular 1-gon with an arbitrary center, and any
pair of points {p, q} is a regular 2-gon with its center (p+ q)/2.

For any configuration P (c(P) 6∈ P), let P1, P2, . . . , Pn/ρ(P) be a decomposition of P into the above
mentioned regular ρ(P)-gons centered at c(P). Yamashita and Suzuki [7] showed that even when each
robot observes P in its local coordinate system, all robots can agree on the order of Pi’s such that the
distance of the points in Pi from c(P) is no greater than the distance of the points in Pi+1 from c(P),
and each robot is conscious of the group Pi it belongs to. We call the decomposition P1, P2, . . . , Pn/ρ(P)

ordered by this condition the regular ρ(P)-decomposition of P .
A point on the circumference of C(P) is said to be “on circle C(P)” and “the interior of C(P)” (“the

exterior”, respectively) does not include the circumference. We denote the interior (exterior, respectively)
of C(P) by Int(C(P)) (Ext(C(P))). We denote the radius of C(P) by r(P). Given two points p and p′

on C(P), we denote the arc from p to p′ in the clockwise direction by arc(p, p′). When it is clear from
the context, we also denote the length of arc(p, p′) by arc(p, p′). The largest empty circle L(P) of P is
the largest circle centered at c(P) such that there is no robot in its interior, hence there is at least one
robot on its circumference.
Algorithm with termination agreement. A robot is static when it is not in a Move phase, i.e., in a
Look phase or a Compute phase, or not executing a cycle. A configuration is static if all robots are static.
Because robots in the ASYNC model cannot recognize static configurations, we further define stationary
configurations. A configuration P is stationary for an algorithm ψ, if in any execution starting from P ,
configuration does not change.

We say algorithm ψ guarantees termination agreement if in any execution P (0), P (1), . . . of ψ, there
exists a time instance t such that P (t) is a stationary configuration, in P (t′) (t′ ≥ t), ψ outputs ∅ at
any robot, and all robots know the fact. Specifically, ψ(Z ′[P (t′)]) = ∅ in any local coordinate system Z ′.
This property is useful when we compose multiple algorithms to complete a task.

3 Randomized pattern formation algorithm

The idea of the proposed universal pattern formation algorithm is to translate a given initial configuration
I with ρ(I) > 1 into a configuration I ′ with ρ(I ′) = 1 with probability 1, and after that the robots start
the execution of a pattern formation algorithm. We formally define the problem.

Definition 1 The symmetricity breaking problem is to change a given initial configuration I into a
stationary configuration I ′ with ρ(I ′) = 1.

In Section 3.1, we present a randomized symmetricity breaking algorithm ψSB with termination
agreement. In the following, we assume n ≥ 5 and I and F do not contain any multiplicities. Additionally,
we assume that for a given initial configuration I, no robot occupies c(I), i.e., c(I) ∩ I = ∅.5 Due to the
page limitation, we omit the pseudo code of ψSB .

In Section 3.2, we present a randomized universal pattern formation algorithm ψPF , that uses ψSB

and a pattern formation algorithm ψCWM [5] with slight modification.

5If there is a robot on c(I), we move the robot by some small distance from c(I) to satisfy the conditions of the terminal
configuration of ψSB .

3

r0

r1

r2

r3

r4

r5

r6

r7

C1

C0

(a) Random movement

r0

r1

r2

r3

r4

r5

r6

r7

C1

C0

(b) Selected robots pro-
ceed

r1

r2

r3

r4

r6

r7

r0

r5

C1

C0

(c) Following robot pro-
ceeds

r1

r3

r4

r6

r7

r0

r5

C1

C0

r2

(d) Single leader is selected

Figure 1: Random selection

3.1 Randomized symmetricity breaking algorithm ψSB

In the proposed algorithm ψSB , robots elect a single leader that occupies a point nearest to the center
of the smallest enclosing circle. Clearly, the symmetricity of such configuration is one.

We use a sequence of circles to show the progress of ψSB . In configuration P , let Ci(P) be the circle
centered at c(P) with radius r(P)/2i. Hence, C0(P) = C(P). We denote the radius of Ci(P) by γi. We
call the infinite set of circles C0(P), C1(P), . . . the set of binary circles. Because ψSB keeps the smallest
enclosing circle of robots unchanged during any execution, we use Ci instead of Ci(P). We call Ci the
front circle if Ci is the largest binary circle in L(P) including the circumference of L(P), and we call
Ci−1 the backward circle. We denote the number of robots in Ci and on Ci by ni. Hence, if the current
front circle Ci is the largest empty circle, ni is the number of robots on Ci, otherwise it is smaller than
the number of robots on Ci.

Recall that all local coordinate systems are right handed. Hence, all robots agree on the clockwise
direction on each binary circle. For Ci (i ≥ 0) and a robot r on Ci, we call the next robot on Ci in
its clockwise direction predecessor, denoted by pre(r), and the one in the counter-clockwise direction
successor, denoted by suc(r). When there are only two robots r and r′ on Ci, pre(r) = suc(r) = r′. We
say r is neighboring to r′ if r′ = pre(r) or r′ = suc(r). For example, in Fig. 1(a), pre(r0) is r1, suc(r0) is
r7, and r1 and r7 are neighbors of r0.

During an execution of the proposed algorithm, robot r moves to an inner binary circle along a half-
line starting from the center of the smallest enclosing circle and passing r’s current position. We call this
half-line the radial track of r. When r moves from a point on Ci to Ci+1 along its radial track, we say r
proceeds to Ci+1.

Algorithm ψSB first sends each robot to its inner nearest binary circle along its radial track if the
robot is not on any binary circle. Hence, the current front circle is also the largest empty circle.

Then, ψSB probabilistically selects at least one robot on the current front circle Ci, and make them
proceed to Ci+1. These selected robots repeat the selection on Ci+1. By repeating this, the number of
robots on a current front circle reaches 1 with probability 1. The single robot on the front circle is called
the leader.

We will show the detailed selection procedure on each front circle. We have two cases depending on
the positions of robots when the selection of a front circle Ci starts. One is the regular polygon case where
robots on Ci form a regular ni-gon, and the other is the non-regular polygon case where ni robots on Ci

form a non-regular polygon.
Selection in the regular polygon case. When robots on the current front circle Ci form a regular
ni-gon (i.e., for all robot r on Ci, arc(suc(r), r) = 2πγi/ni), it is difficult to select some of the robots.
Especially, when the symmetricity of the current configuration is ni, it is impossible to deterministically
select some of the robots. In a regular ni-gon case, ψSB makes these robots randomly circulate on Ci.

4

Then, a robot that do not catch up with its predecessor and caught by its successor is selected and
proceeds to Ci+1.

First, if robot r on Ci finds that the robots on Ci form a regular ni-gon, r randomly selects “stop” or
“move.” If it selects “move,” it generates a random number v in (0..1], and moves v(1/4)(2πγi/ni) along
Ci in the clockwise direction (Fig. 1(a)). This procedure ensures that the regular ni-gon is broken with
probability 1. When r finds that the regular ni-gon is broken, r stops.

Uniform moving direction ensures the following invariants:

1. Once r finds that it is caught by suc(r), i.e., the following inequality holds, r never leave from
suc(r).

Caught(r) = arc(suc(r), r) ≤ 2πγi/ni

2. Once r finds that it missed pre(r), i.e., the following inequality holds, r never catch up with pre(r).

Missing(r) = 2πγi/ni < arc(r, pre(r)) ≤ (5/4)(2πγi/ni)

We say robot r is selected if it finds that the following predicate holds.

Selected(r) = Caught(r) ∧Missing(r)

Then, a selected robot proceeds to Ci+1 (Fig. 1(b)). Since no two neighboring robots satisfy Selected
at a same time, while Selected(r) holds at r, suc(r) and pre(r) wait for r to proceed to C1. Even when
ni = 2, when they are not in the symmetric position, just one of the two robots becomes selected. Note
that other robots cannot check whether r is selected or not in the ASYNC model because they do not
know whether r has observed the configuration and found that Selected(r) holds.

After some selected robots proceed to Ci+1, other robots might be still moving on Ci and may become
selected later. However, in the ASYNC model, no robot can determine which robot is moving on Ci.
For the robots on Ci+1 to ensure that no more robot will join Ci+1, ψSB makes some of the non-selected
robots on Ci proceed to Ci+1. The robots on Ci are classified into three types, rejected, following, and
undefined.

The predecessor and the successor of a selected robot are classified into rejected, and each rejected
robot stays on Ci. All robots can check whether robot r is rejected or not with the following condition:

Rejected(r) =
(arc(r, pre(r)) > (5/4)(2πγi/ni)) ∨ (arc(suc(r), r) > (5/4)(2πγi/ni)).

Non-rejected robot r becomes following if r finds that at least one of the following three conditions
hold:

FollowPre(r) = ¬Rejected(r) ∧Rejected(pre(r)) ∧ Caught(r)
FollowSuc(r) = ¬Rejected(r) ∧Rejected(suc(r)) ∧Missing(r)
FollowBoth(r) = ¬Rejected(r) ∧Rejected(pre(r)) ∧Rejected(suc(r)).

Hence, we have

Following(r) = FollowPre(r) ∨ FollowSuc(r) ∨ FollowBoth(r).

Intuitively, the predecessor and the successor of a following robot never become selected nor following.
Algorithm ψSB makes each following robot proceed to Ci+1 (Fig. 1(c)).

Finally, robots on Ci that are neither selected, rejected nor following are classified into undefined.
Note thatRejected(r) implies ¬Selected(r) and ¬Following(r). Additionally, Selected(r) and Following(r)

may hold at a same time.

5

r1

r3

r4

r6

r7

r0

r5

C1

C0

r2

(a) Embedding on C0

r1

r3

r4

r7

r0

r2
r5

C1

C0

r6

(b) Terminal configuration

Figure 2: Stopping rejected robots when the leader is first generated on C2. (a) The leader embeds a
regular octagon on C0 by its position on C4. (b) After all robots C0 have reached the corners of embedded
polygons, rL proceeds to C5.

Eventually, all robots on Ci recognize their classification from selected, following, and rejected. We
can show that once a robot finds its classification, it never changes. Then, selected robots and following
robots leave Ci and only rejected robots remain on C0. During the random selection phase, ni does
not change since robots moves in Int(Ci) ∪ Ci. Hence, all robots can check whether a robot r on Ci is
rejected or not with Rejected(r), and the robots on Ci+1 agree that no more robot proceeds to Ci+1.
These robots start a new (random) selection on Ci+1.

Consider the case where i = 0. When n = 5, the length of the random movement is largest, and each
robot circulates at most π/10. Hence, no two robots form a diameter. Additionally, ψSB guarantees that
no two neighboring robots leave C0. Hence, ψSB keeps C0 during the random selection. In the same way,
when n ≥ 5, the random selection does not change C0.
Selection for non-regular polygon case. When robots on the current front circle Ci does not form a
regular ni-gon, ψSB basically follows the random selection. Thus, robots do not circulate on Ci randomly,
but check their classification with the three conditions.

Because robots do not form a regular ni-gon on Ci, there exists a robot r on Ci that satisfies
arc(suc(r), r) < 2πγi/ni. However, there exists many positions of ni robots on Ci where all such
robot r are also rejected, i.e., arc(r, pre(r)) > (5/4)(2πγi/ni), from which no robot becomes selected
nor following.

In this case, we add one more condition NRSelected(r). We say r satisfies NRSelected(r) when r
is on the front circle Ci, all robots on Ci do not satisfy Selected nor Following, and arc(r, pre(r)) >
(5/4)(2πγi/ni) and arc(suc(r), r) ≤ 2πγi/ni hold. We note that no two neighboring robots satisfies
NRSelected. Robot r proceeds half way to Ci+1, and waits for all robots satisfying NRSelected to
proceed.6 Robots in between Ci and Ci+1 can reconstruct the non-regular polygon on Ci with their
radial tracks and after all robots satisfied NRSelected leaves Ci, the robots in Ext(Ci+1) ∩ Int(Ci)
proceeds to Ci+1. Note that during a random selection, no robot on Ci satisfies NRSelected.

We consider one more exception case for initial configurations where robots form a non-regular polygon
on C0. In this case, each robot r first examines NRSelected(r). If proceeding all robots satisfying
NRSelected changes C0, the successor of such robot proceeds to C1 instead of them. Assume that r is
one of such robots satisfying NRSelected(r). Because C0 is broken after all robots satisfying NRSelected
proceeds, in the initial configuration arc(r, pre(r)) = πγ0. Otherwise, there exists a rejected robot that
does not satisfy NRSelected in the initial configuration. Hence, proceeding suc(r) does not change C0.

After that, robots on Ci determine their classification by using Rejected, Following, and following
robots proceed to Ci+1. Eventually all following robots leave Ci, and only rejected robots remain on Ci.

6Otherwise, r cannot distinguish how many robots satisfied NRSelected.

6

Termination agreement. By repeating the above procedure on each binary circle, with probability 1,
only one robot reaches the inner most binary circle, with all other robots rejected (Fig. 1(d)). We say this
robot is selected as a single leader. However, rejected robots may be still moving on the binary circles.
Thus, the leader robot starts a new phase to stop all rejected robots, so that the terminal configuration
is stationary.

Let rL be the single leader and Ci be the front circle for R \ {rL} (this implies the leader is selected
during the random selection on Ci). Intuitively, rL checks the termination of Ci−j (i−j ≥ 0) when rL is on
Ci+j+2. Given a current observation, all robots on Ci−j are expected to move at most (1/4)(2πγi−j/ni−j)
from corners of some regular ni−j-gon. Hence, there exists an embedding of regular ni−j-gon onto Ci−j so
that its corners does not overlap these expected tracks. If there is no such embedding, then randomized
selection has not been executed on Ci−j , and rL embeds an arbitrary regular ni−j-gon on Ci−j . Robot
rL shows the embedding by its position on Ci+j+2, i.e., rL’s radial track is the perpendicular bisector of
an edge of the regular ni−j-gon (Fig. 2(a)).

Then, ψSB makes robots on Ci−j occupy distinct corners of the regular ni−j-gon. The target points
of these robots are determined by the clockwise matching algorithm [4]. We restrict the matching edges
before we compute the clockwise matching. Specifically, we use arcs on Ci−j instead of direct edges,
and direction of each matching edge (from a robot to its destination position) is always in the clockwise
direction. Note that under this restriction, the clockwise matching algorithm works correctly on Ci−j .
The robots on Ci−j has to start a new movement with fixed target positions. Because robots can agree
the clockwise matching irrespective of their local coordinate systems, rL can check whether robots on
Ci−j finish the random movement.

Then, rL calculates its next position on Ci+j+3 in the same way for robots on Ci−j−1, and moves to
that point.

The leader finishes checking all binary circles on C2i+2, then it proceeds to C2i+3 to show the termi-
nation of ψSB (See Fig. 2(b)). However, ψSB carefully moves robots on C0 to keep the smallest enclosing
circle. When there are just two robots on C0, then the random selection has not been executed on C0,
and rL does not check the embedding. When there are more than three robots, there is at least one robot
that can move toward its destination with keeping the smallest enclosing circle, and ψSB first moves such
a robot.

For any configuration P satisfying the following two conditions, ψSB outputs ∅ at any robot irre-
spective of its local coordinate system. Hence, such configuration P is a stationary configuration of
ψSB .

1. P contains a single leader on the front circle, denoted by Cb.

2. All other robots are in Ext(Ck) ∪ Ck, satisfying b ≥ 2k + 3.

Clearly, ψSB guarantees terminal agreement among all robots.
Algorithm ψSB guarantees the reachability to a terminal configuration with probability 1, and the

terminal configuration is deterministically checkable by any robots in its local coordinate system.

3.2 Randomized pattern formation algorithm ψPF

We present a randomized pattern formation algorithm ψPF . Algorithm ψPF executes ψSB when the
configuration does not satisfy the two conditions of the terminal configuration of ψSB . When the current
configuration satisfies the two terminal conditions of ψSB , ψPF starts a pattern formation phase.

Fujinaga et al. proposed a pattern formation algorithm ψCWM in the ASYNC model, which uses the
clockwise minimum weight perfect matching between the robots and an embedded target pattern [5]. The
embedding of the target pattern is determined by the robots on the largest empty circle. Additionally,
when there is a single robot on the largest empty circle, ψCWM keeps this robot the nearest robot to

7

the center of the smallest enclosing circle during any execution. We use this property to separate the
configurations that appears executions of ψSB and those of ψCWM .

Algorithm ψPF uses ψCWM after ψSB terminates, however, to compose ψSB and ψCWM , we modify
the terminal configuration of ψSB to keep the leader showing the termination of ψSB . Let P be a given
terminal configuration of ψSB , and the single leader be rL on the front circle CL. Given a target pattern
F , let F1, F2, . . . , Fn/ρ(F) be the regular ρ(F)-decomposition of F . Then, ψCWM embeds F so that f ∈ F1

lies on the radial track of rL, and r(F) = r(P). When c(F) ∈ F , ψCWM also perturbs this target point.
Let F ′ be this embedding.

Then, ψPF first moves rL as follows: Let L(F ′) be the largest empty circle of F ′ and `(F ′) be its
radius. Let k (k > 0) be an integer such that Ck be the largest binary circle in L(F ′). If C2k+3 is in CL,
rL proceeds to C2k+3. When C2k+3 is in Ext(CL), rL does not move. Then, ψPF starts the execution
of ψCWM . After R \ {rL} reach their destination positions, rL moves to its target point along its radial
track.

Finally, we obtain the followin theorem.

Theorem 2 For n ≥ 5 robots, algorithm ψPF forms any target pattern from any initial configuration
with probability 1.

4 Conclusion

We present a randomized pattern formation algorithm for oblivious robots in the ASYNC model. The
proposed algorithm consists of a randomized symmetricity breaking algorithm and a pattern formation
algorithm proposed by Fujinaga et al. [5]. One of our future directions is to extend our results to the
robots with limited visibility, where oblivious robots easily increase the symmetricity [8].

References

[1] Y. Dieudonné, F. Petit, and V. Villain, Leader election problem versus pattern formation problem.
Proc. of DISC 2010, pp.267–281 (2010).

[2] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer, Arbitrary pattern formation by asyn-
chronous, anonymous, oblivious robots, Theor. Comput. Sci., 407, pp.412–447 (2008).

[3] N. Fujinaga, H. Ono, S. Kijima, and M. Yamashita, Pattern formation through optimum matching
by oblivious CORDA robots, Proc. of OPODIS 2010, pp.1–15 (2010).

[4] N. Fujinaga, Y. Yamauchi, S. Kijima, and M. Yamashita, Asynchronous pattern formation by anony-
mous oblivious mobile robots, Proc. of DISC 2012, pp.312–325 (2012).

[5] I. Suzuki, and M. Yamashita, Distributed anonymous mobile robots: Formation of geometric pat-
terns, SIAM J. on Comput., 28(4), pp.1347–1363 (1999).

[6] M. Yamashita, and I. Suzuki, Characterizing geometric patterns formable by oblivious anonymous
mobile robots, Theor. Comput. Sci, 411, pp.2433–2453 (2010).

[7] Y. Yamauchi, and M. Yamashita, Pattern formation by mobile robots with limited visibility, Proc.
of SIROCCO 2013, pp.201-212, (2013).

8

