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Abstract. Communication complexity theory is a powerful tool to bound
time complexity lower bounds of distributed algorithms for global prob-
lems such as minimum spanning tree (MST) and shortest path. While
it often leads the nearly-tight lower bounds for many problems, poly-
logarithmic complexity gaps still lies between the currently best upper
and lower bounds. In this paper, we propose a new approach for fill-
ing the gaps. Using this approach, we achieve tighter deterministic lower
bounds for MST and shortest path. Specifically, for those problems, we
show the deterministice Ω(

√
n)-round lower bound for graphs with O(nϵ)

hop-count diameter, and the deterministice Ω(
√

n/ logn) lower bound
for graphs with O(logn) hop-count diameter. The main idea of our ap-
proach is to introduce a new function we call permutation identity and
utilize its two-party communication complexity lower bound.

1 Introduction

In distributed computing theory, many graph problems are naturally treated as
problems in networks, where each vertex represents a computing entity and each
edge does a communication link between two nodes. The theory of distributed
graph algorithms has been developed so far for efficient in-network computation
of graph problems. A crucial factor of distributed graph algorithms is locality.
Local algorithms require each node to compute its output only by the interaction
to the nodes within a bounded distance smaller than the diameter of the network.
In other words, local algorithms must terminate within o(D) rounds, where D is
the hop-count diameter of the network. There are a number of problems allowing
local solutions: Maximal matchings, colorings, independent sets, and so on. On
the other hand, some of other graph problems (e.g., minimum spanning tree
shortest path, minimum cut) are known to have no local solution. They are
called global problems. By the definition, the (worst-case) run of any algorithm
for global problems inherently takes Ω(D) rounds.

For both local and global problems, the time complexity analysis for dis-
tributed algorithms (i.e., distributed complexity theory) are one of the important
topics in distributed algorithms. In this paper, we focus on the distributed com-
plexity of two well-known global problems: Minimum spanning tree (MST) and
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shortest s-t path. As we stated above, these problems have trivial Ω(D)-round
lower bounds. If the communication bandwidth of each link is not bounded, ev-
ery global problem has an optimal-time algorithm with O(D) rounds: A process
aggregates all the information of the network, and computes the result locally.
However the assumption of so rich bandwidth is far from real systems, and thus
the challenge of global problems is to solve them in the environment with lim-
ited bandwidth. Theoretically, such environments are called as the CONGEST
model, where processes work under the round-based synchrony, and each link
can transfer O(log n)-bit messages per one round.

A seminal results about the lower bounds for global problems is the one by
Das Sarma et al. [1], which exhibits that many problems, including MST and
shortest s-t path, are more expensive tasks. Precisely, it shows thatΩ(

√
n/ log n+

D)-round lower bounds hold for many global problems even D is small (i.e.,
D = O(log n)). The core of this result is a general framework to obtain the
lower bounds based on the reduction from two-party communication complex-
ity by Yao [14]. Two-party communication complexity is a theory to reveal the
amount of communication to compute a global function whose inputs are dis-
tributed among two players. The reduction framework in [1] induces the hardness
of MST and shortest s-t path from the two-party communication complexity of
set-disjointness function. While the framework is a powerful tool to bound the
time compelxity of global problems, all the bounds led by that approach have a
form of Ω(f(n)/(m log n)), where f(n) is the amount of information inherently
exchanged among the networks to solve the target problem, and m is the num-
ber of links where the information must be transferred, and logn factor is the
bandwidth of each link (that is, m log n is the amount of information transmit-
table within a round). On the other hand, these lower bounds does not strictly
match the known corresponding upper bounds, which typically has the form
of O(f(n)polylog(n)/m). That is, for many global problems, the currently best
bounds still have (poly)logarithmic gaps.

The primary objective of this paper is to fill those gaps. For that goal, we
propose a new two-party function whose deterministic communication complex-
ity is slightly more expensive than set-disjointness, called permutation identity,
and new reductions using it on the top of the framework by Das Sarma et al. [1].
Our contribution is to give tighter deterministic lower bounds for MST and
shortest s-t path. Specifically, for those problems, we show the deterministice
Ω(

√
n)-round lower bound for graphs with O(nϵ) hop-count diameter, and the

deterministice Ω(
√

n/ log n) lower bound for graphs with O(log n) hop-count di-
ameter. The comparision with the prior work are shown in Table 1. As far as we
consider the complexity of deterministic and exact computation, our bound beats
the currently best ones. It also should be noted that the MST problem is almost
closing the gap because the currently best upper bound is O(

√
n log∗ n + D)

rounds [3].
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paper bound problem comments

Garay et al. [3] O(
√
n log∗ n+D) MST deterministic

Nanongkai [10] O(
√
nD1/4 +D) SP

(1 + o(1))-approximation

single-source SP

Das Sarma et al.[1] Ω(
√

n
logn

) SP,MST

randomized
α(n)-approximation

D = O(nϵ) (ϵ < 1/2)

Das Sarma et al.[1] Ω(
√

n
logn

) SP, MST

randomized
α(n)-approximation

(D = Θ(logn))

This paper Ω(
√
n) SP, MST

deterministic
D = O(nϵ) (ϵ < 1/2)

This paper Ω(
√

n
logn

) SP, MST
deterministic
D = O(logn))

Table 1: Comparison with the prior work. SP (resp. MST) means shortest s-t
path (res. minimum spanning tree).

2 Related Work

The paper by Das Sarma et al. [1] is the first one explicitly considering the dis-
tributed verification problem, which has given a general framework to lead lower
bounds and approximation hardness for a vast class of problems. It is used in sev-
eral following papers to obtain the complexity for a number of graph problems:
Weighted/unweighted diameter and all-pair shortest paths [5, 7, 8, 12], minimum
cuts [4, 10], distance sketches [7], weighted single-source shortest paths [7, 10],
fast random walks [11], and so on.

While the framework by Das Sarma et al. [1] pointed out a general rela-
tionship interconnecting the communication complexity theory and distributed
complexity theory, the construction of worst-case instances used in the frame-
work is much inspired by the earlier papers leading the time lower bound for the
distributed MST construction [2, 9, 13].

3 Preliminaries

3.1 Round-Based Distributed Systems

A distributed system consists of n nodes interconnected with communication
links. We model it by a weighted graph G = (V,E,w), where is the set of nodes,
E ⊆ V × V is the set of links (edges), and w : E → R is a weight function. The
hop-count diameter of G (i.e., the diameter of the unweighted graph (V,E)) is
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denoted by D. Executions of the system proceed with a sequence of consecutive
rounds. In each round, each process sends a (possibly different) message to each
neighbor, and within the round, all messages are received. After receiving the
messages, the process performs local computation. Throughout this paper, we
restrict the number of bits transmittable through any communication link per
one round to O(log n) bits. This is known as the CONGEST model.

3.2 Distributed MST and Single-source shortest paths

In this paper we consider two popular graph problems: Minimum spanning tree
(MST) and shortest s-t path. The distributed minimum spanning tree problem
requires the system to find the MST of the (weighted) network. After the com-
putation by distributed MST algorithms, each node must identify the incident
edges constituting the MST. In the shortest s-t path problem, the algorithm
takes two input nodes s and t, and computes a shortest path between them. Af-
ter the computation, each node on the computed path must identify the incident
edge toward s and the distance from s.

3.3 Two-Party Communication Complexity

Communication complexity, which is first introduced by Yao [14], reveals the
amount of communication to compute a global function whose inputs are dis-
tributed in the network. The most successful scenario in communication com-
plexity is two-party communication complexity, where two players, called Alice
and Bob, respectively have their inputs x, y ∈ U (where U is the domain of
inputs), and compute a global function f : U ×U → {0, 1}. The communication
complexity of a two-party protocol is the number of one-bit messages exchanged
by the protocol for the worst case input (if the protocol is randomized, it is
defined as the expected number of bits exchanged for the worst-case input). One
of the most popular functions in two-party communication complexity is set-
disjointness, which is the function over two k-bit 0-1 vectors x, y ∈ 0, 1k and
return value one if and only if there exists a common position i ∈ [0, k− 1] such
that i-th bits of x and y are one.

While the known best lower bounds for MST and shortest s-t path is obtained
by using the communication complexity of set-disjointness, it does not suffice to
have a stronger bound we will prove. Thus in this paper, we introduce a new
function called permutation identity, which is defined as follows:

Definition 1. Let πA, πB : [1, N ] → [1, N ] be permutations over [1, N ]. the
permutation identity function identN is defined as follows:

identN (πA, πB) =

{
1 if ∀i ∈ [1, N ] : πA ◦ πB(i) = i,
0 otherwise,

where πA ◦ πB means the composition of πA and πB, that is, πA ◦ πB(i) =
πA(πB(i)).
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Theorem 1. The deterministic communication complexity of two-party permu-
tation identity over [1, N ] is Ω(n logN) bits.

We also show a fundamental lemma for the permutation identity function,
which is used in the following sections.

Lemma 1. Let πA and πB be permutations over [1, N ]. If πA ◦ πB is not iden-
tical, there exists i ∈ [1, N ] such that πA ◦ πB(i) < i holds.

For lack of space, the proof for the theorem and lemma above are presented
in the appendix.

4 General Framework for the Reduction

The proof of our lower bounds basically follows the framework by Das Sarma et
al. [1]. The core of this framework is the reduction from two-party computation
via a hard instance for distributed computation. In this section, we introduce
the framework which is sligtly modified for our proof.

4.1 Graph Construction

The graph we construct is denoted by G(N,M), where N and M are design
parameters of the graph. For simplicity of the argument, throughout the paper,
we assume that M + 1 is a power of 2, i.e., M = 2p − 1 for some nonnegative
integer p. Note that the assumption is not essential and it is not difficult to
remove it. The graph is built by the following steps:

1. Prepare N paths of length M , each of which is denoted by Pi (1 ≤ i ≤ N).
The nodes constituting Pi are identified by v0i , v

1
i , · · · , vMi from left to right.

2. Add edges (v0i , v
1
j ) and (v

(M−1)
i , vMj ) for any i, j ∈ [1, N ].

3. Add edges (v0i , v
0
(i+1)) and (vMi , vM(i+1)) for any i ∈ [1, N − 1].

4. Construct a complete binary tree T (M) with M + 1 leaf. where each leave
is labeled by u0, u1, · · · , uM from left to right.

5. Add edges (ui, vij) for any i ∈ [0,M ] and j ∈ [1, N ].

The weight of each edge depends on concrete reductions, which is determined
later. Note that the number n of nodes in G(N,M) is Θ(NM), and its diameter
is D = O(log n). We also define the sets of nodes A = {u0} ∪ {v0i , v1i |i ∈ [1, N ]}
and B = {uM} ∪ {v(M−1)

i , vMi |i ∈ [1, N ]}. The whole construction is illustrated
in Figure 1. For this graph, we can show the following theorem.

Theorem 2 (Das Sarma et al. [1]). Let A be any algorithm running on the
graph G(N,M) with an arbitrary edge-weight function. Then there exists a two-
party protocol satisfying the following three properties:

– At the beginning of the protocol, Alice (resp. Bob) knows the whole topological
information of G(N,M) except for the subgraph induced by B (resp. A),
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– after the run of the protocol, Alice and Bob output the internal states of the
processes in A and B at round (M−3)/2 in the execution of A on G(N,M),
respectively, and

– the protocol consumes at most O(M(logMN)2)-bit communication.

While the graph used in this paper is a slightly modified version of the original
construction in [1], the theorem above is proved In the almost same way. So we
just quote it without the proof.

4.2 Networked Two-Party Computation

To obtain the lower bounds for distributed algorithms, we uses a variation of the
two-party computation problem in distributed settings. We assume that Alice
and Bob are placed at two nodes in a network of n nodes, and have inputs x ∈ U
and y ∈ U for two-party function f : U × U → {0, 1}, respectively. It is also
assumed that each node in the network (including ones other than Alice and Bob)
knows everything (i.e., the complete knowledge of the network topology) except
for the inputs held by Alice and Bob. Then all nodes must work cooperatively
for outputting the value of f(x, y) as fast as possible. In what follows, we call
this problem setting the networked two-party computation (and the networked
permutation identity problem if f = identN ). Note that the measurement of the
networked two-party computation is not the amount of communication, but the
number of rounds.

Obviously the time complexity of networked two-party computation prob-
lems relies on the target function f and the topology of the network. An useful
consequence from Theorem 2 is that we can transform the communication lower
bound for any two-party computation into the time lower bound for its networked
version. In the original version by Das Sarma et al. [1], the transformation from
two-party set-disjointness is considered. Here we problem the similar fact from
two-party permutation identify function (the proof are in the appendix):

Theorem 3. Let M = N/ logN . For any deterministic algorithm A solving the
networked permutation identity over [1, N ] in G(N,M), its worst-case running
time is Ω(

√
n/ log n) rounds.

4.3 Lower bound for MST

We show the reduction from the networked permutation identity to MST. In this
reduction we construct an instance of the MST problem by virtually assigning
some weight to each edge in G(N,M) for M = N/ logN to encode an instance
(πA, πB) of permutation identity over [1, N ]. After the construction of the MST,
Alice and Bob can determine the identity of πA◦πB from the computed MST. Let
L(πA, πB) be the instance of the MST problem corresponding to the permutation
identity instance (πA, πB), which is constructed by defining edge-weight function
w as follows:
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Fig. 1: Construction of G(N,M)

1. For any i ∈ [1, N ] and j ∈ [1,M − 1], w(uj , vji ) = 100NM .
2. For any i ∈ [1, N − 1], w(v0i , v

0
i+1) = 100NM and w(vMi , vMi+1) = 100NM .

3. For any i ∈ [1, N ], w(u0, v0i ) = 2i and w(uM , vMi ) = 2i− 1.
4. For any i, j ∈ [1, N ], w(v0i , v

1
j ) = 1 if πA(j) = i. Otherwise w(v0i , v

1
j ) =

100NM . Similarly, For any i, j ∈ [1, N ], w(vM−1
i , vMj ) = 1 if πB(j) = i.

Otherwise w(vM−1
i , vMj ) = 100NM .

5. All other edges have weight one.

The construction of L(πA, πB) is illustrated in Figure 2. Let EA =
{(u0, v0i )|i ∈ [1, N ]} and EB = {(uM , vMi )|i ∈ [1, N ]}. The following lemma
is the core of the reduction.

Lemma 2. The MST of L(πA, πB) contains no edge in EA if and only if πA◦πB

is identical.

Proof. Let P ′
i be the path consisting of the nodes

v0πA(πB(i)), v
1
πB(i), v

2
πB(i), · · · , v

M−1
πB(i), v

M
i . Following the standard greedy al-

gorithm for constructing the MST, every edge with weight one is contained in
the MST. Thus, the components P ′

1, P
′
2, · · · , P ′

N and T (M) are MST fragments.
A component P ′

i is merged with T (M) by choosing either (u0, v0πA(πB(i)))

or (uM , vMi ) (all other edges merging them are too heavy (i.e., 100NM)
and never chosen as a MST edge). If πA ◦ πB is identical, πA(πB(i)) = i
holds. Thus we have w(u0, v0πA(πB(i))) = 2i and w(uM , vMi ) = 2i − 1 for any

i ∈ [1, N ]. This implies that P ′
i is merged with T (M) by edge (u0, v0πA(πB(i)))

(Figure 3). On the other hand, if πA ◦ πB is not identical, from Lemma 1,
there exists at least one i satisfying πA ◦ πB(i) < i. Then for such i we have
w(u0, v0πA(πB(i))) ≤ 2(i − 1) and w(uM , vMi ) = 2i − 1. Thus P ′

i and T (N) is

merged with edge w(u0, v0πA(πB(i))) ∈ EA (Figure 4). The lemma is proved ⊓⊔



8 H.Okawa, T. Izumi

���

���

�
�
�

�
�
�

�
�
�

����� ���

���

�
�
�

�

�

		�

�

�

	�

���

�

	�

�

�

�

�

		�

���

		�

���

���

	�

�

���

		�

�

���

�

�

		�

���

�

	�

�

�

�

�

�

�

�

�

		�

���

�

�

�

�

��������

�

�

�

�

�

�

�

�

���

�

�

��

�� � �

�� � �

�� � �

��

����

Fig. 2: An example of L(πA, πB). Every unlabeled edge has weight one. All the
edges with weight 100NM are grayed out.

Lemma 3. If an algorithm A solves the MST problem in L(πA, πB) within r
rounds, there exists an algorithm solving the networked permutation identity over
[1, N ] in G(N,M) within O(r) rounds.

Proof. At the round one and two, each node sets up the instance L(πA, πB) of the
MST problem according to the input (πA, πB). Then the system runs the MST
algorithm A. From lemma 2, no edge in EA is not included in the constructed
MST if πA ◦πB is identical. Then, after the construction of the MST, each node
v0i (i ∈ [1, N ]) sends to u0 the information that no incident edge is contained in
the MST. By this information, u0 can determine whether πA ◦ πB is identical or
not. That is, the networked permutation identity is solved in G(N,M) within
O(r) rounds. ⊓⊔

Combining Theorem 3 and Lemma 3, we have the main theorem below.

Theorem 4. Any deterministic algorithm solving the MST problem, its worst-
case running time is Ω(

√
n/ log n) rounds.

4.4 Lower Bound for Shortest s-t Path

The argument in this section is almost the same as Section 4. We construct a
graph L′(πA, πB) by fixing a weight function w for the network G(N,N logN).
The weight function w is defined as follows:

1. For any i ∈ [1, N ] and j ∈ [0,M ], w(uj , vji ) = 100NM .
2. For any i ∈ [1, N − 1], w(v0i , v

0
i+1) = 1 and w(vMi , vMi+1) = 1.
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Fig. 3: Graph L(πA, πB) when πA ◦ πB is identical.

3. For any i, j ∈ [1, N ], w(v0i , v
1
j ) = 100NM if πA(j) = i. Otherwise w(v0i , v

1
j ) =

100NM . Similarly, For any i, j ∈ [1, N ], w(vM−1
i , vMj ) = 1 if πB(j) = i.

Otherwise w(vM−1
i , vMj ) = 100NM .

4. For any i ∈ [1, N ] and j ∈ [1,M − 1], w(vji , v
j+1
i ) = 1.

5. Every edge in T (M) has weight 100NM .

We also define s = v01 and t = vMN . Then, we have the following lemma:

Lemma 4. In graph L′(πA, πB), the length of the shortest s-t path is N+M−1
if and only if πA ◦ πB is identical.

Proof. The path v01 , v
0
2 , · · · v0N , v1N , v2N , · · ·V M−1

N , vMN is the s-t path of length
N +M − 1. We first show that this is the shortest path if πA ◦ πB is identical.
Since the length of the shortest path between s and t is at most N + M − 1,
it contains no edge with weight 100NM . Thus we omit those edges. Then, if
πA ◦ πB is identical, v0i and vMi are connected by a path of length M . Thus, the
graph (where all isolated nodes in T (M) are removed) becomes a subdivision of
a ladder graph. It is not difficult to see that the shortest path between s and t
is N +M − 1 (Figure 5).

We next consider the case where πA ◦ πB is not identical. Then, from
Lemma 1, there exists i satisfying πA ◦ πB(i) < i. Then, we have an s-t
path v01 , v

0
2 , · · · v0πA(πB(i)), v

1
πB(i)), v

2
πB(i)), · · · , v

M−1
πB(i)), v

M
i , vMi+1, · · · , vMN of length

less than N +M − 1 (Figure 6). The lemma is proved ⊓⊔
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Fig. 4: Graph L(πA, πB) when πA ◦ πB is not identical.

Lemma 5. If an algorithm A solves the shortest s-t path problem in L′(πA, πB)
within r rounds, there exists an algorithm solving the networked permutation
identity over [1, N ] within O(r) rounds.

The proof is almost the same as that for Lemma 3, and thus we omit it.
Finally we obtain the following theorem.

Theorem 5. Any deterministic algorithm solving the shortest s-t path problem,
its worst-case running time is Ω(

√
n/ log n) rounds.

5 Lower bound for the graphs with O(nϵ) hop-count
diameter

For the case of larger diameter graphs, we obtain stronger bounds by slightly
modifying the framework graph G(N,M). Since the fundamental idea has been
proposed in the prior work [1], we state only the results in this paper. The
Theorem 4 and 5 are extended as follows:

Theorem 6. Any deterministic algorithm solving the MST problem or the
shortest s-t path problem, its worst-case running time is Ω(

√
n/ log n) rounds

for graphs with diamter O(log n). In addition, for graphs with diameter O(nϵ)
(0 < ϵ < 1/2), the worst-case running time is Ω(

√
n/ log n) rounds.
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Fig. 5: Example of shortest path (marked with big edges) when πA◦πB is identical

6 Concluding Remarks

In this paper, we inroduced a new function called permutation identity. By using
the seminal reduction framework by Das Sarma et al.[1], we show the determinis-

tic Ω(
√

n
logn )-round lower bounds for MST and shortest s-t path. Furtuermore,

for graph with for graphs with O(nϵ) hop-count diameter, we obtained Ω(
√
n)

lower bound, For the MST problem, this lower bound is almost closing the log-
arithmic gap because the best upper bound is O(

√
n log∗ n+D).
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A Omitted Proofs

A.1 Proof of Theorem 1

Proof. The proof of this theorem is almost the same as the well-known result for
the two-party equality function. More precisely, the proof follows the fooling-set
argument. Let f : U ×U → {0, 1} be a two-party function over input domain U .
A subset S ⊂ U×U is called a fooling set of function f if the following conditions
are satisfied for some z ∈ {0, 1}: (1) For any (x, y) ∈ U ×U , f(x, y) = z, and (2)
for any distinct inputs (x1, y1), (x2, y2) ∈ S, either f(x1, y2) ̸= z or f(x2, y1) ̸= z.
It is well-known that the deterministic communication complexity of function f is
bounded by Ω(log |S|) (the detailed argument is found in the standard textbook
of communication complexity theory [6]).

Thus it suffices to show that function identN has a fooling set S of size
2Ω(N logN). We constitute S by including all pairs (πA, πB) such that πA ◦ πB

becomes the identical mapping. Then for any (πA, πB)inS, there is no other
mapping πC such that πA ◦ πC or πC ◦ πB becomes identical. Thus the set S
clearly satisfies the conditions of fooling sets. Since the cardinarity of S is N !,
we have the communication complexity lower bound of Ω(logN !) = Ω(N logN)
bits. The theorem is proved. ⊓⊔

A.2 Proof of Lemma 1

Proof. Suppose for contradiction that πA ◦πB is not identical but πA ◦πB(i) ≥ i
holds for any i ∈ [1, N ]. Then, clearly we have πA ◦ πB(N) = N , and thus we
have πA ◦ πB(N − 1) = N − 1, πA ◦ πB(N − 2) = N − 2, · · · , πA ◦ πB(0) = 0.
Consequently πA ◦ πB becomes identical. It is a contradiction. ⊓⊔

A.3 Proof of Theorem 3

Proof. Since M = N/ logN , we have n = Θ(N · N/ logN) = Θ(N2/ logN).
Thus we also have Θ(logN) = Θ(log n) and thus, n log n = Θ(N2) holds. It im-
plies N =

√
n log n and M =

√
n/ log n. To prove the lemma, it suffices to show

that the running time of A in G(N,M) is Ω(M) rounds. Suppose for contra-
diction that A terminates within o(M) rounds. Consider the network G(N,M)
where Alice and Bob are respectively placed at u0 and uM . Then, following The-
orem 2, we can construct a two-party permutation identity protocol over [1, N ]
by simulating the execution of A in G(N,M). That is, Alice and Bob (in the
two-party computation) first set up the initial configuration of A by installing
their own inputs x and y and run the simulation. After the simulation, they
output the computation result identN (x, y) as the result of the two-party com-
putation. This two-party protocol consumes o(M(logN)2) = o(N logN) bits. It
contradicts Theorem 1. ⊓⊔


