
Random Address Permute-Shift Technique for the Shared Memory on GPUs

Koji Nakano�, Susumu Matsumae�, and Yasuaki Ito�

�Department of Information Engineering
Hiroshima University

Kagamiyama 1-4-1, Higashi Hiroshima, 739-8527 Japan

�Department of Information Science
Saga University

Honjo 1, Saga, 840-8502 Japan

Abstract—The Discrete Memory Machine (DMM) is a the-
oretical parallel computing model that captures the essence
of memory access to the shared memory of a streaming
multiprocessor on CUDA-enabled GPUs. The DMM has �
memory banks that constitute a shared memory, and � threads
in a warp try to access them at the same time. However,
memory access requests destined for the same memory bank
are processed sequentially. Hence, it is very important for
developing efficient algorithms to reduce the memory access
congestion, the maximum number of memory access requests
destined for the same bank. The main contribution of this
paper is to present a novel algorithmic technique called the
random address permute-shift (RAP) technique that reduces
the memory access congestion. We show that the RAP reduces
the memory access congestion to ��� ����

��� ����
� for any memory

access requests including malicious ones by a warp of �
threads. Also, we can guarantee that the congestion is 1 both
for contiguous access and for stride access. The simulation
results for � � �� show that the expected congestion for
any memory access is only 3.53. Since the malicious memory
access requests destined for the same bank take congestion 32,
our RAP technique substantially reduces the memory access
congestion. We have also applied the RAP technique to matrix
transpose algorithms. The experimental results on GeForce
GTX TITAN show that the RAP technique is practical and
can accelerate a direct matrix transpose algorithm by a factor
of 10.

Keywords-GPU, CUDA, memory bank conflicts, memory
access congestion, randomized technique

I. INTRODUCTION

The GPU (Graphics Processing Unit), is a specialized
circuit designed to accelerate computation for building and
manipulating images [1], [2], [3]. Latest GPUs are designed
for general purpose computing and can perform computation
in applications traditionally handled by the CPU. Hence,
GPUs have recently attracted the attention of many appli-
cation developers. NVIDIA provides a parallel computing
architecture called CUDA (Compute Unified Device Ar-
chitecture) [4], the computing engine for NVIDIA GPUs.
CUDA gives developers access to the virtual instruction
set and memory of the parallel computational elements in
NVIDIA GPUs.

NVIDIA GPUs have streaming multiprocessors (SMs)
each of which executes multiple threads in parallel. CUDA
uses two types of memories in the NVIDIA GPUs: the
shared memory and the global memory [4]. Each SM has
the shared memory, an extremely fast on-chip memory
with lower capacity, say, 16-48 Kbytes, and low latency.
Every SM shares the global memory implemented as an
off-chip DRAM, and has large capacity, say, 1.5-6 Gbytes,
but its access latency is very long. The efficient usage of
the shared memory and the global memory is a key for
CUDA developers to accelerate applications using GPUs.
In particular, we need to consider bank conflicts of the
shared memory access and coalescing of the global memory
access [5]. The address space of the shared memory is
mapped into several physical memory banks. If two or more
threads access the same memory bank at the same time, the
access requests are processed in turn. Hence, to maximize
the memory access performance, threads in a warp should
access distinct memory banks to avoid the bank conflicts of
the shared memory accesses. To maximize the bandwidth
between the GPU and the DRAM chips, the consecutive
addresses of the global memory must be accessed at the
same time. Thus, CUDA threads should perform coalesced
access when they access the global memory.

In our previous paper [6], we have introduced two models,
the Discrete Memory Machine (DMM) and the Unified
Memory Machine (UMM), which reflect the essential fea-
tures of the shared memory and the global memory of
CUDA-enabled GPUs. Since the DMM and the UMM are
promising as theoretical computing models for GPUs, we
have published several efficient algorithms on the DMM [7],
[8] and the UMM [9]. The DMM and the UMM have
three parameters: the number � of threads, width �, and
memory access latency �. Figure 1 illustrates the outline
of the architectures of the DMM and the UMM with
� � �� threads and width � � �. Each thread works as
a Random Access Machine (RAM) [10], which can execute
fundamental operations in a time unit. Threads are executed
in SIMD [11] fashion, and they run on the same program



and work on different data. The � threads are partitioned
into �

�
groups of � threads each called warp. The �

�
warps

are dispatched for memory access in turn, and � threads
in a dispatched warp send memory access requests to the
memory banks (MBs) through the memory management unit
(MMU). We do not discuss the architecture of the MMU,
but we can think that it is a multistage interconnection
network [12] in which memory access requests are moved
to destination memory banks in a pipeline fashion. Note that
the DMM and the UMM with width � has � memory banks
and each warp has � threads. For example, the DMM and
the UMM in Figure 1 have 4 threads in each warp and 4
MBs.

T T T T

T T T T

T T T T

T T T T

T T T T

MMU

MB MB MB MB

T T T T

T T T T

T T T T

T T T T

T T T T

MMU

MB MB MB MB

address line data line
T: Tread W: Warp
MB: Memory Bank
MMU: Memory Management Unit

W

W

W

W

W

W

W

W

W

W

DMM UMM

Figure 1. The architectures of the DMM and the UMM with width � � �

MBs constitute a single address space of the memory.
A single address space of the memory is mapped to the
MBs in an interleaved way such that the word of data of
address � is stored in the �� ��� �	-th bank, where � is the
number of MBs. The main difference of the two architectures
is the connection of the address line between the MMU
and the MBs, which can transfer an address value. In the
DMM, the address lines connect the MBs and the MMU
separately, while a single set of address lines from the MMU
is connected to the MBs in the UMM. Hence, in the UMM,
the same address value is broadcast to every MB, and the
same address of the MBs can be accessed in each time
unit. On the other hand, different addresses of the MBs can
be accessed in the DMM. Since the memory access of the
UMM is more restricted than that of the DMM, the UMM
is less powerful than the DMM. Also, we assume that MBs
are accessed in a pipeline fashion with latency �. In other
words, if a thread sends a memory access request, it takes
at least � time units to complete it. A thread can send a
new memory access request only after the completion of

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

T T T T

���� ���� ���� ����

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

T T T T

���� ���� ���� ����

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

T T T T

���� ���� ���� ����

(1) congestion 1 (2) congestion 4 (3) congestion 1

Figure 2. Examples of memory access and the congestion for � � �

the previous memory access request and thus, it can send at
most one memory access request in � time units.

It is very important for developing efficient algorithms on
the DMM to reduce the memory access congestion, the max-
imum number of unique memory access requests by a warp
destined for the same bank. The memory access congestion
takes value between 1 and �. The reader should refer to
Figure 2 showing examples of the memory access and the
congestion. If � threads send memory access requests to
distinct banks, the congestion is 1 and the memory access is
conflict-free. If all memory access requests are destined to
the same bank, the congestion is �. It is not easy and some-
times impossible to minimize the memory access congestion
for some problems. For example, a straightforward matrix
transpose algorithm that reads a matrix in row major order
and writes in column major order involves memory access
with congestion �. On the other hand, by an ingenious
memory access technique, we can transpose a matrix with
congestion 1 [6]. Further, in our previous paper [6], we
have developed a complicated graph coloring technique to
eliminate bank conflicts in off-line permutation. We have
implemented this offline permutation algorithm on GeForce
GTX-680 GPU [13]. The experimental results showed that
the offline permutation algorithm developed for the DMM
runs on the GPU much faster than the conventional offline
permutation algorithm [13]. Although it is very important to
minimize the memory access congestion, it may be a very
hard task.

In latest CUDA-enabled GPUs such as GeForce GTX
TITAN, the number � of memory banks and threads in a
warp is 32, and the size of a shared memory is no more than
48Kbytes [4]. Hence, a matrix with � � � double (64-bit)
numbers in such CUDA-enabled GPUs occupies 8Kbytes
and it is not possible to store more than 6 matrices of size
��� in a shared memory. Thus, many algorithms designed
for CUDA-enabled GPUs use one or several matrices of size
� � � in the shared memory [1], [4], [14]. For example,
paper [14] has presented an optimal offline permutation
algorithm for the global memory. This optimal algorithm
repeats offline permutation for 
��
� matrices in the shared



memory of each streaming multiprocessor in a GPU. Also,
an efficient matrix multiplication for a large matrix in the
global memory repeats multiplication of 
��
� submatrices
in the shared memory [4]. Hence, it makes sense to focus
on a matrix of size � � �. Usually, each ��� �	 element
(� � �� � � � � �) of a matrix of size � � � is mapped to
address � ��� � in a conventional implementation. We call
such a straightforward implementation, RAW (RAW access to
memory) implementation. In the RAW implementation, the
congestion of stride access is �, while that of contiguous
access is 1. Hence, CUDA developers should implement
algorithms in GPUs so that it never performs stride access
to the shared memory.

The main contribution of this paper is to present so-
phisticated algorithmic technique called the random address
permute-shift (RAP), which reduces the memory access
congestion for any memory access to a matrix of size ���

by a warp of � threads. Let � be a random permutation
of ��� �� � � � � � � �	 uniformly selected at random from
all possible 	 permutations. In other words, � integers
��� ��� � � � � ���� are distinct in the range ��� � � ��. By the
RAP technique, each ��� �	 element (� � �� � � � � �) of a
matrix is mapped to address ����������	 ��� �	 and thus,
it is in memory bank ��� ��	 ��� �. Our first contribution
is to show that, by the RAP technique, it is guaranteed that:

� any contiguous access and any stride access has no bank
conflict, and

� the congestion is at most �
� ����
��� ���� 	 for any memory

access including malicious ones by a warp of � threads,
where �
��	 denotes expected 
��	.

Quite recently, we have presented an algorithmic tech-
nique called the random address shift (RAS) to reduce the
memory access congestion on the DMM [7], [15]. Basically,
the random address shift technique is inspired by parallel
hashing that averages the access to memory modules [16],
[17]. The idea is to arrange address � � � � � in bank
�� � ��	 ��� � for independent random numbers ��� ��� � � �
computed beforehand. However, the RAS implementation
involves bank conflicts for stride memory access. On the
other hand, our new RAP implementation has no bank
conflict for stride memory access and the congestion is 1.
Table I summarizes the memory access congestion by the
RAW, the RAS, and the RAP implementations.

Table I
THE MEMORY ACCESS CONGESTION OF THE RAW, THE RAS, AND THE

RAP

RAW RAS RAP
Any ��� �� 	�
 ����

��� ����
� 	�
 ����

��� ����
�

Contiguous 1 1 1
Stride 32 	�
 ����

��� ����
� 1

The second contribution is to show simulation results of

memory access by the RAW, the RAS and the RAP. Our
simulation results show that the congestions of the RAW,
the RAS and the RAP are the same for random memory
access. By the RAP, contiguous and stride memory access
operations have no bank conflict. Also, when � � 
�, the
congestion of the RAP for a stride memory access is always
1, while the congestions of RAW and the RAS are 32 and
3.53, respectively. Hence, the RAP is much more efficient
for the stride memory access.

The third contribution is to implement the RAP technique
in a streaming multiprocessor on GeForce GTX TITAN [18]
which supports CUDA Compute Capability 3.5 [4]. In
particular, we have implemented three matrix transpose algo-
rithms, Contiguous Read Stride Write (CRSW), Stride Read
Contiguous Write (SRCW), and Diagonal Read Diagonal
Write (DRDW). The CRSW and the SRCW follow the
definition of a matrix transpose. More specifically, in the
CRSW, a matrix is read in row major order and is written
in column major order to transpose it. The SRCW reads
a matrix in column major order and writes in row major
order. Since memory access requests in column major order
are destined for the same bank, these algorithms take a lot of
time. The DRDW is optimized for the RAW implementation
and performs reading and writing in diagonal order to reduce
the memory access congestion to 1. Thus, the DRDW runs
much faster than the others in the RAW implementation.
However, it may not be easy for CUDA developers to find
an efficient algorithm such as the DRDW for complicated
problems. The implementation results of CRSW and SRCW
algorithms for a 
��
� matrix in the shared memory show
that the RAP implementation is much faster than the others.
More specifically, the RAP runs only 154.5ns, while the
RAW and the RAS run 1595ns and 303.6ns for CRSW
algorithm, respectively.

We also present several methods to extend the RAP for
arrays larger than ��. The RAP for larger arrays has fewer
bank conflicts using fewer random numbers than the RAS.

From the theoretical analysis, the simulation results, and
the implementation results shown in this paper, we can say
that the RAP is a potent method to reduce memory access
congestion and bank conflicts that spoil high computing
power of the GPUs. It is not necessary for CUDA developers
to avoid bank conflicts if they use the RAP. The memory
access congestion can be automatically reduced by the RAP
even if it involves a lot of bank conflicts. Further, it will be
a nice idea to implement the RAP technique as embedded
hardware in future GPUs. More specifically, a circuit that
evaluates � ��� ��� ��	 ��� � for address conversion by
the RAP can be embedded. Using such hardware support,
the overhead of address conversion by the RAP can be
negligible.

This paper is organized as follows. In Section II, we first
define the DMM. Section III introduces fundamental mem-
ory access operations and matrix transpose algorithms which



are used to evaluate the performance. In Section IV, we
present the random address permute-shift (RAP) technique,
and evaluate the memory access congestion by theoretical
analysis. Section V shows simulation results to evaluate the
actual values of the congestion by the RAW, the RAS, and
the RAP. In Section VI, we show experimental results on
GeForce GTX TITAN. Section VII introduces several ideas
to extend the RAP for larger arrays. Section VIII concludes
our work.

II. DISCRETE MEMORY MACHINE (DMM)

The main purpose of this section is to define the Discrete
Memory Machine (DMM) introduced in our previous pa-
per [6]. The reader should refer to [6] for the details of the
DMM.

Let ��� (� � �) denote a memory cell of address � in
the memory. Let ���� � ���������������������

��� � � �� (� � � � � � �) denote the �-th bank of the
memory. Clearly, a memory cell ��� is in the �� ��� �	-
th memory bank. We assume that memory cells in different
banks can be accessed in a time unit, but no two memory
cells in the same bank can be accessed in a time unit. Also,
we assume that � time units are necessary to complete an
access request and continuous requests are processed in a
pipeline fashion through the MMU. Thus, it takes �� �� �
time units to complete � access requests to a particular bank.

Let � ��	� � ��	� � � � � � �� � �	 be � threads. We assume
that � threads are partitioned into �

�
groups of � threads

called warps. More specifically, � threads are partitioned
into �

�
warps � ��	�� ��	, � � �, � � �

�
� �	 such that

� ��	 � �� �� � �	� � �� � � � �	� � � � � � ��� � �	 � � � �	�
(� � � � �

�
��). Warps are dispatched for memory access in

turn, and � threads in a warp try to access the memory at the
same time. In other words, � ��	�� ��	� � � � �� � �

�
��	 are

dispatched in a round-robin manner if at least one thread in a
warp requests memory access. If no thread in a warp needs
memory access, such warp is not dispatched for memory
access. When � ��	 is dispatched, � threads in � ��	 send
memory access requests, one request per thread, to the
memory. Threads are executed in SIMD [11] fashion, and all
thread must execute the same instruction. Hence, if one of
them sends a memory read request, none of the others can
send memory write request. We also assume that a thread
cannot send a new memory access request until the previous
memory access request is completed. Hence, if a thread send
a memory access request, it must wait � time units to send
a new one.

Figure 3 shows an example of memory access on the
DMM with � (� �) memory banks and memory ac-
cess latency of � (� �). We assume that each mem-
ory access request is completed when it reaches the last
pipeline stage. Two warps � ��	 and � ��	 access to
�����������������	 and ������ ����� ����� ���	,
respectively. In the DMM, memory access requests by � ��	

are separated into two pipeline stages, because ��� and
���� are in the same bank ��
�. Those by � ��	 occupy
1 stage, because all requests are destined for distinct banks,
one request for each bank. Thus, the memory requests
occupy three stages, and it takes 
 � � � � � � time units
to complete the memory access.

Let us define the congestion of memory access by a
warp of � threads. Suppose that � threads in a warp
access the memory banks. The memory access congestion
is the maximum number of unique memory access requests
destined for the same bank. We assume that, if two or
more threads access the same address, the memory access
requests are merged and processed as a single request. Thus,
if all � threads in a warp access the same address, the
congestion is 1. We also assume that if multiple memory
writing requests are sent to the same address, one of them is
arbitrary selected and its writing operation is performed. The
other writing requests are ignored. Thus, the DMM works
as the Concurrent Read Concurrent Write (CRCW) mode
with arbitrary resolution of simultaneous writing [19]. For
example, the congestion of memory access in Figure 2 (1)
is 1, because all requests are destined for distinct banks. In
Figure 2 (2), the congestion is 4, because all requests are
destined for bank ����. In Figure 2 (3), all threads access
���. Thus, these memory requests are merged into one and
the congestion is 1.

III. FUNDAMENTAL MEMORY ACCESS OPERATIONS AND

MATRIX TRANSPOSE ALGORITHMS

The main purpose of this section is to show three funda-
mental memory access operations for a matrix, contiguous
access, stride access and diagonal access [6]. We also show
three transposing algorithms of a matrix using these three
memory access operations.

Suppose that we have a matrix � of size � � � in the
memory of the DMM. We assume that ������� (� � �� � �
� � �) is arranged in address � � � � �. Since �� � � �
�	 ��� � � �, each ������� is in bank ����. In these memory
access operations, each element in a matrix is accessed by
a thread. In the contiguous access, threads are assigned to
the matrix in row-major order. Threads are assigned to the
matrix in column-major order in the stride access. In the
diagonal access, threads are assigned in diagonal order. The
readers should refer to Figure 4 for illustrating these three
memory access operations for � � �.

More formally, these three memory access operations can
be written as follows:

[Contiguous Access]
for �
 � to � � � do in parallel
for � 
 � to � � � do in parallel

thread � �� � � � �	 accesses �������

[Stride Access]
for �
 � to � � � do in parallel



0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

�

�-stage pipeline registers

057 15

10 11 12 9

� ���

� ���DMM

0

5

715

10

11

12

9

�	�


�	�


�	�


�	�


Figure 3. The Discrete Memory Machine (DMM)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

contiguous access stride access

���� ���� ���� ���� ���� ���� ���� ����

0

13

10

7

4

1

14

11

8

5

2

15

12

9

6

3

diagonal access

���� ���� ���� ����

Figure 4. The contiguous access, the stride access, and the diagonal access
for � � �

for � 
 � to � � � do in parallel
thread � �� � � � �	 accesses �������

[Diagonal Access]
for �
 � to � � � do in parallel
for � 
 � to � � � do in parallel

thread � �� � � � �	 accesses �������� �	 ��� ��
(or ����� �	 ��� �����)

It should be clear that the congestion of the contiguous
access and the diagonal access is 1. On the other hand, in the
stride access, � threads in a warp access distinct addresses in
the same bank, and the congestion is �. In the contiguous
access, � warps send memory access requests in � time
units. Thus, it takes � � � � � time units to complete the
contiguous access. In the stride access, � memory access
requests sent by a warp occupy � pipeline stages. Hence,
it takes �� � �� � time units to complete the stride access.
Since the congestion of the diagonal access is 1, the diagonal
access takes �� ��� time units similarly to the contiguous
access.

We can design three matrix transpose algorithms, Con-
tiguous Read Stride Write (CRSW), Stride Read Contigu-
ous Write (SRCW), and Diagonal Read Diagonal Write
(DRDW), using these three memory access operations. In
the CRSW, a matrix is read in row major order and is
written in column major order. In other words, the CRSW
performs the contiguous read and the stride write for matrix
transpose. Similarly, the SRCW performs the stride read and
the contiguous write. In the DRDW, a matrix is read and
written in diagonal order. The reader should refer to Figure 5
illustrating the three matrix transpose algorithms. The details

of the three matrix transpose algorithms are spelled out as
follows:

[Contiguous Read Stride Write (CRSW)]
for �
 � to � � � do in parallel
for � 
 � to � � � do in parallel

thread � �� � � � �	 performs �������
 �������

[Stride Read Contiguous Write (SRCW)]
for �
 � to � � � do in parallel
for � 
 � to � � � do in parallel

thread � �� � � � �	 performs �������
 �������

[Diagonal Read Diagonal Write (DRDW)]
for �
 � to � � � do in parallel
for � 
 � to � � � do in parallel

thread � �� � � � �	 performs
�������� �	 ��� �� 
 ����� �	 ��� �����

Let us evaluate the computing time of three transpose
algorithms on the DMM. The CRSW transpose and the
SRCW transpose involve the stride memory access. Thus,
they take 
��� � �	 time units. The DRDW transpose
performs diagonal read/write, it takes 
�� � �	 time units.
Hence, we have,

Lemma 1: The CRSW, the SRCW, and the DRDW trans-
pose algorithms for a matrix of size � �� take 
��� � �	
time units, 
��� � �	 time units, and 
�� � �	 time units,
respectively, using �� threads on the DMM with width �

and latency �.
We can implement these algorithms in a streaming multi-
processor of a GPU without any modification. We call such
implementations RAW (RAW access to memory) implemen-
tations.

For example, the RAW implementation of the CRSW
transpose algorithm for a matrix of size 
��
� is described
as follows:

[The RAW implementation of the CRSW]
__shared__ double a[32][32],b[32][32];
int i = threadIdx.x/32;
int j = threadIdx.x%32;
double c;
b[j][i] = a[i][j];

We assume that matrices � and � allocated in the shared



0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(1) CRSW

(2) SRCW

(3) DRDW

Figure 5. Illustrating the three matrix transpose algorithms for � � �

memory stores the values of a matrix. In the RAW imple-
mentation, a CUDA block with 1024 threads are invoked.
The value of “threadIdx.x” is a thread ID and takes value
from 0 to 1023. The value of ������� is copied ������� by a
thread with thread ID � � 
� � �.

IV. THE RANDOM ADDRESS PERMUTE-SHIFT (RAP)
TECHNIQUE

The main purpose of this section is to present a novel tech-
nique, the random address permute-shift (RAP), in which the
memory access congestion for stride access is reduced to 1.
Further, the memory access congestion by the RAP is still
�
� ����

��� ���� 	 for any memory access by a warp of � threads.
Let � be a matrix of size ��� on the DMM. Note that

each ������� is in bank ���� of the DMM. The key idea of
the RAP is to use a random permutation of ��� �� � � �� �
�	. Suppose that each of � threads in a warp accesses an
element of � at the same time. If all � elements are in
distinct banks, the congestion is 1. On the other hand, the
congestion is � if they are in the same bank. We will show
that, using the RAP, the expected value of the congestion is
at most 
� ����

��� ���� 	 for any memory access by � threads
including malicious ones.

Let � be a permutation of ��� �� � � � � �� �	 selected from
all possible � permutations uniformly at random. Hence,
��� ��� � � � � ���� take distinct integers in the range ��� � �

�

2

0

3

1

�

random
address

permute-
shift

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

2 3 0 1

4 5 6 7

9 10 11 8

15 12 13 14

���	 ��
	 ���	 ���	

�

Figure 6. An example of the random address permute-shift

��. Intuitively, the random address permute-shift technique
rotates each �-th row (� � � � � � �) of matrix � by
��. In other words, each ������� (� � �� � � �) is mapped
to ������� � ��	 ��� ��. If a thread try to access �������,
it accesses ������� � ��	 ��� �� instead. Hence, ������� is
arranged in bank ����� ��	 ��� �� of the DMM. Figure 6
illustrates an example of the RAP for � � �, where we select
� � ��� �� 
� �	. For example, ������� �������	 is mapped to
������ ������� � 
	 ��� ��	 in ����.

Recall that a memory access by a warp is contiguous if
all � threads in a warp access the same row, and it is stride
if all threads in a warp access the same column. Clearly,
the congestion of the contiguous access is always 1, because
�����	 ��� �, �����	 ��� �, � � �, �������	 ��� � are
distinct. Also, that of the stride is 1, because �����	 ��� �,
�� � ��	 ��� �, � � �, �� � ����	 ��� � are distinct. In our
previous paper [7], we have presented the random address
shift (RAS) technique, which uses independent random
numbers ��� ��� � � � instead of a random permutation used
by the RAP. Clearly, the stride access by the RAS involves
bank conflicts with high probability, while that of the RAP
is always 1.

We will show that, by the RAP, the congestion of the
row-wise access and the column-wise access is 1. Further,
the congestion of any memory access is �
� ����

��� ���� 	. More
specifically, we prove the following important theorem:

Theorem 2: By the RAP, the congestion is �
� ����
��� ���� 	

for any memory access by a warp. In particular, the conges-
tion of the contiguous access and the stride access is 1.

We will prove that the congestion of any memory access
is at most �
� ����

��� ���� 	. For the purpose of the proof, we use
an important probability theorem called the Chernoff bound
that estimates the tail probability of the Poisson trials as
follows:

Theorem 3 (Chernoff Bound [20]): Let ��, ��, � � �,
���� be independent Poison trials such that �� � � with
probability �� (� � � � 	 � �). Let � �

����
��� �� and

� � ��� � �
����

��� ��. We have the following inequality
for any Æ � �:

���� � �� � Æ	�� �

�
�Æ

�� � Æ	��Æ�

�	



Please see [20] for the details of the Chernoff bound. In
paper [7] we use Theorem 3 to prove Theorem 2 for the
RAS. This is possible because random numbers ��, ��, � � �
used by the RAS are independent. However, these random
numbers by the RAP are not independent. Hence, it is not
possible to use Theorem 3 as it is for the proof of Theorem 2.
We use several new proof techniques to prove Theorem 2
by Theorem 3.

For simplicity, we assume that no two threads access
the same address. Clearly, this assumption makes sense
for the proof of Theorem 2, because it does not decrease
the probability of bank conflicts and the memory access
congestion. We partition � threads in a warp into two half
warps such that each half warp has �

� threads. We will show
that the memory access congestion by �

� threads in a half
warp is �
� ����

��� ���� 	. This implies that the congestion by �

threads in a warp is at most � � �
� ����
��� ���� 	 �

�
� ����
��� ���� 	.

Let ��� ��� � � � � ��
�
�� and ��� ��� � � � � ��

�
�� be the indexes of

� such that each thread � ��	 (� � � � �
� � �) by a

half warp accesses ���
���
�. Using the RAP technique, each
� ��	 accesses ���
����
 � ��� 	 ��� �� instead. Let ���	
(� � � � � � �) be the number of memory access requests
destined for the �-th row of �. Since no two threads access
the same address, we have

����
��� ���	 � �

� .
For a fixed bank ���� (� � � � � � �), we will show

that more than �� ���
�� ��� memory requests is destined for ����

with probability at most �
�� . Let ��, ��, � � �, ���

�� (� �
�� � �� � � � � � ���

�� � � � � ) denote rows accessed
by �

� threads in a half warp. In other words, ���
	 � �
for all � (� � � � �� � �) and �� � �

� . Imagine that ��� ,
��� , � � �, ��

����
are determined one by one for the purpose

of evaluating the congestion. In other words, each � �� is
selected from integers in ��� ��������� � ��� � � � � � �����

� at
random. First, let us evaluate the probability that a half warp
accesses ���� by memory access requests in the ��-th row.
Since ����	 memory cells in the ��-th row are accessed,
the probability is �����

�
. Next, we evaluate the probability

that a half warp accesses ���� in the ��-th row. Since ��� is
selected from ��� ���������� at random, the probability is
0 at most �����

��� . Similarly, the probability that a half warp

accesses ���� in the ��-th row is at most �����
��� , because

��� is selected from ��� � � �� � ���� � ���� at random, In
general, the probability that a half warp accesses ���� in
the �
-th row is at most �����

��

for each � (� � � � �� � �).

From �� � �
� , we have �����

��

� ������

�
. To evaluate the

number of memory cells in ���� accessed by a half warp, let
��� ��� � � � � ���

�� be independent random binary variables
such that �
 � � with probability ������

�
. Further, let � �

�� ��� � � � �����
��. Clearly, � is the random variable

that provides the upper bound of the number of memory
access destined for bank ���� by a half warp. Since random
variables ��� ��� � � � � ���

�� are independent, we can apply
Theorem 3 to evaluate the tail probability of � and we have

the following lemma:
Lemma 4: For random variable � defined above, we

have,

���� �
�� ���

�� ���
� �

�

��
�

Proof: Clearly, the expected value of � is

� � ��� � �
��

���

��

����
	

�
� ��

Hence, from Theorem 3 with � � �, we have

���� � �� � Æ	� �
�Æ

�� � Æ	��Æ�

for any Æ � �. Let � � Æ � �� ���
�� ��� . We will prove that

�Æ

��Æ����Æ�
� �

�� , that is, �� �Æ

��Æ����Æ�
� �� ��� as follows:

��
�Æ

�� � Æ	��Æ�

� Æ � �� � Æ	 ���� � Æ	

�
�� ���

�� ���
� ��

�� ���

�� ���
��
�� ���

�� ���

� �
�� ���

�� ���
��� � �� �� � �� ��� � �� �� ���	

� �
�� ���

�� ���
�
�� ���

�
� �� ���

This completes the proof.
Let � be a random variable denoting the memory access

congestion by �
� threads in a half warp. In other words, �

is the maximum number of memory access requests over all
banks ���� (� � � � � � �). From Lemma 4, we have

���� �
�� ���

�� ���
� � ���� �

�� ���

�� ���
� �
�

�
�

�

��
�

Thus, we have,

���� � � �
�� ���

�� ���
� � � and ���

�� ���

�� ���
� � � �� �

�

��
�

Hence, the expected value of � is at most:

��� � � ���� � � �
�� ���

�� ���
� �
�� ���

�� ���

����
�� ���

�� ���
� � � �� � �

� � �
�� ���

�� ���
�

�

��
� � � 
�

����

��� ����
	�

We have proved that the congestion of any memory access
by a half warp is �
� ����

��� ���� 	 by the RAP. Since the
congestion of a warp is not more than the sum of those
of the first warp and the second warp, we have Theorem 2.



V. SIMULATION RESULTS

The main purpose of this section is to show simulation
results to evaluate the congestions. We have shown in
Theorem 2, the memory access congestion by the RAP is
�
� ����

��� ���� 	 for any memory access. Sometimes, the big-O
notation has a large constant factor, and the actual value is
too large to use it in practical applications. We will show
that the actual value here is enough small for the purpose
of practical GPU implementations.

Table II shows the congestion of memory access obtained
by simulation. The number � of memory banks and threads
in a warp of latest CUDA-enabled GPUs is 32. The value
of � may be increased in future GPUs. Thus, we have
performed simulation for various values of � up to 256.

From the table, we can confirm that the contiguous
memory access has no bank conflict for all implementations.
The RAW and RAS implementations for the stride access
involve bank conflicts while the RAP implementation has
no bank conflict. Since the diagonal access is optimized
for the RAW implementation, the congestion of the RAW
implementation is 1. On the other hand, the RAS and the
RAP implementations have bank conflicts, but the conges-
tion is moderately small. Also, the congestion by the RAP
is slightly larger than that by the RAS. For example, when
� � 
�, the congestion by the RAP is 3.61 while that by
the RAS is 3.53. This is because the probability of bank
conflicts by the RAP is slightly larger than the RAS. For
example, two memory access requests to distant addresses
are destined for the same bank with probability �

�
if the

RAS is used. On the other hand, the probability is �
��� if

the RAP is used. For the random memory access, all three
implementations have the same congestion for each �.

Consequently, we can say that the congestion of the
RAP implementation is smaller than or equal to that of
the RAW and the RAS implementations for most memory
accesses excluding the diagonal memory access. The RAP
has the largest congestion for the diagonal memory access,
but the overhead is small. Hence, we should use the RAP
implementation if

� addresses accessed by threads are not known before-
hand, or

� a CUDA developer has difficulty to minimize bank
conflicts.

A CUDA developer can reduce the congestion automatically
in most cases by using the RAP.

VI. EXPERIMENTAL RESULTS USING GTX GEFORCE

TITAN

The main purpose of this section is to show how we have
implemented the RAP in a CUDA-enabled GPU. We also
show the experimental results for matrix transpose by the
RAW, the RAS, and the RAP implementations.

We can implement the three matrix transpose algorithms
using the RAP technique. For example, the CRSW transpose

031

�����������	

�
�����������

�����������	��
���

�����������������

�����	��
��������

������

0

1

2

3

4

5

Figure 7. Arrangement of random numbers ��
� � � � ��� in local
registers �[*]

algorithm by the RAP for a matrix of size 
� � 
� is
described as follows:

[The RAP implementation of the CRSW transpose]
__shared__ double a[32][32], b[32][32];
int r[6];
int i = threadIdx.x/32;
int j = threadIdx.x%32;
b[(j+(r[i/6]��(5*(i%6))))&0x1f][i]
= a[i][(j+(r[i/6]��(5*(i%6))))&0x1f];

The transpose is performed for matrix � of size 
�� 
�
and the resulting values are written in matrix �. We assume
that ����������	 ��� 
�� (� � �� � � ���) stores the ��� �	
elements of a matrix. Also, an array � of six local registers
stores random numbers ��� ��� � � � � ��� in the range ��� 
��
such that each ���� (� � � � �) stores 6 random numbers
����� ������ � � � � �����. Since each ���� has 32 bits and each
�� has 5 bits, this is possible. The reader should refer to
Figure 7 illustrating how random numbers � are stored in
local registers ����. Since the value of �������� ��	 ��� 
��
is copied to �������	 ��� 
�����, the transpose is completed
correctly.

We have implemented three matrix transpose algorithms,
Contiguous Read Stride Write (CRSW), Stride Read Con-
tiguous Write (SRCW), and Diagonal Read Diagonal Write
(DRDW) using the RAW, the RAS, and the RAP. For the
CRSW and the SRCW transpose, the RAP implementation
runs about 10 times faster than the RAW implementation and
2 times faster than the RAS implementation. The DRDW
transpose performs the worst memory access for the RAP
implementation. Nonetheless, it runs only 2.5 times slower
than the RAW implementation. It follows that, the RAP is
practical and works efficiently in current GPUs. When a
CUDA developer implements some algorithm in the GPUs,
it is not necessary to analyze and reduce the memory access
congestion. It is sufficient to apply the RAP and the resulting
implementation has small memory access congestion.



Table II
THE CONGESTION OF MEMORY ACCESS TO A MATRIX OF SIZE � � �

RAW Implementation RAS Implementation RAP Implementation
� 16 32 64 128 256 16 32 64 128 256 16 32 64 128 256

Contiguous 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Stride 16 32 64 128 256 3.08 3.53 3.96 4.38 4.77 1 1 1 1 1

Diagonal 1 1 1 1 1 3.08 3.53 3.96 4.38 4.77 3.20 3.61 4.00 4.41 4.78
Random 2.92 3.44 3.90 4.34 4.75 2.92 3.44 3.90 4.34 4.75 2.92 3.44 3.90 4.34 4.75

Table III
THE CONGESTION ON THE DMM AND THE COMPUTING TIME ON THE GPU FOR CRSW, SRCW, AND DRDW ALGORITHMS BY THE RAW, THE RAS,

AND THE RAP IMPLEMENTATIONS

RAW Implementation RAS Implementation RAP Implementation
congestion time (in ns) congestion time (in ns) congestion time (in ns)

read write on the GPU read write on the GPU read write on the GPU
CRSW Transpose 1 32 1595 1 3.53 303.6 1 1 154.5
SRCW Transpose 32 1 1596 3.53 1 297.1 1 1 159.1
DRDW Transpose 1 1 158.4 3.53 3.53 427.4 3.61 3.61 433.3

VII. THE RANDOM ADDRESS PERMUTE-SHIFT FOR

HIGHER DIMENSION

So far, we have presented the random address permute-
shift (RAP) for a matrix of size � � �. The main purpose
of this section is to discuss several ideas to extend the RAP
for larger arrays than � � �. For simplicity, we focus on a
4-dimensional array � of size � � � � � � �. Note that,
each element ������������� (� � �� �� �� � � �� �) is allocated
in address � � �� � � � �� � � �� � � and it is in bank ����.

Basically, the RAP technique maps each ������������� to
�������������� ���� �� �		 ��� �� for some linear function �

that determines the length of shift from �, �, and �. We use
several memory accesses by a warp of � threads to evaluate
the congestion as follows:
Contiguous: ������������ � � � ��, that is, �������������,
�������������, � � �, ������������ � �� are accessed.
Stride1: ��������� � � � ����� are accessed.
Stride2: ������ � � � �������� are accessed.
Stride3: ��� � � � ����������� are accessed.
Random: � elements in � are selected at random are
accessed.
Malicious: Malicious memory accesses that maximize the
memory access congestion.

We introduce several possible RAP techniques as follows:
One permutation (1P): For a random permutation � of
��� �� � � � � � � �	, ���� �� �	 � �
.
Repeated one permutation (R1P): For a random permuta-
tion � of ��� �� � � � � � � �	, ���� �� �	 � �� � �� � �
.
Three random permutations (3P): For three independent
random permutations �, �, and � of ��� �� � � � � � � �	,
���� �� �	 � �� � �� � �
.
�
� random permutations (��P): For �� random permu-

tations ��� ��� � � � ��
�
�� of ��� �� � � � � � � �	, ���� �� �	 �

�
����

 .

one random permutation and �
� random numbers

(1P��R): For a random permutation � of ��� �� � � � � � � �	
and �� independent random integers ��� ��� � � � � ���

�� in
��� � � ��, ���� �� �	 � ����� � �
.

Table IV summarizes the congestion and used random
numbers by each RAP for an array of size ��. Due to the
stringent page limitation, we omit the details of explanation,
but the reader should have no difficulty to confirm that the
congestion and the random numbers are correct. From the
table, we can see that R1P and 3P have good performance in
terms of the congestion and the used random numbers. Note
that R1P have malicious inputs with high congestion. For ex-
ample, 6 memory access requests to �������������, �������������,
�������������, �������������, �������������, and ������������� are
destined to bank ���� � �� � �� � ��	 ��� ��. Since we
can have �

� groups of such 6 memory access requests each,
the congestion can be as large as � � �
�

��� �

�

��� ��� �

�
	, which is

much larger than �
�
��� �

�

��� ��� �

�
	 from the practical point of

view. Thus, we believe that 3P is the best method to extend
the RAP for larger arrays.

VIII. CONCLUSION

We have presented a novel algorithmic technique called
the random address permute-shift (RAP) that achieves
�
� ����

��� ���� 	 memory access congestion for any memory
access requests by a warp of � threads. In particular, the
congestion of any contiguous and any stride memory access
is always 1. We have also applied the RAP to matrix trans-
pose on the shared memory of a streaming multiprocessor
on the GeForce GTX TITAN. The experimental results show
that, even the direct transpose algorithms run very fast by
the RAP technique. From the experimental results, we can
say that our new RAP technique is practical and a potent



Table IV
THE CONGESTION AND THE USED RANDOM NUMBERS BY THE RAW, THE RAS, AND THE RAPS FOR AN ARRAY OF SIZE ��

RAW RAS RAP
1P R1P 3P ��P 1P��R

Contiguous 1 1 1 1 1 1 1
Stride1 � 	�
 ����

��� ����
� 1 1 1 1 1

Stride2 � 	�
 ����
��� ����

� � 1 1 	�
 ����
��� ����

� 	�
 ����
��� ����

�

Stride3 � 	�
 ����
��� ����

� � 1 1 	�
 ����
��� ����

� 	�
 ����
��� ����

�

Random 	�
 ����
��� ����

� 	�
 ����
��� ����

� 	�
 ����
��� ����

� 	�
 ����
��� ����

� 	�
 ����
��� ����

� 	�
 ����
��� ����

� 	�
 ����
��� ����

�

Malicious � 	�
 ����
��� ����

� � � � 	�

��� �

�
��� ��� �

�
� 	�
 ����

��� ����
� 	�
 ����

��� ����
� 	�
 ����

��� ����
�

Random numbers 0 �� � � �� �� ��  �

method to reduce the memory access congestion for the
shared memory automatically.

REFERENCES

[1] W. W. Hwu, GPU Computing Gems Emerald Edition. Mor-
gan Kaufmann, 2011.

[2] K. Ogawa, Y. Ito, and K. Nakano, “Efficient Canny edge
detection using a GPU,” in Proc. of International Conference
on Networking and Computing. IEEE CS Press, Nov. 2010,
pp. 279–280.

[3] A. Uchida, Y. Ito, and K. Nakano, “Fast and accurate template
matching using pixel rearrangement on the GPU,” in Proc.
of International Conference on Networking and Computing.
IEEE CS Press, Dec. 2011, pp. 153–159.

[4] NVIDIA Corporation, “NVIDIA CUDA C programming
guide version 5.0,” 2012.

[5] ——, “NVIDIA CUDA C best practice guide version 3.1,”
2010.

[6] K. Nakano, “Simple memory machine models for GPUs,”
in Proc. of International Parallel and Distributed Processing
Symposium Workshops, May 2012, pp. 788–797.

[7] K. Nakano, S. Matsumae, and Y. Ito, “The random address
shift to reduce the memory access congestion on the discrete
memory machine,” in Proc. of International Symposium on
Computing and Networking, Dec. 2013, pp. 95–103.

[8] A. Kasagi, K. Nakano, and Y. Ito, “Offline permutation
algorithms on the discrete memory machine with performance
evaluation on the GPU,” IEICE Transactions on Information
and Systems, vol. Vol. E96-D, no. 12, pp. 2617–2625, Dec.
2013.

[9] K. Nakano, “Sequential memory access on the unified mem-
ory machine with application to the dynamic programming,”
in Proc. of International Symposium on Computing and
Networking, Dec. 2013, pp. 85–94.

[10] A. V. Aho, J. D. Ullman, and J. E. Hopcroft, Data Structures
and Algorithms. Addison Wesley, 1983.

[11] M. J. Flynn, “Some computer organizations and their effec-
tiveness,” IEEE Transactions on Computers, vol. C-21, pp.
948–960, 1972.

[12] S.-H. Hsiao and C. Y. R. Chen, “Performance evaluation of
circuit switched multistage interconnection networks using a
hold strategy,” IEEE Transactions on Parallel and Distributed
Systems, pp. 632–640, Sept. 1992.

[13] A. Kasagi, K. Nakano, and Y. Ito, “An implementation
of conflict-free off-line permutation on the GPU,” in Proc.
of International Conference on Networking and Computing,
2012, pp. 226–232.

[14] ——, “An optimal offline permutation algorithm on the hi-
erarchical memory machine, with the GPU implementation,”
in Proc. of International Conference on Parallel Processing.
IEEE CS Press, Oct. 2013, pp. pp. 1–10.

[15] K. Nakano and S. Matsumae, “The super warp architecture
with random address shift,” in Proc. of High Performance
Computing, Dec. 2013.

[16] K. Mehlhorn and U. Vishkin, “Randomized and deterministic
simulations of PRAMs by parallel machines with restricted
granularity of parallel memories,” Acta Informatica, vol. 21,
no. 4, pp. 339 – 374, Nov. 1984.

[17] M. Dietzfelbinger and F. M. auf der Heide, “Simple, efficient
shared memory simulations,” in Proc.of ACM Symposium on
Parallel Algorithms and Architectures, June 1993, pp. 110 –
119.

[18] NVIDIA Corporation. (2013) NVIDIA
GeForce GTX TITAN. [Online]. Available:
http://www.geforce.com/hardware/desktop-gpus/geforce-
gtx-titan/

[19] A. Gibbons and W. Rytter, Efficient Parallel Algorithms.
Cambridge University Press, 1988.

[20] R. Motwani and P. Raghavan, Randomized Algorithms. Cam-
bridge University Press, 1995.


