C2CU : A CUDA C Program Generator for
Bulk Execution of a Sequential Algorithm

Daisuke Takafuji, Koji Nakano, and Yasuaki Ito

Department of Information Engineering
Hiroshima University
Kagamiyama 1-4-1, Higashi Hiroshima, 739-8527 Japan

Abstract. A sequential algorithm is oblivious if an address accessed
at each time does not depend on input data. Many important tasks
including matrix computation, signal processing, sorting, dynamic pro-
gramming, and encryption/decryption can be performed by oblivious
sequential algorithms. Bulk execution of a sequential algorithm is to ex-
ecute it for many independent inputs in turn or in parallel. The main
contribution of this paper is to develop a tool that generates a CUDA
C program for the bulk execution of an oblivious sequential algorithm.
More specifically, our tool automatically converts a C language program
describing an oblivious sequential algorithm into a CUDA C program
that performs the bulk execution of the C language program. Generated
C programs can be executed in CUDA-enabled GPUs. We have imple-
mented CUDA C programs for the bulk execution of bitonic sorting
algorithm, Floyd-Warshall algorithm, and Montgomery modulo multi-
plication. Our implementations running on GeForce GTX Titan for the
bulk execution can be 199 times faster for bitonic sort, 54 times faster for
Floyd-Warshall algorithm, and 78 times faster for Montgomery modulo
multiplication, over the implementations on a single Intel Xeon CPU.

Keywords: GPGPU, CUDA, bulk execution, oblivious algorithms, Floyd-
Warshall algorithm, Montgomery modulo multiplication

1 Introduction

A Graphics Processing Unit (GPU) is a specialized circuit designed to accel-
erate computation for building and manipulating images [1-3]. Latest GPUs
are designed for general purpose computing and can perform computation in
applications traditionally handled by the CPU. Hence, GPUs have recently at-
tracted the attention of many application developers [1,4-7]. NVIDIA provides
a parallel computing architecture called CUDA (Compute Unified Device Archi-
tecture) [8], the computing engine for NVIDIA GPUs. CUDA gives developers
access to the virtual instruction set and memory of the parallel computational
elements in NVIDIA GPUs. In many cases, GPUs are more efficient than mul-
ticore processors [9], since they have hundreds of processor cores and very high
memory bandwidth.

CUDA uses two types of memories in the NVIDIA GPUs: the shared mem-
ory and the global memory [8]. The shared memory is an extremely fast on-chip
memory with lower capacity, say, 16-48 Kbytes. The global memory is imple-
mented as an off-chip DRAM, and thus, it has large capacity, say, 1.5-6 Gbytes,
but its access latency is very long. The efficient usage of the shared memory
and the global memory is a key for CUDA developers to accelerate applications
using GPUs. In particular, we need to consider the bank conflict of the shared
memory access and the coalescing of the global memory access [6,9,10]. The
address space of the shared memory is mapped into several physical memory
banks. If two or more threads access the same memory bank at the same time,
the access requests are processed in turn. Hence, to maximize the memory access
performance, CUDA threads should access the distinct memory banks to avoid
the bank conflicts of the memory accesses. To maximize the bandwidth between
the GPU and the DRAM chips, the consecutive addresses of the global mem-
ory must be accessed at the same time. Thus, CUDA threads should perform
coalesced access and avoid stride access when they access the global memory.
However, it is not an easy task for CUDA developers to design efficient parallel
algorithms that does not perform stride memory access.

The bulk execution of a sequential algorithm is to execute it for many in-
dependent inputs in turn or in parallel. For example, suppose that we have p
arrays bg, b1,...bp—1 of n points each. We can execute the Fourier transform
of each b; (0 < j < p— 1) by executing the FFT algorithm for n points on a
single CPU in turn or on a parallel machine in parallel. The bulk execution of
an FFT is frequently used in the area of image processing and signal processing.
Further, the bulk execution is widely used in many applications. For example,
plain text is partitioned into substrings with the same size when we encrypt it.
The substrings are encrypted in turn to obtain encrypted text.

Intuitively, a sequential algorithm is oblivious if an address accessed at each
time unit is independent of the input. For example, the prefix-sums of an array b
of size n can be computed by executing b[i] < b[i]+b[i—1] foralli (1 <i < n—1)
in turn. This prefix-sum algorithm is oblivious because the address accessed at
each time unit is independent of the values stored in b. The readers may think
that the oblivious memory access is too restricted, and most useful algorithms
are not oblivious. However, many important and complicated tasks including
many matrix computations, signal processing, sorting, dynamic programming,
and encryption/decryption can be performed by oblivious sequential algorithms.

In our previous paper [11], we have introduced an algorithmic technique per-
forming the bulk execution of a sequential algorithm on the GPU and evaluated
the performance using the Unified Memory Machine (UMM). The UMM is a
theoretical parallel computing machine used to evaluate the performance of the
computation on the GPU. The resulting implementation on the UMM performs
the bulk execution for p independent inputs in O(%t + It) time units using p
threads on the UMM if a sequential algorithm is oblivious, where w is the num-
ber of threads in a warp, [is the global memory access latency, and ¢ is the
running time of a sequential algorithm. It also proved that this implementation

is time optimal. Further, it implemented the prefix-sum algorithm and the dy-
namic programming algorithm using this algorithmic technique and obtained a
speedup factor of 150 over the sequential computation by a single CPU. How-
ever, developers need to write CUDA C programs for the bulk execution of a
sequential algorithm. Since it needs deep knowledge of CUDA programming and
GPU architecture to optimize CUDA C programs, it is not an easy task to write
efficient CUDA C programs for the bulk execution.

The main contribution of this paper is to present a tool, C2CU, that converts
a sequential C program into a CUDA C program with no stride memory access.
More specifically, a sequential program written by C programming language is
given to C2CU. C2CU converts it into a CUDA C program that performs the
bulk execution of a sequential program on CUDA-enabled GPUs. The CUDA
C program thus obtained performs no stride global memory access of GPUs.
Hence, even developers with few knowledge of CUDA C programming and GPU
architecture can automatically generate a CUDA C program for the bulk execu-
tion. Once they write a C program for a sequential algorithm, they can obtain
a CUDA C program for the bulk execution using our tool C2CU.

To see the performance of CUDA C programs generated by our C2CU con-
verter, we have measured the running time of the bulk execution of three oblivi-
ous sequential algorithms: bitonic sort [12, 13], Floyd-Warshall algorithm [14-16],
and Montgomery modulo multiplication [17-19]. For this purpose, we first have
written sequential algorithms for these three algorithms by C programming lan-
guage. We then have converted them into CUDA C programs using our C2CU
converter. CUDA C programs thus obtained have been executed on GeForce
GTX Titan. They run 199 times faster for bitonic sort, 54 times faster for Floyd-
Warshall algorithm, and 78 times faster for Montgomery modulo multiplication,
over the implementations on a single Intel Xeon CPU.

2 The bulk execution of sequential algorithms on the
UMM

The main purpose of this section is to review the bulk execution of sequen-
tial algorithms on the Unified Memory Machine(UMM). Please see [11] for the
details.

Intuitively, a sequential algorithm is oblivious if an address accessed in each
time unit is independent of the input. More specifically, there exists a function
a:{0,1,...,t — 1} = N, where t is the running time of the algorithm and N
is a set of all non-negative integers such that, for any input of the algorithm, it
accesses address a(7) or does not access the memory at each time ¢ (0 <4 <¢—1).
In other words, at each time ¢ (0 <4 <t —1), it never accesses an address other
than a(7).

Let us see an example of oblivious algorithms. Suppose that an array b of
n integers are given. The prefix-sum computation is a task to store each i-th
prefix-sum b[0]+b[1] +- - -+ b[¢] in b[¢]. Let r be a register variable. The following
algorithm computes the prefix-sum of n numbers.

[Algorithm Prefix-sums]

<0
fori < 0ton—1do
T < 1+ b[i]
b[i] « r
Since b[0], b[1], ..., b[n — 1] are added to r in turn, the prefix-sums are stored

in b correctly when this algorithm terminates. Let us see the address accessed
in each time unit to confirm that this algorithm is oblivious. For simplicity, we
ignore access to registers and local computation such as addition and we assume
that such operations can be done in zero time unit. Clearly, memory access
operations performed in this algorithm are: read b[0], write b[0], read b[1], write
b[1], ..., read b[n — 1], and write b[n — 1]. Hence, the memory access function
ais a(2i) =a(2i+1) =i forall i (0 <i<n—1), and thus, this algorithm is
oblivious.

Suppose that we need to execute a sequential algorithm for many independent
inputs on a single CPU in turn or on a parallel machine at the same time. We
call such computation the bulk execution. For example, suppose that we have p
arrays bo, b1, . . ., bp—1 of size n each on the UMM. The goal of the bulk execution
of the prefix-sums is to execute the prefix-sums of every b; (0 < j <p—1) on
the UMM in parallel. We use p threads and each thread j (0 < j < p—1)
executes the prefix-sums of b; by Algorithm Prefix-sums. Let r; (0 < j <p—1)
be a register of thread j. The prefix-sums can be computed in parallel by the
following algorithm:

[Parallel Algorithm Prefix-sums]
for j < 0 to p — 1 do in parallel
Tj 0
fori <~ 0ton—1do
rj 1+ bj [l]
bli] = r;

In our previous paper [11], we have evaluated the running time of the bulk
execution of the prefix-sums algorithm for column-wise arrangement on the Uni-
fied Memory Machine (UMM) [20,21]. The UMM captures the essence of the
global memory access of CUDA-enabled GPUs. The UMM has three parameters:
the number p of threads, width w, and memory access latency I. Each thread is
a Random Access Machine (RAM) [22], which can execute fundamental opera-
tions in a time unit. Threads are executed in SIMD [23] fashion, and run on the
same program and work on the different data. The p threads are partitioned into
£ groups of w threads each called warp. The £ warps are dispatched for the
memory access in turn, and w threads in a dispatched warp send the memory
access requests to the memory banks (MBs) through the memory management
unit (MMU). We do not discuss the architecture of the MMU, but we can think
that it is a multistage interconnection network in which the memory access re-
quests are moved to destination memory banks in a pipeline fashion. Note that
the UMM with width w has w memory banks and each warp has w threads.

MBs constitute a single address space of the memory. A single address space
of the memory is mapped to the MBs in an interleaved way such that the word
of data of address ¢ is stored in the (i mod w)-th bank B[i mod w], where w is
the number of MBs. In the UMM, a single set of address lines from the MMU
is connected to the MBs. Hence, the same address value is broadcast to every
MB, and the same address of the MBs can be accessed at each time unit. Also,
we assume that MBs are accessed in a pipeline fashion with latency [. In other
words, if a thread sends a memory access request, it takes at least [time units
to complete it. A thread can send a new memory access request only after the
completion of the previous memory access request and thus, it can send at most
one memory access request in [time units. Let A[j] ={j -w,j -w+1,...,(j +
1) - w — 1} denote the j-th address group. In the UMM, if multiple memory
access requests by a warp are destined for different address groups, they are
processed separately. Figure 1 illustrates the memory access by two warps W(0)
and W (1). Since memory access requests by W(0) are destined for three address
groups, they occupy three pipeline stages. On the other hand, those by W (1)
are destined for the same bank, they occupy only one stages. Thus it takes
3(stages) + 1(stage) + 5(pipeline stages) — 1 = 8 time units to complete memory
access requests in Figure 1.

=5 Alo] A[1] A[2] A[3]

5-stage pipeline regsiters

Fig. 1. The memory access of Unified Memory Machine (UMM) with width w = 4 and
latency I =5

Suppose that each element b;[i] (0 <i<n—1,0<j <p-—1)is arranged in
address i-p+ j of the global memory as illustrated in Figure 2. Suppose that the
bulk execution of an oblivious algorithm running in ¢ time units is performed for
p inputs with column-wise arrangement on the UMM. Clearly, pt memory access
operations are performed at all and all memory access operations by all warps are
coalesced. Also, each thread on the UMM performs ¢t memory access operations,
each of which takes [time units. Thus, we have the following theorem:

Theorem 1 ([11]). A column-wise oblivious computation of size n X p runs
O(%t + 1t) time units using p threads on the UMM with width w and latency [,
where t is the running time of the corresponding oblivious sequential algorithm.

Please see [11] for the details of the proof of Theorem 1.

0 1 2 3 4 5 6 7
bo[0] | b1[0] | b2[0] | b3[0] [B4[0] [b5[0] [bg[0] | b7[O0]

8 9 10 |11 |12 |13 | 14 | 15
bol[1] | b1[1] | ba[1] | bg[1] [ba[1] [b5[1] [bg[1] | b7[1]
16 | 17 | 18 | 19 | 20 | 21 | 22 | 23
bol[2] | b1[2] | b2[2] | b3[2] [bal2] [b5l2] | bgl2] | b7I2]
24 [25 [26 [27 [28 [29 |30 | 31
bo[3] | b1[3] | b2[3] | b3[3] [byl3] [b5I3] [bgl3] | b7[3]
32 133343 [36 [37 |38 139
bol4] | b1[4] | bal4] | bgl4] [bgl4] [b5l4] | bgl4] | byl4]
40 [41 [42 [43 [44 | 45 | 46 | 47
bo[5] | b1[5] | b2[5] | b3[5] | bal5] [b5[5] | be[5] | b7 [5]

Fig. 2. Column-wise arrangement of p = 8 arrays of n = 6 elements each

3 Our C2CU converter

The main purpose of this section is to describe C2CU converter, that converts a
sequential algorithm written by C programming language into CUDA C program

for the bulk execution on CUDA-enabled GPUs.

Figure 3 illustrates the behavior of C2CU converter. A sequential program
written by C programming language is converted into a CUDA C program.
The converted C program accepts p independent inputs. They are copied to the
device memory (global memory) of the GPU. The CUDA device program with
p threads is spawned, and each thread executes the sequential program for one
input. After all threads terminate, p outputs obtained by all threads are copied

to the host memory.

input

l

sequential
program

output

Let us see how C2CU converter generates CUDA C program using Floyd-
Warshall algorithm [14-16] as an example. Floyd-Warshall algorithm is a well

C2CU

p inputs
cudaMemcpyToSymbol
CUDA
C}H)]sDtA dgvige
program
program cudaMemcpyFromSymbol (G%’U)
p outputs

Fig. 3. The behavior of C2CU converter

known graph theoretic algorithm that computes the distances of the shortest
paths of all pairs of nodes in a directed graph. It uses a 2-dimensional array D of
size n x n for an n-node graph. We assume that, initially, D[¢][j] (0 < i,j < n—1)
stores the distance of an edge from node 7 to j if it exists and +oo otherwise.
Floyd-Warshall algorithm is described as follows:

[Algorithm Floyd-Warshall]
for k + 0 to n do
for i + 0 ton do
for j + 0 ton do
if (D[i][j] > D[i][k] + DI[k][5])
D[i][j] « D[i][k] + D[k][j]

After termination of the algorithm, D[i][4] stores the distance of the shortest
path from node i to j. If there is no such path, it stores +oo.

Figure 4 shows a C program for Floyd-Warshall algorithm. It should be clear
that this C program computes the all-pairs shortest distance by Floyd-Warshall
algorithm. The values of D is updated by calling update dist, although it is not
necessary to be a function. The reason is to show our C2CU converter supports
function calls. The C program in Figure 4 is a direct implementation of Floyd-
Warshall algorithm except that it has a directive #pragma kernel in line 22.
Most C compilers such as GNU C compiler ignores this directive. Hence, this C
program can be compiled correctly, and it computes all-pairs shortest distance
in an input graph by Floyd-Warshall algorithm. A directive #pragma kernel is
used to specify a function for the bulk execution on the GPU. A function call
just after directive #pragma kernel will be executed on the GPU in the CUDA
C program obtained by C2CU.

Figure 5 shows a CUDA C program generated by our tool C2CU from the C
program in Figure 4. Users can specify the number p of inputs (i.e. the number p
of threads) and the number of threads in each CUDA block, by using options for
C2CU. These values are defined as __P__ (= p) and __T__ in lines 2 and 3. In Fig-
ure 5, they are 2048 and 64, respectively. Thus, 32 CUDA blocks with 64 threads
each are spawned by CUDA kernel call floyd_warshall<<<__B__,__T__>>>()
in line 31. Since the generated CUDA C program accepts p inputs, a 3-dimensional
array D of size N x N x p allocated in the host memory are used to store them.
Also, a 3-dimensional array __D of the same size allocated in the device memory
(i-e. the global memory of the GPU) are used. In line 30, cudaMemcpyToSym-
bol is used to copy p inputs stored in D to __D. After the bulk execution by
CUDA kernel call floyd_warshall<<<__B__,__T__>>>() in line 31, cudaMem-
cpyToSymbol is used to copy __D, which stores the resulting values, to D.

CUDA kernel call floyd_warshall<<<__B__,__T__>>>() in line 31 invokes
__B__ CUDA blocks with __T__ threads each. Thus, __P__ (= p) threads execute
Floyd-Warshall algorithm on the CUDA-enabled GPU. Since blockDim.x is the
number __B__ of threads in a CUDA block and blockIdx.x and threadIdx.x
take values in [0, __B__ — 1] and [0, __T__ — 1], respectively, __id__ in line 15
takes value from 0 to p— 1. Hence device function update_dist(i,j,k,__id__)
is executed for __id__ in [0,p — 1] on the GPU in parallel. The reader should

1: #define N 1024

2: float D[N][N];

3: void update_dist(int i, int j, int k) {
4: if(D[i1[j]1 > D[il[k] + DLkI[j]1) {
5: D[il[j] = D[il[k] + D[kI[j]1;
6: }

7: }

8:

9: void floyd_warshall(){

10: int i,j,k;

11: for(k=0;k<N;k++) {

12: for(i=0;i<N;i++) {

13: for (j=0; j<N; j++) {

14: update_dist(i,j,k);

15: }

16: }

17: }

18: }

19:
20: int main(int argc, char *argv[]){
21: input_array() ;
22: #pragma kernel

23: floyd_warshall();

N
kN

Fig. 4. A C program of the Floyd-Warshall algorithm

have no difficulty to confirm that CUDA C program in Figure 5 executes Floyd-
Warshall algorithm for p inputs in parallel.

Let us see how C2CU converts a C program into a CUDA C program for
general cases and confirm that the generated CUDA C programs performs co-
alesced memory access. If an original C program uses d dimensional array a of
size 81 X §g X - - - X 84, a CUDA C program generated by C2CU uses d+ 1 dimen-
sional array a of size s; X s3 X --- X sq4 X p. If the original C program accesses
afi1][i2] - - - [¢4] then each thread with ID id of the corresponding CUDA C pro-
gram accesses aliq|[i2] - - - [ig][-_1d__]. Since a[i1][i2] - - - [i4][0], a[i1][é2] - - - [¢4][1],
-« afi1][iz] - - - [i4][p — 1] are allocated in consecutive addresses, these memory
accesses by p threads are coalesced.

4 Experiment results

The main purpose of this section is to show experimental results on GeForce
GTX Titan. GeForce GTX Titan has 14 streaming multiprocessors with 192
cores each. Hence, it can run 2688 threads in parallel. Note that, a single kernel
call to GeForce GTX Titan can run more than 2688 threads in a time sharing
manner using CUDA [8] parallel programming platform. All input and output

1: #define N 1024

2: #define __P__ 2048

3: #define __T__ 64

4: #define __B__ __P__/__T__

5: float DINI[NI[__P__];

6: __device__ float __D[NI[NI[__P__]1;

7:

8: __device__ void update_dist(int i, int j, int k, int __id__){
9: if(__D[i1(j10__id__1 > __D[il[k][__id__1 + __D[kI[j1[__id__1) {
10: __D[il[j10__da_1 = __ DO [kI[__id__]1 + __D[kI[j1[__id__1;
11: }

12: }

13:

14: __global__ void floyd_warshall(){

15: int __id__ = blockIdx.x * blockDim.x + threadIdx.x;

16: int i,j,k;

17: for(k=0;k<N;k++) {

18: for(i=0;i<N;i++) {

19: for(j=0;j<N;j++) {
20: update_dist(i,j,k,__id__);
21: }
22: }
23: }
24: }
25:
26: int main(int argc, char *argv[])
27: {
28: input_array();
29: #pragma kernel
30: cudaMemcpyToSymbol(__D, D, sizeof (float)*N*N*__P__, 0);
31: floyd_warshall<<<__B__,__T__>>>();
32 cudaMemcpyFromSymbol (D, __D, sizeof(float)*N*N*__P__, 0);
33: T

Fig. 5. A CUDA program for the bulk execution of Floyd-Warshall algorithm generated
by C2CU

data are stored in the global memory of the GPU and we do not use the shared
memory of the streaming multiprocessors.
We have used three sequential algorithms as follows:

— bitonic sort [12,13],
— Floyd-Warshall algorithm [14-16], and
— Montgomery modulo multiplication [17-19].

Bitonic sort is a well-known parallel sorting algorithm developed by K.E.
Batcher [12]. It can be described as a sorting network with comparators as
illustrated in Figure 6. Since elements compare-exchanged in each stage are
fixed, bitonic sort can be written as an oblivious sequential algorithm.

0
L | |

m min(z, y)
z i I I v Imax(m, ¥)
4 I I I max(e, ¥)
5 yImin(z, y)
6
, 1 | |

Fig. 6. Bitonic sort for n = 8

Montgomery modulo multiplication is used to speed the modulo multiplica-
tion X-Y -2~ mod M for R-bit numbers X, Y, and M. The idea of Montgomery
modulo multiplication is not to use direct modulo computation, which is very
costly in terms of the computing time and hardware resources. By iterative
computation of Montgomery modulo multiplication, the modulo exponentiation
PP mod M can be computed, which is a key operation for RSA encryption and
decryption [24]. Since R is at least 1024 to use Montgomery modulo multiplica-
tion for RSA encryption and decryption, addition/multiplication is repeated to
perform R-bit addition/multiplication. Figure 7 illustrates how the product a - b
of two integers a and b of large bits is computed. Both a and b are partitioned
into four integers and the sum of pair-wise products is computed. Using this
idea, we can design an oblivious sequential algorithm to compute the product of
two integers with large bits in an obvious way. Since Montgomery modulo multi-
plication repeats computation of the product and the sum of two large integers,
it can also be computed by an oblivious sequential algorithm.

We have written a C program for bitonic sort that sorts n = 32, 1K (=
1024), and 32K (= 32768) float (32-bit) numbers. We have converted into a
CUDA C program for the bulk execution of bitonic sort with parameter p =
64,128, ...,4M. However, due to the global memory capacity of the GPU, it
is executed for up to p = 128K and p = 4K when n = 1K and n = 32K,
respectively. The CUDA C program invokes p threads in & CUDA blocks with

10

[al2] | af2] | aft] | al0] |
x [bl2] | e[2] | sl | bl0] |
[al2]-8[0] | af0]-b0] |
[a[3]-bl0] | a[1]-B[0] |
[al2]-80] | af0] B[] |
[alBl-0] [al]-b[1] |
[al2]-0[2] [al0] b[2] |
+ [aBl-bR] | e1]-b2] |

| a-b |

Fig. 7. Multiplication of two integers with large bits

64 threads each to sort p inputs of n numbers each. To see the speedup factor, the
original C program is repeatedly executed p times on the Intel Xeon (2.66GHz)

Figure 8 (1) shows the resulting computing time for the bulk execution of
bitonic sort. Recall that, from Theorem 1, the bulk execution of a sequential
algorithm can be computed in O(%t +1t) time units, where p is the total number
of threads, [is the memory access latency, and ¢ is the running time of the original
sequential algorithm. The bulk execution of bitonic sort for n = 32 takes about
0.13ms when p <1K. Further, the computing time is proportional to p when
p >16K and it runs 65.1ms when p = 4M. Thus, we can think that O(lt) =
0.13ms and O(%t) = (15.5p)ns. More specifically, the bulk execution of bitonic
sort for n = 32 and p can be computed in approximately 0.13ms+(15.5p)ns.
Figure 8 (2) shows the speedup factor of the GPU over the CPU. We can see
that the bulk execution of bitonic sort on the GPU can achieve a speedup of
factor more than 180 when n = 32 and p > 128K. Further, when n = 32 and
p = 4M, the GPU is 199 times faster than the CPU.

100 1000
.0
aKcpy o wePy g
-
10s "Or‘o o 32CPU /D/D

O 32K GPU .,/./ o) 100

1 é,—&f*—*—%f*;ﬁ/ P

P /g/ﬁg 1KGPU
100ms > v g 10

- B

. e X 8T
XX XX X//U

01
64 256 1K aK 16K 64K 256K Y] am 64 256 1K K 16K 64K 256K Y] am

(1) The computing time (2) GPU/CPU speedup factor

Fig. 8. The computing time (ms) of bitonic sort on CPU and GPU, and the speedup
for n = 32, 1K, 32K, and p = 64, 128, ..., 4M.

11

We have written a C program for Floyd-Warshall algorithm for graphs with
n = 16, 64, and 256 nodes. We use float (32-bit) numbers to store the length of
each edge. The C program is converted into a CUDA C program using C2CU with
parameters p = 16, 64, and 256. However, due to the global memory capacity
of the GPU, it is executed for up to p = 16K and p = 1K when n = 64 and
n = 256, respectively.

Figure 9 (1) shows the resulting computing time for the bulk execution of
Floyd-Warshall algorithm. We will verify O(2 +1t) time units shown in Theorem
1. The bulk execution of Floyd-Warshall algorithm for n = 16 takes about 3.4ms
when p <512. Also, the computing time is proportional to p when p >4K and
it runs 42.6ms when p = 128K. Thus, we can think that O(In®) = 3.4ms and
O(%) = (325p)ns. More specifically, the bulk execution of the Floyd-Warshall
algorithm for n = 32 and p can be computed in approximately 3.4ms+(325)ns.
Figure 9 (2) shows the speedup factor of the GPU over the CPU. We can see
that the bulk execution on the GPU can achieve a speedup of factor more than
30 when n = 16 and p > 8K. Further, when n = 16 and p = 128K, the GPU is
54 times faster than the CPU.

256 CPU
0

64 CPU
O

,,,,,AE,AQW- 256 GPU)
O A 16 CPU
o’ peng ' %

64 256 1K aK 16K 64K 64 256 1K aK 16K 64K

(1) The computing time (2) GPU/CPU speedup factor

Fig. 9. The computing time (ms) of the Floyd-Warshall algorithm on CPU, and GPU
and the speedup for n = 16, 64, 256, and p = 64, 128, ..., 128K

Finally, we have written a C program for Montgomery modulo multiplication
for n = 512, 16K (= 16384), and 1M (= 1048576) bits. We use C2CU to convert
it into a CUDA C program with parameter p = 64,128, ...,2M. However, due
to the global memory capacity, it is executed for up to p = 64K and p = 2K
when n = 16K and n = 1M, respectively.

Figure 10 (1) shows the resulting computing time for the bulk execution of
the Montgomery modulo multiplication. Again, we will verify O(%t + It) time
units shown in Theorem 1. The bulk execution of the algorithm for n = 512
takes about 0.45ms when p < 512. Also, the computing time is proportional to
p when p >128K and it runs 124ms when p = 2M. Thus, we can think that

O(In?) = 0.45ms and O(%) = (59.1p)ns. More specifically, the bulk execution

12

of the algorithm for n = 512 can be computed in approximately 124ms+(5.9p)ns.
Figure 9 (2) shows the speedup factor of GPU computation using the GPU over
the CPU. We can see that the GPU can achieve a speedup of factor more than
70 when n = 512 and p > 32K. Further, when n = 512 and p = 2M, the GPU is
78 times faster than the CPU.

1000008

10000s

1000s.

100s

R

07

ey
BBl M GPU

1M CPU

16K CPU

16K GPU
* x
WX

512 CPU

X
X

100

Py X «
p1-- k- K- KKK X

512 GPU

64 256 1K aK 16K 64K 256K Y m 64 16K 64K 256K Y

(2) GPU/CPU speedup factor

am

(1) The computing time

Fig. 10. The computing time (ms) of the Montgomery modulo multiplication on CPU,
and GPU. and the speedup for p = 64, 128, ..., 4M

5 Conclusion

The main contribution of this paper is to develop C2CU converter, which con-
verts a C language program of a sequential algorithm into a CUDA C program
for the bulk execution on the GPU. The experimental results show that the gen-
erated CUDA C program on GeForce GTX Titan can achieve up to 199 times
speed-up over the original C program running on an Intel Xeon CPU. Thus,
C2CU is a promising tool to obtain high GPGPU acceleration very easily.

References

1. Hwu, W.W.: GPU Computing Gems Emerald Edition. Morgan Kaufmann (2011)

2. Man, D., Uda, K., Ito, Y., Nakano, K.: A GPU implementation of computing
Euclidean distance map with efficient memory access. In: Proc. of International
Conference on Networking and Computing. (Dec. 2011) 68-76

3. Uchida, A., Ito, Y., Nakano, K.: Fast and accurate template matching using pixel
rearrangement on the GPU. In: Proc. of International Conference on Networking
and Computing, IEEE CS Press (Dec. 2011) 153-159

4. Ogawa, K., Ito, Y., Nakano, K.: Efficient Canny edge detection using a GPU. In:
Proc. of International Conference on Networking and Computing, IEEE CS Press
(Nov. 2010) 279-280

13

10.
11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Nishida, K., Ito, Y., Nakano, K.: Accelerating the dynamic programming for the
matrix chain product on the GPU. In: Proc. of International Conference on Net-
working and Computing. (Dec. 2011) 320-326

Nishida, K., Ito, Y., Nakano, K.: Accelerating the dynamic programming for the
optial poygon triangulation on the GPU. In: Proc. of International Conference
on Algorithms and Architectures for Parallel Processing (ICA3PP, LNCS 7439).
(Sept. 2012) 1-15

Uchida, A., Ito, Y., Nakano, K.: An efficient GPU implementation of ant colony
optimization for the traveling salesman problem. In: Proc. of International Con-
ference on Networking and Computing, IEEE CS Press (Dec. 2012) 94-102
NVIDIA Corporation: NVIDIA CUDA C programming guide version 5.0 (2012)
Man, D., Uda, K., Ueyama, H., Ito, Y., Nakano, K.: Implementations of a parallel
algorithm for computing euclidean distance map in multicore processors and GPUs.
International Journal of Networking and Computing 1(2) (July 2011) 260-276
NVIDIA Corporation: NVIDIA CUDA C best practice guide version 3.1 (2010)
Tani, K., Takafuji, D., Nakano, K., Ito, Y.: Bulk execution of oblivious algorithms
on the unified memory machine, with gpu implementation. In: Proc. of Inter-
national Parallel and Distributed Processing Symposium Workshops. (May 2014)
586-595

Batcher, K.E.: Sorting networks and their applications. In: Proc. AFIPS Spring
Joint Comput. Conf. Volume 32. (1968) 307-314

Akl, S.G.: Parallel Sorting Algorithms. Academic Press (1985)

Floyd, R.W.: Algorithm 97: Shortest path. Communications of the ACM 5(6)
(June 1962) 345

Warshall, S.: A theorem on boolean matrices. Journal of the ACM 9(1) (Jan.
1962) 11-12

Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press (1990)

Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44(170) (1985) 519-521

Shigemoto, K., Kawakami, K., Nakano, K.: Accelerating montgomery modulo mul-
tiplication for redundant radix-64k number system on the FPGA using dual-port
block RAMs. In: Proc. of International Conference on Embedded and Ubiquitous
Computing(EUC). (2008) 44-51

Bo, S., Kawakami, K., Nakano, K., Ito, Y.: An RSA encryption hardware algorithm
using a single DSP block and a single block RAM on the fpga. International Journal
of Networking and Computing 1(2) (July 2011) 277-289

Nakano, K.: Simple memory machine models for GPUs. International Journal of
Parallel, Emergent and Distributed Systems 29(1) (2014) 17-37

Nakano, K.: Sequential memory access on the unified memory machine with ap-
plication to the dynamic programming. In: Proc. of International Symposium on
Computing and Networking. (Dec. 2013) 85-94

Aho, A.V., Ullman, J.D., Hopcroft, J.E.: Data Structures and Algorithms. Addison
Wesley (1983)

Flynn, M.J.: Some computer organizations and their effectiveness. IEEE Transac-
tions on Computers C-21 (1972) 948-960

Blum, T., Paar, C.: High-radix montgomery modular exponentiation on reconfig-
urable hardware. IEEE Trans. on Computers 50(7) (2001) 759-764

14

