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Abstract—The Hierarchical Memory Machine (HMM) is a
theoretical parallel computing model that captures the essence
of computing on CUDA-enabled GPUs. The summed area
table (SAT) of a matrix is a data structure frequently used
in the area of computer vision which can be obtained by
computing the column-wise prefix-sums and then the row-
wise prefix-sums. The main contribution of this paper is to
introduce the asynchronous Hierarchical Memory Machine
(asynchronous HMM), which supports asynchronous execution
of CUDA blocks, and show a global-memory-access-optimal
parallel algorithm for computing the SAT on the asynchronous
HMM. A straightforward algorithm (2R2W SAT algorithm)
on the asynchronous HMM, which computes the prefix-sums
in every column using one thread each and then computes
the prefix-sums in every row, performs 2 read operations and
2 write operations per element of a matrix. The previously
published best algorithm (2R1W SAT algorithm) performs
2 read operations and 1 write operation per element. We
present a more efficient algorithm (1R1W SAT algorithm)
which performs 1 read operation and 1 write operation per
element. Clearly, since every element in a matrix must be read
at least once, and all resulting values must be written, our
1R1W SAT algorithm is optimal in terms of the global memory
access. We also show a combined algorithm (��� ��R1W SAT
algorithm) of 2R1W and 1R1W SAT algorithms that may have
better performance. We have implemented several algorithms
including 2R2W, 2R1W, 1R1W, �� � ��R1W SAT algorithms
on GeForce GTX 780 Ti. The experimental results show that
our �����R1W SAT algorithm runs faster than any other SAT
algorithms for large input matrices. Also, it runs more than
100 times faster than the best SAT algorithm using a single
CPU.
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I. INTRODUCTION

The GPU (Graphics Processing Unit), is a specialized
circuit designed to accelerate computation for building and
manipulating images [1], [2]. Latest GPUs are designed for
general purpose computing and can perform computation in
applications traditionally handled by the CPU. Hence, GPUs
have recently attracted the attention of many application
developers [1]. NVIDIA provides a parallel computing ar-
chitecture called CUDA (Compute Unified Device Architec-
ture) [3], the computing engine for NVIDIA GPUs. CUDA
gives developers access to the virtual instruction set and

memory of the parallel computational elements in NVIDIA
GPUs.

CUDA-enabled GPUs has streaming multiprocessors
(SMs) each of which executes multiple threads in parallel.
CUDA can use two types of memories in the NVIDIA
GPUs: the shared memory and the global memory [3].
Each SM has the shared memory, an extremely fast on-chip
memory with lower capacity, say, 16-48 KBytes, and low
latency. Every SM shares the global memory implemented
as an off-chip DRAM with large capacity, say, 1.5-6 GBytes,
but its access latency is very long. The efficient usage of
the shared memory and the global memory is a key for
CUDA developers to accelerate applications using GPUs.
In particular, we need to consider bank conflicts of shared
memory access and coalescing of global memory access [4],
[5]. The address space of shared memory is mapped into
several physical memory banks. If two or more threads
access the same memory banks at the same time, the access
requests are processed in turn. Hence, to maximize the
memory access performance, CUDA threads should access
distinct memory banks to avoid the bank conflicts of the
memory accesses. To maximize the bandwidth between the
GPU and the DRAM chips, the consecutive addresses of the
global memory must be accessed at the same time. Thus,
CUDA threads should perform coalesced access when they
access the global memory.

In our previous paper [6], we have introduced two models,
the Discrete Memory Machine (DMM) and the Unified Mem-
ory Machine (UMM), which reflect the essential features
of the shared memory and the global memory of NVIDIA
GPUs. The outline of the architectures of the DMM and
the UMM is illustrated in Figure 1. In both architectures,
a sea of threads (Ts) are connected to the memory banks
(MBs) through the memory management unit (MMU). Each
thread is a Random Access Machine (RAM) [7], which can
execute fundamental operations in a time unit. Threads are
executed in SIMD [8] fashion, and they run on the same
program and work on the different data. MBs constitute a
single address space of the memory. A single address space
of the memory is mapped to the MBs in an interleaved way
such that the word of data of address � is stored in the
�� ��� ��-th bank, where � is the number of MBs. The



main difference of the two architectures is the connection
of the address line between the MMU and the MBs, which
can transfer an address value. In the DMM, the address lines
connect the MBs and the MMU separately, while a single
address line from the MMU is connected to the MBs in
the UMM. Hence, in the UMM, the same address value is
broadcast to every MB, and the same address of the MBs can
be accessed in each time unit. On the other hand, different
addresses of the MBs can be accessed in the DMM.
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Figure 1. The architectures of the DMM and the UMM with � � �

Quite recently, we have introduced the Hierarchical Mem-
ory Machine (HMM) [9], which is a hybrid of the DMM
and the UMM. The HMM is a more practical parallel
computing model that reflects the hierarchical architecture
of CUDA-enabled GPUs. Figure 2 illustrates the architecture
of the HMM. The HMM consists of � DMMs and a single
UMM. Each DMM has � memory banks and the UMM
has � memory banks. We call the memory banks of each
DMM the shared memory and those of the UMM the global
memory after CUDA-enabled GPUs. Each DMM can work
independently and can perform the computation using its
shared memory. Also, all threads of DMMs work as a single
UMM and can access to the global memory. While the
memory access latency of the shared memory of GPUs is
very low, that of the global memory is several hundred clock
cycles [3]. Hence, we assume that the latency of the shared
memory is 1, and we use parameter � to denote the latency
of the global memory in the HMM.

Suppose that a matrix � of size
�
� ��

� is given. The
summed area table (SAT) [10] is a matrix � of the same size
such that

������� �
�

�������������
���������	

It should have no difficulty to confirm that the SAT can
be obtained by computing the column-wise prefix-sums and
the row-wise prefix-sums as illustrated in Figure 3. Once we
have the summed area table, the sum of any rectangular area
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Figure 2. The architecture of the HMM with � � � DMMs and width
� � �

of � can be computed by evaluating
�

�����������
������� � �����
� 	 �����
� 	 �������� �������	

Thus, the sum of a rectangular area can be computed using
four elements of the summed area table �. Since the sum
of any rectangular area can be computed in ��
� time the
summed area table has a lot of applications in the are of
image processing and computer vision [11]. In our previous
paper [12], we have presented a parallel algorithm that
computes the SAT in �� 	



	 	�

�
	 � ����� time units using


 threads on the UMM with width � and latency �. This
algorithm is optimal in the sense that any SAT algorithm
takes at least 
� 	



	 	�

�
	 � ����� time units. However, this

algorithm repeats pairwise addition and has a large constant
factor in the computing time and it is not practically efficient.

The main contribution of this paper is to introduce the
asynchronous Hierarchical Memory Machine (asynchronous
HMM), which supports asynchronous execution of CUDA
blocks, and show a global-memory-access-optimal parallel
algorithm for computing the summed area table stored in the
global memory of the asynchronous HMM. A straightfor-
ward algorithm (2R2W SAT algorithm) on the asynchronous
HMM, which computes the column-wise prefix-sums and
then the row-wise prefix-sums, performs 2 read operations
and 2 write operations per element of a matrix. The best
known algorithm (2R1W SAT algorithm) so far performs 2
read operations and 1 write operation per element [13]. We
present a more efficient algorithm (1R1W SAT algorithm)
on the asynchronous HMM, which performs only 1 read
operation and 1 write operation per element. Clearly, since
every element in a matrix must be read at least once and all
resulting values must be written, our 1R1W SAT algorithm
is optimal in terms of the global memory access. We also
show a combined algorithm (�
 	 
�R1W SAT algorithm)
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Figure 3. The summed area table (SAT) of a �� � matrix and 2R2W SAT algorithm

of 2R1W and 1R1W SAT algorithms that can run faster
than any other algorithms for large matrices. Table I shows
the total number of memory access operations to the global
memory and the shared memory, the number of barrier
synchronization steps, and the global memory access cost.
The global memory access cost, which is computed from
the number of global memory access operations and the
number of barrier synchronization steps, approximates the
computing time on the HMM. For simplicity, in the table, we
omit small terms to focus on dominant terms. For example,
2R2W SAT algorithm performs � � �

� coalesced write
operations, but we simply write � in the corresponding entry.

We have also implemented several algorithms including
2R2W, 2R1W, 1R1W, �
 	 
�R1W SAT algorithms on
GeForce GTX 780 Ti. The experimental results show that
our �
 	 
�R1W SAT algorithm runs faster than any other
SAT algorithms for large input matrices. Further, it runs
more than 100 times faster than the best SAT algorithm using
a single CPU.

II. THE DMM, THE UMM, THE HMM AND THE

ASYNCHRONOUS HMM

We first define the Discrete Memory Machine (DMM) of
width � and latency �. Let ���� � ��� � 	 �� � 	 ��� � 	
��� 	 	 	� (� � � � � � 
) be a set of address of the �-
th memory bank of the memory. In other words, address
� is in the �� ��� ��-th memory bank. We assume that
addresses in different banks can be accessed in a time unit,
but no two addresses in the same bank can be accessed in
a time unit. Also, we assume that � time units are necessary
to complete an access request and continuous requests are
processed in a pipeline fashion. Thus, it takes �	 ��
 time
units to complete memory access requests to � addresses in
a particular bank.

We assume that 
 threads are partitioned into �



groups
of � threads called warps. More specifically, 
 threads
� ���, � �
�, 	 	 	, � �
 � 
� are partitioned into �



warps

� ����� �
�, 	 	 	, � � �


�
� such that � ��� � �� ������ � ���

� 	 
�� 	 	 	 � � ��� 	 
� � � � 
�� (� � � � �


� 
). Warps

are dispatched for memory access in turn, and � threads
in a warp try to access the memory at the same time. In
other words, � ����� �
�� 	 	 	 �� � �



� 
� are dispatched

in a round-robin manner if at least one thread in a warp
requests memory access. If no thread in a warp needs
memory access, such warp is not dispatched for memory
access. When � ��� is dispatched, � threads in � ��� send
memory access requests, at most one request per thread, to
the memory. We also assume that a thread cannot send a new
memory access request until the previous memory access
request is completed. Hence, if a thread sends a memory
access request, it must wait at least � time units to send a
new memory access request.

We next define the Unified Memory Machine (UMM) of
width � and latency � as follows. Let ���� � �� ��� � ��	

� 	 	 	 � �� 	
� ��� 
� denote a set of addresses in the �-th
address group. We assume that addresses in the same address
group are processed at the same time. However, if they are
in the different groups, one time unit is necessary for each
of the groups. Also, similarly to the DMM, 
 threads are
partitioned into warps and each warp accesses the memory
in turn.

Figure 4 shows examples of memory access on the
DMM and the UMM. We assume that each memory access
request is completed when it reaches the last pipeline stage.
Two warps � ��� and � �
� access to ��� �� 
�� �	 and
�
�� 

� 
�� �	, respectively. In the DMM, memory access
requests by � ��� are separated into two pipeline stages,
because addresses 7 and 15 are in the same bank ����.
Those by � �
� occupies 1 stage, because all requests are
in distinct banks. Thus, the memory requests occupy three
stages, it takes � 	 � � 
 � � time units to complete
the memory access. In the UMM, memory access requests
by � ��� are destined for three address groups. Hence the
memory requests occupy three stages. Similarly those by
� �
� occupy two stages. Hence, it takes �	��
 � � time
units to complete the memory access.



Table I
THE PERFORMANCE OF SAT ALGORITHMS ON THE HMM

global memory access shared memory access barrier global memory
SAT algorithms Coalesced Stride synchronization access cost

Read/Write Read/Write Read/Write steps
2R2W � / � � / � - 1 ��� � �

�
� ��

4R4W �� / �� - � / � 3 � �
�
� ��

4R1W - �� / � - �
�
� ��� �

�
��

2R1W �� / � - �� / �� �� � � � �
�
� 	�� � �
�

1R1W � / � - �� / �� �
�
�

�
� �
�
� �

�
�

�
�

1.25R1W ����� / � - ���� / ����
�
�

�
� �� � � �����

�
� 	

�
�

�
� ��� �
�

	� � �
R1W 	� � �
� / � - 	� �
�
�
� / 	� �

�
�
� �

���
�
��
�
�

�
� �� � � 	� � �
 �

�
� 	�

���
�
��
�
�

�
� ��� �
�

� is the depth of recursion, which takes value no more than 1 from the practical point of view.
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Figure 4. Examples of memory access on the DMM and the UMM

Next, we define the Hierarchical Memory Machine
(HMM) [9]. The HMM consists of � DMMs and a single
UMM as illustrated in Figure 2. Each DMM has � memory
banks and the UMM also has � memory banks. We call
the memory banks of each DMM the shared memory and
those of the UMM the global memory. Each DMM works
independently. Threads are partitioned into warps of �
threads, and each warp are dispatched for the memory access
for the shared memory in turn. Further, each warp of �
threads in all DMMs can send memory access requests to
the global memory. Figure 2 illustrates the architecture of
the HMM with � � � DMMs. Each DMM and the UMM
has � � � memory banks. The shared memory of each
DMM and the global memory of the UMM correspond to
“the shared memory” of each streaming multiprocessor and
“the global memory” of GPUs. We also assume that the

shared memory in each DMM of the HMM can store up to
����� numbers. The capacity of the shared memory of latest
CUDA-enabled GPUs is up to 48KBytes and the number �
of the banks is 32 [3]. Since an array of ��� double (64-bit)
numbers occupy 8KBytes, each shared memory can store at
most 6 such matrices. Thus, it is reasonable to assume that
DMM can store ����� numbers in the shared memory.

For more realistic model for GPUs, we introduce the
asynchronous Hierarchical Memory Machine (asynchronous
HMM). In the asynchronous HMM, DMMs work asyn-
chronously in the sense that some DMMs may work slightly
slower or faster than the others. Instead, all threads in all
DMMs can execute a barrier synchronization instruction. If
a thread in a DMM executes the barrier synchronization
instruction, it must wait until all the other threads in all
DMMs execute it. Also, after all threads execute the barrier
synchronization instruction, all DMMs are reset, that is, the
shared memory of all DMMs are initialized and all data
stored in it are lost. The reader may think that this reset
assumption of all DMMs is not reasonable. However, this
assumption is mandatory for program scalability of DMMs
in the HMM. More specifically, suppose that a programmer
write a program of the HMM with � DMMs. It may be
possible to execute this program in the HMM with � �

DMMs such that �� � �. If this is the case, the program
of �� DMMs are executed until a barrier synchronization
instruction is executed. After that, the � � DMMs are reset
and the program of next � � DMMs are executed. The same
procedure is repeated until all threads execute the barrier
synchronization instruction. Hence, it makes sense to assume
that all DMMs are reset after each barrier synchronization
step. The previous DMMs is responsible for copying the
data stored in the shared memory to the global memory
before barrier synchronization if they are used after the
synchronization. Actually, we need to terminate a CUDA
kernel call for a GPU when barrier synchronization of all
threads is necessary [3]. When a CUDA kernel call is
terminated for barrier synchronization, the data stored in the
shared memory by a CUDA block are lost. This is because
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Figure 5. Timing chart of coalesced memory access to the global memory
with two barrier synchronization steps

CUDA blocks are executed in streaming multiprocessors
with small shared memory one by one in turn.

III. THE GLOBAL MEMORY ACCESS COST ON THE HMM
AND THE DIAGONAL ARRANGEMENT ON THE DMM

Let �, �, and � be the total number of coalesced
global memory access operations, the total number of stride
global memory access operations, and the number of barrier
synchronization steps performed on the HMM. The global
memory access cost is defined to be 




	�	��	
����
�.

We will show that the global memory access cost approxi-
mates the computing time on the HMM if the computation
performed in each DMM is negligible.

Suppose that an algorithm performs � coalesced memory
access operations and two barrier synchronization steps.
Clearly, by two barrier synchronization steps, the memory
access is partitioned into three stages as illustrated in Fig-
ure 5. Let ��, ��, and �� such that � � �� 	 �� 	 �� be
the numbers of memory access operations performed in the
three stages. Since � coalesced memory access operations
by a warp of � threads occupy one pipeline stage, the three
stages takes 	�



	 � � 
, 	�



	 � � 
, and 	�



	 � � 
 time

units respectively. Hence, the algorithm runs 	


	 ��� � 
�

time units. Also, if � memory access operations are stride,
each memory access operation occupy one pipeline stage,
the algorithm runs in � 	 ��� � 
� time units. In general,
if an algorithm performs � coalesced memory access op-
erations, � stride memory access operations, and � barrier
synchronization steps, it runs 




	�	��	
����
�, which

is the global memory access cost.
Suppose that we have a matrix of size ��� in the shared

memory of a DMM in the HMM. Since a column of the
matrix is in the same bank, column-wise access by � threads
has bank conflicts, while row-wise access is conflict-free.
In our previous paper [6], we have presented a diagonal
arrangement of a matrix such that each ��� �� element is
arranged in ������� 	 �� ��� ��. Figure 6 illustrates the
diagonal arrangement of a � � � matrix. We can confirm
that both a row-wise access to �
� ��� �
� 
�� �
� ��� �
� ��
and a column-wise access to ��� 
�� �
� 
�� ��� 
�� ��� 
� are
conflict-free. Thus, we have,

Lemma 1: In the diagonal arrangement of a ��� matrix,
both a row-wise access and a column-wise access are
conflict-free.
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Figure 6. Diagonal arrangement of a �� � matrix

The diagonal arrangement is used to compute the SAT
of a � � � matrix in a shared memory and transpose of a
matrix in the global memory of the HMM.

IV. 2R2W AND 4R4W SAT ALGORITHMS

Let �� denote a local register of thread � ��� (� � � �
� � 
). As illustrated in Figure 3, the summed area table
(SAT) of a

�
� � �

� matrix � can be computed by the
column-wise prefix-sums and the row-wise prefix-sums:

[2R2W SAT algorithm]
for �
 � to

�
� do in parallel // column-wise prefix-sums

� ��� performs �� 
 �������
for � 
 
 to

�
�� 
 do

� ��� performs �� 
 �� 	 �������
� ��� performs �������
 ��

barrier synchronization
for �
 � to

�
� do in parallel // row-wise prefix-sums

� ��� performs �� 
 �������
for � 
 
 to

�
�� 
 do

� ��� performs �� 
 �� 	 �������
� ��� performs �������
 ��

In the computation of the column-wise prefix-sums,
�������� �����
�� 	 	 	 � �����

�
��
� are read. After that, for each

� (
 � � � �
� � 
), �������� �����
�� 	 	 	 � �����

�
� � 
� are

read and written. Clearly, memory access to these elements
are coalesced. In the computation of the column-wise prefix-
sums, �������� ��
����� 	 	 	 � ��

�
�� 
���� are read. After that,

for each � (
 � � � �
��
), �������� ��
����� 	 	 	 � ��

�
��
����

are read and written. Memory access to these elements are
coalesced. Hence, 2R2W SAT algorithm performs ��� �

�
coalesced memory access operations and �� � �

� stride
memory access operations. Since 2R2W SAT algorithm has
one barrier synchronization step, we have,

Lemma 2: The global memory access cost of 2R2W SAT
algorithm is at most ��	 � 	



	 ��� � 
�.

We can avoid stride memory access when we compute
the row-wise prefix-sums by transposing a matrix. More
specifically, the row-wise prefix-sums can be obtained by
transpose, column-wise prefix-sums, and transpose. It has



been shown in [14] that transpose of a matrix of size�
���

� in the global memory of the HMM can be done
in �� coalesced memory access operations with no barrier
synchronization step. The idea of the transpose it to partition
the matrix into

�
	



�

�
	



blocks with ��� elements each.

We can transpose a block via a ��� matrix with diagonal
arrangement in a shared memory of a DMM efficiently. First,
a block in the global memory is read in row-wise and it is
written in a � � � matrix with diagonal arrangement in
row-wise. After that, the � � � matrix is read in column-
wise and it is written in a a block in the global memory
in row-wise. The reader should refer to Figure 7 illustrating
transpose of a block using a � � � matrix with diagonal
arrangement. By executing this block transpose for all blocks
in parallel so that a pair of corresponding two blocks are
swapped appropriately, the transpose of a

�
���

� can be
done. The reader should refer to [14] for the details of the
transpose.
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Figure 7. Transpose of a block using a � � � matrix with diagonal
arrangement

By executing matrix transpose twice, we can design
4R4W SAT algorithm as follows:
[4R4W SAT algorithm]
Step 1: Compute the column-wise prefix-sums
Step 2: Transpose
Step 3: Compute the column-wise prefix-sums
Step 4: Transpose
After Steps 1, 2, and 3, barrier synchronization is necessary.
Also, each step needs no more than �� coalesced global
memory access. Thus, we have,

Lemma 3: The global memory access cost of 4R4W SAT
algorithm is at most � 	



	 ��� � 
�.

V. 2R1W SAT ALGORITHM

The main purpose of this section is to review a SAT
algorithm for GPU shown in [13]. Since this SAT algorithm
performs �� read and � write operations to the global
memory, we call it 2R1W SAT algorithm. 2R1W SAT
algorithm that we will explain is slightly different from that
in [13] for easy understanding of the algorithm.

Suppose that a
�
���� matrix � is partitioned into

�
	



��

	



blocks of � � � elements each. 2R1W SAT algorithm

has three steps as follows:
[2R1W SAT algorithm]
Step 1: Each DMM reads a block in the global memory

and write it in the shared memory. The column-wise sums,
the row-wise sums, and the sum of the block are computed.
More specifically, for a block �� of size � � �,

� column-wise sums: ���� �
�
��

��� �������� for all � (� �
� � � � 
),

� row-wise sums: ���� �
�
��

��� �������� for all � (� � � �
� � 
), and

� sum: � �
�
��

���

�
��
��� ��������.

The column-wise sums of all blocks excluding the bottom
blocks are written in the global memory such that they con-
stitute a matrix of size �

�
	



�
���� in the global memory.

Similarly, the row-wise sums of all blocks constitute a matrix
of size

�
� � �

�
	



� 
�, and the sums constitute a matrix

of size �
�
	



� 
� � �

�
	



� 
�. The reader should refer to

Figure 8 for illustrating the resulting values for a matrix in
Figure 3 with � � �. Let �, �, and 
 denote matrices of
the resulting values for the column-wise sums, the row-wise
sums, and the sums, respectively. In Figure 8, the sizes of
�, �, and 
 are �� �, �� �, and �� �, respectively.
Step 2: The column-wise prefix-sums of � and the row-wise
prefix-sums of � are computed in the same way as 2R2W
SAT algorithm. If 
 is no larger than ��� then we compute
the SAT of 
 using a single DMM. Otherwise, we execute
2R1W SAT algorithm recursively for 
. The reader should
refer to Figure 8 for the resulting values of �, �, and 
.
Step 3-1: Each DMM reads a block from the global memory
and write it in the shared memory. Let � � denote a block
read by a particular DMM. It reads � elements in �, and
adds them to the top row of �� so that each of the resulting
sums is the sum of all elements above it, inclusive, in the
same column. Similarly, it reads � elements in �, and
adds them to the leftmost column of � � so that each of the
resulting sums is the sum of all elements to the left-side
of it, inclusive, in the same row. Further, an element in 

is added to the top left corner of � � so that the resulting
sum is the the sum of all blocks above and to the left of
it, inclusive. The reader should refer to Figure 9 illustrating
these operations for a block. Also, Figure 8 illustrates the
resulting values of all blocks.
Step 3-2: Each DMM computes the SAT of a block obtained
in Step 3-1 and the resulting values are written in the global
memory. Figure 9 illustrates the values of a block before
and after this step. The reader should have no difficulty to
confirm that the block thus obtained stores the SAT of the
input matrix correctly.

Let us evaluate the global memory access cost. In Step 1,
all elements in � are read, and �, �, and 
 are written.
Thus, � elements are read from the global memory and less
than � 	



	 	


� elements are written in the global memory.
Note that we should write �� , that is, transposed � in the
global memory for the purpose of coalesced memory access
for the row-wise prefix-sums computation in Step 2. If this is
the case, the row-wise prefix-sums of � corresponds to the
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Figure 9. Step 3 of 2R1W SAT algorithm

column-wise prefix-sums of �� , which can be computed
by coalesced memory access to the global memory. Also,
in Step 1, the column-wise sums, the row-wise sums, and
the SAT of a block in a shared memory are computed. This
computation can be done without bank conflicts by diagonal
arrangement of a block. Each of the � DMMs performs the
computation of the column-wise sums for 	


��
blocks of size

� � �. Since the memory access is conflict-free, this takes
only 	


�
time units, which is so small that it can be hidden

by latency overhead.
Step 2 performs the computation of the the column-wise

prefix-sums and the row-wise prefix-sums for matrices of
	



elements. It also computes the SAT of 	

� elements,

recursively, which performs global memory access to �� 	

� �

elements. In Step 3-1 all elements in � and the resulting
values of �, �, and 
 are read from the global memory.

In Step 3-2 the resulting SAT is written in the global
memory. Thus, 2R1W SAT algorithm performs at most
��	� 	



	�� 	


� � coalesced memory access operations. This
includes the memory access by recursive computation of 
.

Let us evaluate the number of barrier synchronization
steps. Barrier synchronization step is necessary after Steps 1
and 2 if the SAT of 
 is computed without recursion. If the
SAT of 
 is computed recursively, additional two barrier
synchronization steps is necessary for each recursion. Hence,
if 2R1W SAT algorithm involves � recursions, it performs
��	 � barrier synchronization steps. Thus, we have,

Lemma 4: The global memory access cost of 2R1W SAT
algorithm with recursion depth � is � 	



	 � 	


� 	 �� 	

� � 	

���	 ���� � 
�.
Since � � �� in current GPUs, � � � if � � ��� and � � 

if � � ���. Thus, � is no more than 1 from the practical
point of view.

VI. OUR 1R1W SAT ALGORITHM

The main purpose of this section is to show our novel
SAT algorithm called 1R1W SAT algorithm. This algorithm
performs only � 	 �� 	



� read operations and � 	 �� 	



�

write operations to the global memory. Before showing
1R1W SAT algorithm, we present 4R1W SAT algorithm.
By combining techniques used in 4R1W SAT and 2R1W
SAT algorithms, we can obtain 1R1W SAT algorithm.

Let � be the SAT of an input
�
���� matrix �. Suppose

that the values of ���� 
��� � 
�, ������ � 
�, and ���� 
����
are already computed. We can obtain the value of ������� by
evaluating the following formula:

������� � �������	�������
�	����
���������
����
� (1)



From this formula, 4R1W SAT algorithm computes the SAT
in a diagonal scan order from the top left to the bottom right.
More specifically, 4R1W algorithm has �

�
�� 
 stages and

each Stage � (� � � � �
�
� � �) computes Formula (1)

for all � and � such that �	 � � �. Figure 10 illustrates the
computation performed in Stage 7.
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Figure 10. Stage 7 of 4R1W SAT algorithm

Let us evaluate the performance of 4R1W SAT algorithm.
To compute each �������, 3 elements in � and 1 element in �
are read. Also, the resulting value is written in �. Thus, ��
reading operations and � writing operations are performed.
Unfortunately, all memory access are stride. Further, barrier
synchronization step is necessary after every stage from 0
to �

�
�� �. Thus, we have,

Lemma 5: The global memory access cost of 4R1W SAT
algorithm is ��	 ��

�
�� 
��.

We are now in a position to show our new 1R1W SAT
algorithm. The idea is to extend 4R1W SAT algorithm to
perform SAT computation in block-wise. In each block-wise
computation, a similar computation to 2R1W SAT algorithm
is performed. Again, an input matrix � of size

�
���

� is
partitioned into

�
	



�

�
	



blocks of size � � � each. Let

���� �� (� � �� � �
�
	



� 
) denote a block in the �-th row

and in the �-th column. 1R1W SAT algorithm has �
�
	



� 


stages. Each Stage � (� � � � �
�
	



� �) computes the

SAT of block ���� �� with � 	 � � �. The reader should
refer to Figure 11 for illustrating the computation performed
in Stage 3. In Stage 3, ���� 
� and ��
� �� are computed
using the resulting values in ���� ��, ��
� 
�, and ���� ��.
From these resulting values, we can obtain �, �, and 
 for
each of ���� 
� and ��
� ��. For example, in Figure 11,
� for ���� 
� is ��� 

� ��. This can be obtained by the
resulting value 13 of the bottom top corner in ��
� �� and the
resulting values ���� ��� ��� in the bottom row of ��
� 
�.
More specifically, we can obtain � by computing pairwise
subtraction ���� ��� ���� �
�� ��� ��� � ��� 

� ��. After the
values of �, �, and 
, these values are added to ���� 
� in
the same way as Step 3-1 of 2R1W SAT algorithm. Finally,
we compute the SAT of ���� 
� in the same way as Step 3-2
of 2R1W SAT algorithm.
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Figure 11. Stage 3 of 1R1W SAT algorithm for a matrix in Figure 3

Let us evaluate the performance of 1R1W SAT algorithm.
In each stage, the values of a block in the global memory
are read and the resulting values are written to the global
memory. Also, the values necessary to compute �, �, and 

are read and written to the global memory. For each block,
�� 	 
 elements are read from the global memory for this
task. Since we have 	


� blocks, �	 ���	
� � 	

� elements

are read and � 	 ��� 	 
� � 	

� elements are written in all

stages. Barrier synchronization is necessary after each of
Stages from 0 to �

�
	



� �. Thus, we have,

Theorem 6: The global memory access cost of 4R1W
SAT algorithm is � 	



	�� 	


� � 	 ��
�
	



� ���.

VII. �
 	 
�R1W SAT ALGORITHM

The main purpose of this section is to accelerate the
SAT computation further by combining 1R1W and 2R1W
SAT algorithms. The idea of further acceleration is to use
2R1W SAT algorithm in early and late stages of 1R1W SAT
algorithms to reduce the latency overhead.

Again, suppose that a
�
� � �

� matrix � is partitioned
into

�
	



�

�
	



blocks of size � � � each. As illustrated

in Figure 12, for any fixed parameter 
 (� � 
 � 
), we
partition blocks into (A) top left triangle, (B) bottom right
triangle, and (C) remaining blocks. Clearly, (A) and (B) have�
�
�
	



	�

�
�
�
	



�
�	 � � �	
 �

�
�
�
	



��
�
�
�
	



	
��� � �	

�
�

blocks each. We first use 2R1W SAT algorithm to compute
the SAT of (A). After that, we use 1R1W SAT algorithm
for (C). Finally, 2R1W SAT algorithm is used for the
computation of the SAT in (B).

Let us evaluate the performance. Since (A) and (B) have
approximately �	

� elements in �	
�
� blocks each, 2R1W

SAT algorithm for (A) and (B) performs 
� 	 �� �	


� read

operations and �	
� 	 �� �	



� write operations each. Also,

since (C) has �
� 
�� elements, 1R1W SAT algorithm for



(C) performs �
 � 
�� 	 �� ����		



� read operations and
�
 � 
�� 	 �� ����		



� write operations. Hence, this SAT

algorithm performs �
 	 
�� 	 �� 	


� read operations and

�	�� 	


� write operations. Thus, we call this SAT algorithm

�
 	 
�R1W SAT algorithm. Further, 2R1W SAT algorithm
for (A) and (B) needs � 	 �� barrier synchronization steps
each, where � is the depth of the recursion of 2R1W
SAT algorithm. Since 1R1W SAT algorithm for (C) has
� �����	�	



� 
 stages, it needs � �����	�	



� � barrier

synchronization steps. Also, after the computation of the
SAT for (A) and (B), 1 barrier synchronization steps each
is necessary. Totally, �
 	 
�R1W SAT algorithm executes
� �����	�	



	�	�� barrier synchronization steps. Thus, we

have,
Theorem 7: The global memory access cost of �
 	


�R1W SAT algorithm is ��	
� 	


	�� 	


� �	�� �����	�	



	
� 	 ����.
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Figure 12. Partition of a matrix for 	� � �
R1W SAT algorithm

When 
 � �	��, the global memory access cost of
1.25R1W SAT algorithm is �	� 	



	�

�
	



	�	���� time units.

Since 2R1W and 1R1W SAT algorithms run approximately
� 	



	 �� 	 ���� and � 	


	 �

�
	



� time units, respectively,

1.25R1W SAT algorithm may run faster than these algo-
rithms. Further, we can select the best value 
 that minimize
the running time of �
 	 
�R1W SAT algorithm.

VIII. EXPERIMENTAL RESULTS

We have implemented all SAT algorithms presented so far
in this paper on GeForce GTX 780 Ti. Since the number of
memory banks and the number of threads in a warp is 32 [3],
we have implemented SAT algorithms with � � ��. Barrier
synchronization of all threads is implemented by invoking
separated CUDA kernel calls. For example, one CUDA
kernel call is invoked for each of �

�
	



� 
 stages of 4R1W

SAT algorithm. We have tested several configuration in terms
of the number of threads in a CUDA block, and selected
the best configuration. For example, in 2R2W, 4R4W, and
4R1W SAT algorithms, CUDA blocks with 64 threads each
are invoked. Since each Stage � and each Stage �

�
	



�
� �

(� � � �
�
	



� 
) of 4R1W SAT algorithm computes �	 


values of the SAT, it uses � 	 
 threads in �
�
�� CUDA

blocks. In 2R1W and 1R1W SAT algorithm, a �� � ��
block in a matrix is copied to the shared memory in a
streaming multiprocessor and the column-wise sums, the
row-wise sums, and/or the SAT of it is computed. After
that, the resulting values are copied to the global memory.
For this operation, we use one CUDA block with 128 threads
for each ��� �� block. All 128 threads in a CUDA block
are used to copy a �� � �� block in the shared memory
and 32 threads out of 128 threads are used to compute the
column-wise sums, the row-wise sums, and/or the SAT.

Table II shows the running time of SAT algorithms for a
double (64-bit) matrix of size from 1K�1K (� 
����
���)
to 18K�18K (� 
����� 
����). Since a 18K�18K 64-bit
matrix uses 2.53GBytes, it is hard to store a matrix larger
than it in the global memory of GeForce GTX 780 Ti of
size 3GBytes. The running time of the best SAT algorithm
for each value of

�
� is highlighted in boldface. Since

4R1W SAT algorithm performs a lot of kernel calls and
stride memory access, and has large memory access latency
overhead, it needs much more computing time than the other
algorithms. Recall that 4R4W SAT algorithm corresponds
to 2R2W SAT algorithm with transpose and 4R4W SAT
algorithm performs much more memory access operations
than 2R2W SAT algorithm. Since 2R2W SAT algorithm
performs stride memory access, it is much slower than
4R4W SAT algorithm. These experimental results imply
that stride memory access imposes a large penalty on the
computing time.

Recall that 2R1W and 1R1W SAT algorithms are block-
based algorithms, that perform ��	�� 	



� and ��	�� 	



�

global memory access operations, respectively. Hence, they
are faster than 4R4W SAT algorithm, which performs ap-
proximately �� global memory access operations. Although
1R1W SAT algorithm performs fewer global memory access
operations than 2R1W SAT algorithm, it runs slower when�
� �6K. The reason is that 1R1W SAT algorithm has a

larger latency overhead than 2R1W SAT algorithm and the
latency overhead dominates the bandwidth overhead when
the size of input is small. 1.25R1W SAT algorithm runs
faster than both 2R1W and 1R1W SAT algorithms whenever�
� �5K. We have evaluated the computing time for all

possible values of 
 to find the best value 
 that minimize
the running time of �
 	 
�R1W. Table II also shows the
values of 
 (� � 
 � 
) that minimize the running time
of �
 	 
�R1W SAT algorithm. From the table, we can see
that �
	 
�R1W SAT algorithm attain the best performance
when

�
� �5K. Also, the value of 
 that gives the best

performance decreases as the size of a matrix increases.
This is because the memory bandwidth overhead of 1R1W
SAT algorithm dominates the latency overhead for larger
matrices and 1R1W SAT algorithm has better performance
than 2R1W algorithm. We can conjecture that 1R1W SAT
algorithm could be the best if an input matrix was much



Table II
THE RUNNING TIME OF SAT ALGORITHM (IN MILLISECONDS) AND THE VALUE OF � THAT MINIMIZE THE RUNNING TIME OF 	� � �
R1W SAT

ALGORITHM FOR MATRICES OF SIZES FROM 1K�1K TO 18K�18K

SAT Algorithms 1K 2K 3K 4K 5K 6K 7K 8K 10K 12K 14K 16K 18K
2R2W 1.47 3.28 5.71 9.53 13.6 23.9 27.1 47.8 90.8 163 160 234 401
4R4W 1.07 2.52 4.48 6.77 9.67 13.7 17.2 22.2 33.9 50.4 64.2 83.1 117
4R1W 11.5 22.9 36.4 50.1 113 104 173 252 315 597 437 742 1600
2R1W 0.332 0.850 1.83 3.09 4.79 6.78 9.25 12.3 18.9 27.2 36.8 48.7 61
1R1W 0.902 1.46 2.43 3.65 5.05 6.81 8.71 10.9 16.2 22.6 29.7 38 53.8

1.25R1W 0.453 1.05 1.96 3.25 4.71 6.41 8.47 10.8 16.5 23 31.2 40.7 57.6
fastest 	� � �
R1W 0.365 0.958 1.94 3.16 4.58 6.32 8.25 10.5 15.7 22.0 29.1 37.5 53.1

� (� � � � �) 0.168 0.174 0.172 0.159 0.136 0.123 0.0876 0.103 0.0963 0.0710 0.0835 0.0694 0.0725
2R2W(CPU) 25.9 107 241 427 670 966 1310 1690 2670 3850 5250 6760 8670
4R1W(CPU) 18.0 73.2 165 293 459 660 904 1160 1830 2660 3600 4590 5950

larger than 18K�18K.
To see a speed-up factor of SAT algorithms running on

the GPU over a conventional CPU, we have evaluated the
performance of several sequential SAT algorithms on Intel
Xeon X7460 (2.66GHz). Table II shows the running time of
top two sequential algorithms as follows:
2R2W(CPU): The column-wise prefix-sums are computed
in a raster scan order from the top row to the bottom
row. More specifically, ��� 	 
���� 
 ��� 	 
���� 	 �������
is executed in a raster scan order of ��� ��. The row-wise
prefix-sums are also computed in a raster scan order, that is,
������	
�
 ������	
�	������� is executed in a raster scan
order of ��� ��.
4R1W(CPU): Formula (1) is evaluated in a raster scan order
of ��� ��.
From the table, we can see that 4R1W(CPU) SAT algorithm
runs faster than 2R2W(CPU) SAT algorithm, because of the
memory access locality. Also, �
 	 
�R1W SAT algorithm
runs more than 100 times faster than 4R1W(CPU) SAT
algorithm when

�
� �5K.

IX. CONCLUSION

The main contribution of this paper is to introduce the
asynchronous Hierarchical Memory Machine, which capture
the essence of CUDA-enabled GPUs. We have also pre-
sented a global-memory-access-optimal parallel algorithm
for computing the summed area table on the asynchronous
HMM. The experimental results on GeForce GTX 780 Ti
show that our best algorithm, �
 	 
�R1W SAT algorithm,
runs faster than any other algorithms for an input matrix of
size 5K�5K or larger. It also runs at least 100 times faster
than the best sequential algorithm running on a single CPU.
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