
GPGPUを用いた連結センサカバーに対する
蜂群最適化

(A bee colony optimization algorithm for a connected sensor cover on GPGPU)

Yukihide Sasamura and Akihiro Fujiwara
Graduate School of Computer Science and Systems Engineering,

Kyushu Institute of Technology
Iizuka, Fukuoka, 820-8502, Japan

Email: o676113y@mail.kyutech.jp, fujiwara@cse.kyutech.ac.jp

Abstract—In the sensor network, a set of connected sensors
that covers all discrete targets is called the connected sensor
cover (CSC). The CSC with a small number of sensors is
desirable because the small CSC can reduce network energy and
communication costs.
In the present paper, we propose an algorithms for CSC using

an artificial bee colony optimization, which is an optimization
technique based on behaviors of honey bees, on GPGPU. The
experimental result shows that the execution on GPGPU is 5
times faster than the execution on CPU in case that the number
of bees in the optimization algorithm is enough large.

I. INTRODUCTION

Sensor network is a wireless communication network, which
is composed of small autonomous sensors. Each sensor can
sense given targets if the target is in the sensing area, and
communicate with the other sensors if the sensor is in the
communication area. In the sensor network, a set of sensors
is called connected if each sensor in the set can communicate
with any sensor in the set using the others sensors as relays. A
set of connected sensors can obtain a vast range of information
across the network by communicating messages with the other
sensors. In addition, a set of sensors is called cover if all
discrete targets are covered with sensors in the set. Thus, the
connected sensor cover (CSC) is defined as a set of connected
sensors that cover all discrete targets.
Although construction of the CSC with the minimum num-

ber of sensors is NP-hard [1], the CSC with a small number of
sensors is desirable because construction of the small CSC can
reduce network energy and communication costs. Therefore,
a number of algorithms [1], [2], [3], [4], [5], [6], [7] have
been proposed for constructing CSC with a small number of
sensors. For example, Jaggi et al. [2] proposed centralized
algorithms using linear programming and a greedy method.
Cardei et al. [4] proposed another centralized approximation
algorithms, and showed that their algorithms can be easily
applied to a distributed environment.
In addition, some algorithms have been proposed for CSC

using particle swarm optimization techniques. Begum et al.
[3] proposed algorithms based on ant colony optimization,
and Shimokawa and Fujiwara [7] proposed algorithms based
on artificial bee colony optimization. Although the above
algorithms with the swarm optimization obtain CSC with a

small numbers of sensors, the algorithms are time-consuming,
and huge computational powers are needed to execute the
proposed algorithms.
In this paper, we propose an algorithms for CSC using an

artificial bee colony optimization on GPGPU. GPU (Graphics
Processing Unit) is a hardware device equipped with a number
of small processors specialized in graphics processing, and
GPGPU (General Purpose computation on GPU) is general
parallel computation on GPU. Since recent GPU is developed
according to CUDA (Compute Unified Device Architecture),
we can implement proposed algorithms on GPGPU as pro-
grams for parallel processing.
We implement our proposed algorithm using CPU and

GPU, and evaluate validity of the proposed algorithm. The
experimental result shows that the execution on GPGPU is 5
times faster than the execution on CPU in case that the number
of bees in the optimization algorithm is enough large.

II. PRELIMINARIES

A. Sensor Model

In this paper, the sensor network G = (V, E) is defined by a
set of sensors V = {s1, s2, . . . , sn}, where n is the number of
sensors, and the set of links E that is a set of communication
links between sensors. The set of discrete targets is represented
by T = {t1, t2, . . . , tm}, where m is the number of discrete
targets. Each sensor si has an unique identification number
IDi. The sensors are deployed on two-dimensional plane R,
and each sensor knows the geographical location of itself.
Figure 1 is the sensor model used in this paper. Each sensor

si has communicating area C and can communicate with other
sensors in the communication area. In case that sensors si

and sj can communicate each other, a communication link
eij ∈ E exists between the sensors si and sj on a graph G,
and the sensors are called adjacent. We assume that direct
communication of messages is possible for only between
adjacent sensors without collision. In addition, two sensors are
called connected if there is a path of adjacent sensors between
two sensors in G.
We also assume that each sensor si has a circular sensing

area S ⊆ C, and can sense a target in the sensing area. We



call that a sensor si covers a target t if t is in sensing area of
si.

Fig. 1. A sensor model

B. Connected Sensor Cover for discrete targets

Since each sensor equips a limited battery, coverage with a
fewer number of sensors should be desired for discrete targets.
However, connectivity of sensors is needed to communicate
data of targets in the sensor network. As a set of sensors that
satisfies these conditions, the connected sensor cover is defined
as follows.
Definition 1 (Connected sensor cover for discrete targets):

Given a sensor network G = (V, E) and a set of discrete
targets T = {t1, t2, . . . , tm}, the subset of sensors
M = {si1 , si2 , . . . , sin} (M ⊆ V ), which satisfies the
following condition, is called the connected sensor cover for
the discrete targets (CSCDT).

1) M is connected.
2) Any target in T is in at least one of sensing areas of
sensors in M . �

The targets covering problem using line segments is known
as NP-hard, and CSCDT with the minimum number of sensors
is also known as NP-hard by reducing from the problem [4].
Therefore, a smaller number of sensors should be desired for
CSCDT.
In this paper, we assume that the number of sensors n are

enough large to construct CSCDT. In other words, CSCDT,
which covers a set of input discrete targets, always exits for
an input set of sensors.
Figure 2 is an example of CSCDT. In this example, the set

of sensors {s1, s2, . . . , s6} is CSCDT of the input sensors. The
set of sensors {s1, s2, s5, s6} covers a set of discrete targets
{t1, t2, t3, t4} with an union of sensing areas, and maintain the
connectivity of sensors by including a set of sensors {s3, s4}
as relays.

III. A PROCEDURE FOR THE MINIMAL CSCDT

In this section, we explain a procedure for constructing
a minimal CSCDT. We first define redundant sensors for

Fig. 2. An example of CSCDT

CSCDT, and next propose a procedure, which deletes the re-
dundant sensor, as a basic operation in the proposed algorithm.

Definition 2 (A redundant sensor for CSCDT): Let Si be
sensing area of sensor si in the sensor network G = (V, E),
and also let M ⊆ V be CSCDT for the sensor network. We
also assume that T is a set of discrete targets. Then, a sensor
sd ∈ M is a redundant sensor for M if the sensor satisfies the
following two conditions.

1) M − {sd} is connected.
2) Any target in T is in at least one of sensing areas of
sensors in M − {sd}. �

Using the above definition, we propose a procedure, which
is called Repeated deletion, for deleting sensors from CSCDT.

Repeated deletion

Repeat the following two steps for each sensor in an input set
of sensors until no sensor is deleted in the second step.

Step 1: Check whether the sensor is a redundant sensor or
not for CSCDT.

Step 2: Delete the sensor in case that the sensor is redun-
dant. �

The procedure, Repeated deletion, ensures connectivity and
coverage of the sensor network. In addition, the obtained
CSCDT is apparently minimal due to the end condition of
the procedure.

Figure 3 shows an example for a redundant sensor and the
procedure. Figure 3 (a) shows an input CSCDT, and the set
of sensors {s1, s2, s3, s4} is in CSCDT. An union of sensing
areas of the set of sensors {s1, s3} covers the set of discrete
targets {t1, t2, t3}, and the sensors are connected. In this case,
sensor s4 is redundant, and is deleted if two steps in Repeated
deletion is executed for s4. Then, we obtain CSCDT in Figure
3 (b) after deletion of s4.



(a) An input CSCDT

(b) A CSCDT after deletion of a redundant sensor

Fig. 3. An example of Sensor reduction

IV. AN ALGORITHM USING BEE COLONY OPTIMIZATION

ON GPGPU

A. Artificial bee colony optimization for CSCDT

In this section, we explain an algorithm using artificial bee
colony optimization algorithm for CSCDT. The algorithm is a
revised version of an algorithm proposed in [7].
We first explain an outline of the artificial bee colony

optimization. The artificial bee colony (ABC) optimization
[8] is an optimization technique based on the following habit
of honey bees. The bee gathers honey outside region, and
shares information of gathered honey with other bees when
bee arrives at comb. Then, each bee decides a next way of
exploration using exchanged informations. As a result, the
honey bees can collect high-quality honey.
In our algorithm for CSCDT, ABC optimization is used for

reducing the number of sensors. We assume m bees, and Bj

(1 ≤ j ≤ m) denotes j-th bee used for optimizing CSCDT.
We next introduce an operation, which is called Sensor

reduction. Let G = (V, E) be an input sensor network, and
G′ = (V ′, E′) be an CSCDT for G. The following Sensor

reduction is executed by each bee for reducing the number of
sensors in CSCDT.
Sensor reduction
Step 1: Select NC sensors in V ′ randomly. (The NC is

a parameter for optimization. and we assume Vc

denotes a set of selected sensors. )
Step 2: For each sensor si ∈ Vc, execute the following sub-

steps.
(2-1) For each adjacent sensor sj of si, compute V ′′ such

that V ′′ = V ′ − {si, sj}, and then, check whether
there exists a sensor sk ∈ V −V ′ such that V ′′∪{sk}
is CSCDT. If the sensor sk exists, the two sensors,
si and sj , are removed from V ′ and sk is added to
V ′.

Using the above Sensor reduction and Repeated deletion,
the algorithm for CSCDT using ABC optimization is given
below.
An algorithm for CSCDT using ABC optimization
Step 1: Construct the minimal CSCDT V ′ for G = (V, E)

using Repeated deletion. The obtained CSCDT is
copied to all m bees. (We assume that bee Bj stores
the CSCDT as CSCDTj . )

Step 2: The following 3 sub-steps are repeated by a given
number of trials u, and output a CSCDT with the
minimum number of sensors among all bees.

(2-1) Each bee Bj executes Sensor reduction for
CSCDTj , and set evaluation value Oj to the number
of deleted sensors by Sensor reduction.

(2-2) Each bee Bj decides whether to become a recruiter
or a follower according to the following probability
Fj , where Omax = max{Ok | 1 ≤ k ≤ n} and t is
the number of repetition in Step 2.

Fi = e−
Omax−Oi

t

(2-3) Each bee Bj maintains CSCDTj in case of the
recruiter. On the other hand, in case of the follower,
Bj selects one of CSCDTs owned by recruiters
according to following probability Ri, where R is
a set of recruiters.

Ri =
Oi∑

Ok∈R Ok

B. Implementation on GPGPU

In this section, we explain an implementation of our al-
gorithm for CSCDT using ABC optimization on GPGPU. For
parallel processing on GPGPU, sub-step (2-1) in the algorithm
is executed in parallel on GPGPU, and the other steps are
executed serially.
Figure 4 illustrates parallel execution of the proposed al-

gorithm. Each bee in (2-1) is assigned a single thread and
executed on each core. Informations of sensors and targets
are stored in constant memory, and variables of the kernel
function are stored in a register. Informations for the other
steps are stored in the global memory, and all informations
are exchanged throughout the global memory.



Fig. 4. a model of parallel processing of runtime

TABLE I
EXPERIMENTAL ENVIRONMENT

CPU Intel Core i3-4130 (3.4GHz)
Main memory for CPU 8GB

GPU NVIDIA GeForce GTX 760
The number of CUDA cores on GPU 1152

Memory on GPU 4GB
OS CentOS release 6.5

Development Environment CUDA 5.5

V. EXPERIMENTAL RESULTS

Our proposed algorithm is implemented on CPU on
GPGPU, we compare execution times between the implemen-
tations.
We assume that an input region is a 100× 100 square area,

and sensors and targets are randomly located in the region.
The numbers of sensors are 1000, and the number of targets
is 20. Sensing radius and communication radius of each sensor
are both 10.
In addition, the following parameters are set for proposed

algorithms according to execution times.

• The number of bees used in ABC optimization: 32 to
65536

• The number of repetition in ABC optimization: u = 16
• The number of sensors that each bee selects randomly:

NC = 4
We also show our experimental environment for CPU and

GPU on Table V.
Figure 5 shows execution times for CPU and GPGPU in the

simulation environment. The result shows that the execution
on GPGPU is 5 times faster than the execution on CPU in
case that the number of bees in the optimization algorithm is
enough large.

Fig. 5. Execution times on CPU and GPGPU

VI. CONCLUSIONS

In this paper, we proposed an algorithms for CSC using an
artificial bee colony optimization on GPGPU. The experimen-
tal result shows that the execution on GPGPU is 5 times faster
than the execution on CPU in case that the number of bees in
the optimization algorithm is enough large.
In our future work, we are considering further improvement

of the proposed algorithm using another optimization tech-
niques, and we are also considering to simulate distributed
algorithms on GPGPU.

REFERENCES

[1] H. Gupta, Z. Zhou, S. Das, and Q. Gu, “Connected sensor cover:self-
organization of sensor networks for efficient query execution,” ACM/IEEE
Transactions on Networking, 14(1), 2006.

[2] N. Jaggi and A. Abouzeid, “Energy-efficient connected coverage in
wireless sensor networks,” 4th Asian International Mobile Computing
Conference, 2006.

[3] S. Begum, N. Tera, and S. Sultana, “Energy-efficient target coverage in
wireless sensor networks based on modified ant colony,” International
Journal of Ad hoc, Sensor & Ubiquitous Computing, vol. 1, no. 4, 2010.

[4] I. Cardei and M. Cardei, “Energy-efficient connected-coverage in wireless
sensor networks,” International Journal of Sensor Networks, vol. 3, no. 3,
2008.

[5] M. Lu, J. Wu, M. Cardei, and M. Li, “Energy-efficient connected coverage
of discrete targets in wireless sensor networks,” International Journal of
Ad Hoc and Ubiquitous Computing, 2009.

[6] K. Nakamoto and A. Fujiwara, “Distributed algorithms for 2-connected
sensor cover in sensor network,” in Proceedings of the International
Conference on Wireless Networks, 2010.

[7] T. Shimokawa and A. Fujiwara, “Centralized algorithms for the connected
target coverage in wireless sensor networks,” in Proceedings of 3rd
International Workshop on Advances in Networking and Computing,
2012, pp. 307–310.

[8] D. Karaboga, “An idea based on honey bee sarm for numerical optimiza-
tion,” Erciyes University, Tech. Rep. TR06, 2005.


