
生化学反応計算における
基本演算およびソートの実現

(Reaction systems for logical operations and sorting)

Akifumi Nakanishi Akihiro Fujiwara
Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology

Iizuka, Fukuoka, 820-8502, Japan
Email: o676122a@mail.kyutech.jp, fujiwara@cse.kyutech.ac.jp

Abstract—In the present paper, we consider the reaction
system, which is a computational model based on biochemical
reactions in living cells, and propose reaction systems for logical
operations and sorting. We first propose a reaction system that
executes a two-input logical operations, such as AND, OR, and
XOR, and show that the reaction system works inO(1) steps.
We next propose a reaction system for a compare-and-swap
operation of two binary numbers of m bits. We show that the
reaction system works inO(m) parallel steps usingO(m) types of
objects and reaction rules. We finally propose a reaction system
for sorting of n binary numbers of m bits. The reaction system
is based on an idea of the odd-even sort, and we show that the
reaction system works inO(mn) parallel steps and usingO(mn)
types of objects and reaction rules.

I. I NTRODUCTION

A number of next-generation computing paradigms have
been considered due to limitation of silicon based computation.
As an example of the computing paradigms, natural comput-
ing, which works using natural materials for computation, has
considerable attention. A membrane computing [1], which is a
computational model inspired by the structures and behaviors
of living cells, is a representative of the natural computing.
A computational model of the membrane computing is called
P system, and a number of P systems [2], [3], [4], [5], [6],
[7] have been proposed for solving NP problems. In addition,
a number of P systems [2], [8] are also proposed for basic
operations such as logical and arithmetic operations.

On the other hand, a reaction system [9], [10], [11], which is
called R system, has been proposed as another computational
model of natural computing. The R system is based on
biochemical reactions in living cells, and the fundamental idea
of the R system is based on interaction between biochemical
reactions, which are the mechanisms of facilitation and inhibi-
tion. For the reaction system, a number of primitive operations
are considered in [9], [10], [11], and no R system that executes
basic operations, such as logic or arithmetic operations, has
been proposed. However, the reaction system for the basic
operation is needed to apply the reaction system on a wide
range of problems.

In the present paper, we propose R systems for logical
operations and sorting of binary numbers. We first propose
a reaction system that executes a two-input logical operation,
such as AND, OR, and XOR. We show that the R system

works inO(1) parallel steps and usingO(1) types of objects
and reaction rules.

We next propose an R system for a compare-and-swap
operation of two binary numbers ofm bits. The R system
first computes the most significant bit between the two input
values, and then, swap operation is executed according to the
result of the most significant bit. We show that the R system
works inO(m) parallel steps and usingO(m) types of objects
and reaction rules.

We finally propose an R system for sorting ofn binary
numbers ofm bits. The R system is based on an idea of the
odd-even sort, and the R system employs an object that works
as a counter, and executes the sorting for odd and even steps
using the counter. We show that the R system works inO(mn)
parallel steps and usingO(mn) types of objects and reaction
rules.

II. PRELIMINARIES

A. Reaction system

A reaction system [9], [10], [11] is a computational model
based on biochemical reactions in living cells. In this paper,
we first explain definition of a reaction on the reaction system,
which is based on [11].

A reactiona is defined by the following equation.

a = (Ra, Ia, Pa)

Ra, Ia and Pa are sets of reactant, inhibitor and product,
respectively, and all of the three sets are finite nonempty sets
such thatRa ∩ Ia = ∅, M = Ra ∪ Ia, and |M | ≥ 2.

The reactiona is applied ifRa ⊆ T and Ia ∩ T = ∅ for
a finite setT . The result ofa on T is denoted byResa(T),
and Resa(T) = Pa in case that reactiona is applied, and
otherwise,Resa(T) = ∅.

I now show an example of the reaction. Leta =
({3}, {1, 2}, {1, 2, 4}) andT1 = {3, 4}, T2 = {2, 3, 4}. In this
case,Resa(T1) andResa(T2) are sets given below.

Resa(T1) = Pa = {1, 2, 4}
Resa(T2) = ∅

As shown in the above example, all non-reacted objects,
which are not included inPa, are disappeared after application

Fig. 1. Operation of R systemΛ

of reactiona. The property is called non-persistency of the
object.

Next, we explain definition of the R system. R systemΛ is
defined by the following equation.

Λ = (S,A)

In the above equation,S is a set of all objects, andA is
a set of reactions. In addition, the result of a set of reactions
A for T is an union of obtained results of all reactions inA.
In other words,ResA(T), which is a set of result ofA for a
finite setT , is defined as follows.

ResA(T) =
∪
a∈A

resa(T)

In the R system, an application of all reaction is called a
transition. In this paper, we assume that all applicable reactions
are applied simultaneously in a transition, and also assume that
each transition is called one parallel step. The complexity of
R system is defined the number of parallel steps executed in
the computation.

For example, we show a simple R systemΛ, which is
defined as follows.

S = {1, 2, 3, 4}
A = {a, b, c}
a = ({3}, {1, 2}, {1, 2})
b = ({3, 4}, {2}, {4})
c = ({1, 4}, {3}, {2, 3})

Figure1 shows an execution of the R system in case that a
set{3, 4} is given as input. In this case, applicable reactions
area and b for the input set, and these two rules are applied
simultaneously. Since a result of the transition is an union of
obtained objects, an obtained set of objects is{1, 2, 4} after
the first transition.

Next, an applicable reaction for{1, 2, 4} is only c, and an
obtained set of objects is{2, 3} after the second transition.
Then, a set of objects becomes empty after the third transition
since no reaction is applicable for{2, 3}.

III. D ATA STRUCTURE FOR BINARY NUMBERS

In this subsection, we describe a unified data structure for
a binary number using objects in the R system. Data structure

for Boolean values has been proposed in [2], and we improve
the data structure in this paper. In the data structure, one object
corresponds to one bit of a binary number. Therefore, we
useO(mn) objects to denoten binary numbers ofm bits.
In addition, the data structure enables the addressing feature,
that is, each binary number is stored in a given address.

Let Vi,j ∈ {0, 1} be aj-th Boolean value stored in address
i. Then, the value is denoted using the following object on the
R system.

⟨Ai, Bj , Vi,j⟩

We call the above objecta memory objectfor Boolean
values.

In case of a binary number, letVi,m−1, Vi,m−2, · · · , Vi,0 be
m Boolean values stored in addressi. Then, a non-negative
integerVi stored in addressi satisfies the following condition.

Vi =

m∑
j=1

Vi,j × 2j−1

The above binary number is represented bym memory
objects given below.

⟨Ai, Bm−1, Vi,m−1⟩, ⟨Ai, Bm−2, Vi,m−2⟩, · · · , ⟨Ai, B0, Vi,0⟩

For example, the binary number 1010 stored in the address
6 is represented by the following four objects.

⟨A6, B3, 1⟩, ⟨A6, B2, 0⟩, ⟨A6, B1, 1⟩, ⟨A6, B0, 0⟩

IV. R SYSTEMS FOR LOGICAL OPERATIONS

A. Input and output

In this section, we propose a simple R system that executes a
two-input logical operation, such as AND, OR, and XOR. We
assume that input of the logical operation is a pair of Boolean
valuesx, y. The x, y are denoted by a pair of following two
memory objects on the R system.

⟨A0, B0, V0,0⟩, ⟨A1, B0, V1,0⟩

We also assume that an output of the logical operation is a
Boolean valuez, which is denoted by the following memory
object.

⟨A2, B0, V2,0⟩

B. R system for logical operations

In this subsection, we show an R system for the logical
operation. Any two-input logical operation is defined in the
truth table in Table I. For example,z0 = z1 = z2 = 0 and
z3 = 1 in case of AND operation. We propose an R system
for any two-input logical operation based on the truth table.

C. Details of the R system for the logical operation

An output of the logical operation is determined according
to the truth table. Thus, we encode the truth table into the
R system as reactions. We now formally define the R system
ΛLO for any logical operations in the following.

ΛLO = (S,A)

TABLE I
A TRUTH TABLE OF A TWO-INPUT LOGICAL OPERATION

Input x Input y Outputz
0 0 z0
0 1 z1
1 0 z2
1 1 z3

S = {⟨A0, B0, V0,0⟩, ⟨A1, B0, V1,0⟩, ⟨A2, B0, V2,0⟩,
⟨E⟩|V0,0, V1,0, V2,0 ∈ {0, 1}}

A = {a1, a2, a3, a4}
a1 = ({⟨A0, B0, 0⟩, ⟨A1, B0, 0⟩}, {⟨E⟩}, {⟨A2, B0, z0⟩})
a2 = ({⟨A0, B0, 0⟩, ⟨A1, B0, 1⟩}, {⟨E⟩}, {⟨A2, B0, z1⟩})
a3 = ({⟨A0, B0, 1⟩, ⟨A1, B0, 0⟩}, {⟨E⟩}, {⟨A2, B0, z2⟩})
a4 = ({⟨A0, B0, 1⟩, ⟨A1, B0, 1⟩}, {⟨E⟩}, {⟨A2, B0, z3⟩})

In the above R system,⟨E⟩ is an object that denotes an
empty set, andz0, z1, z2, z3 are Boolean values given in Table
I.

For a simple example of the above R system, we assume
that two input objects⟨A0, B0, 0⟩ and ⟨A1, B0, 1⟩ are given
to the R system. Then, a reactiona2 is applied, and an object
⟨A2, B0, z1⟩ is obtained as an output of the R system.

Since computation of the above R systemΛOL is completed
by only one transaction, we obtain the following theorem for
ΛOL.

Theorem 1:The R systemΛOL, which computes any two-
input logical operations, works inO(1) parallel steps using
O(1) types of objects and reactions. 2

V. COMPARE-AND-SWAP

In this section, we present an R system for the compare-and-
swap operation of two binary numbers ofm bits. The compare-
and-swap operation compares two input valuesxin and yin,
and assigns the smaller and larger values to the variablexout

andyout, respectively.

A. Input and output

Two input binary numbers are denoted by the following sets
of memory objects on the R system.

xin : {⟨A0, Bj , V0,j⟩ | 0 ≤ j ≤ m− 1}
yin : {⟨A1, Bj , V1,j⟩ | 0 ≤ j ≤ m− 1}

In addition to the above input, we assume that the following
object is given to the R system. The object, which denotes bit-
position of the comparison, starts the R system.

⟨C,m− 1⟩

In addition, two output binary numbers are also denoted by
the following sets of memory objects.

xout : {⟨A2, Bj , V2,j⟩ | 0 ≤ j ≤ m− 1}
yout : {⟨A3, Bj , V3,j⟩ | 0 ≤ j ≤ m− 1}

B. An overview of the R system

Let xin,j andyin,j be j-th bit of two input binary numbers.
The R system for the compare-and-swap consists of the
following two steps. First, in Step 1, each bit of the two input
binary numbers,xin andyin, are compared from a higher bit to
a lower bit. We assume thatxin,k andyin,k are the first pair of
bits such that the bits are different in the comparison. Then,
xin is greater thanyin if xin,k = 1, yin,k = 0, otherwise,
xin is less thanyin, and xin,k = 0, yin,k = 1. An object
that denotes a result of the comparison is created after the
comparison.

Second, in Step 2, two binary numbers are exchanged and
outputted toxout and yout in case ofxin < yin. Otherwise,
xin andyin are copied intoxout andyout, respectively.

In the above two steps, it is worth while noticing that
memory objects must be copied repeatedly because of non-
persistency of the object.

C. Details of the R system

We now explain each step of the R system. In Step 1, each
bit of the two input binary numbers,xin andyin, are compared
from a higher bit to a lower bit. The comparison is executed
using the following sets of reactions.

A1,1 = { ({⟨A0, Bk, 0⟩, ⟨A1, Bk, 1⟩, ⟨C, k⟩}, {⟨E⟩},
{⟨A0, Bk, 0⟩, ⟨A1, Bk, 1⟩, ⟨LT ⟩})
| 0 ≤ k ≤ m− 1}

∪ { ({⟨A0, Bk, 1⟩, ⟨A1, Bk, 0⟩, ⟨C, k⟩}, {⟨E⟩},
{⟨A0, Bk, 1⟩, ⟨A1, Bk, 0⟩, ⟨GT ⟩})
| 0 ≤ k ≤ m− 1}

A1,2 = { ({⟨A0, Bk, 0⟩, ⟨A1, Bk, 0⟩, ⟨C, k⟩}, {⟨E⟩},
{⟨A0, Bk, 0⟩, ⟨A1, Bk, 0⟩, ⟨C, k − 1⟩})
| 1 ≤ k ≤ m− 1}

∪ { ({⟨A0, Bk, 1⟩, ⟨A1, Bk, 1⟩, ⟨C, k⟩}, {⟨E⟩},
{⟨A0, Bk, 1⟩, ⟨A1, Bk, 1⟩, ⟨C, k − 1⟩})
| 1 ≤ k ≤ m− 1}

In case ofj-th bit of two binary numbers are different,
reactions inA1,1 are applied, and one of objects,⟨LT ⟩ or
⟨GT ⟩, which denotesxin < yin or xin > yin, is created.
Otherwise, two bits are copied, and the comparison is moved
to the next bit-position using reactions inA1,2.

In addition to the above, the other memory objects are
copied repeatedly, due to non-persistency of the object, using
the following sets of reactions.

A1,3 = { ({⟨A0, Bk, V0,k⟩}, {⟨C, k⟩, ⟨LT ⟩, ⟨GT ⟩, ⟨EQ⟩},
{⟨A0, Bk, V0,k⟩}) | 0 ≤ k ≤ m− 1, V0,k ∈ {0, 1}}
∪ { ({⟨A1, Bk, V1,k⟩}, {⟨C, k⟩, ⟨LT ⟩, ⟨GT ⟩, ⟨EQ⟩},
{⟨A1, Bk, V1,k⟩}) | 0 ≤ k ≤ m− 1, V1,k ∈ {0, 1}}

In case ofxin = yin, reactions in the followingA1,4 is
applied after comparisons of all bits, and an object⟨EQ⟩ is

created.

A1,4 = { ({⟨A0, B0, 0⟩, ⟨A1, B0, 0⟩, ⟨C, 0⟩}, {⟨E⟩},
{⟨A0, B0, 0⟩, ⟨A1, B0, 0⟩, ⟨EQ⟩}) }
∪ { ({⟨A0, B0, 1⟩, ⟨A1, B0, 1⟩, ⟨C, 0⟩}, {⟨E⟩},
{⟨A0, B0, 1⟩, ⟨A1, B0, 1⟩, ⟨EQ⟩}) }

Next, in Step 2, two input binary numbers,xin andyin, are
exchanged and outputted toxout and yout in case that there
exists an object⟨GT ⟩. The swap and copy are executed using
the following set of reactionsA2,1.

A2,1 = { ({⟨A0, Bk, V0,k⟩, ⟨GT ⟩}, {⟨E⟩},
{⟨A3, Bk, V0,k⟩}) | 0 ≤ k ≤ m− 1, V0,k ∈ {0, 1}}
∪ { ({⟨A1, Bk, V1,k⟩, ⟨GT ⟩}, {⟨E⟩},
{⟨A2, Bk, V1,k⟩}) | 0 ≤ k ≤ m− 1, V1,k ∈ {0, 1}}

On the other hand, two input binary numbers,xin andyin,
are copied toxout and yout, respectively, in case that there
exists⟨LT ⟩ or ⟨EQ⟩. The copy is executed using the following
sets of reactions,A2,2 andA2,3.

A2,2 = { ({⟨A0, Bk, V0,k⟩, ⟨LT ⟩}, {⟨E⟩},
{⟨A2, Bk, V0,k⟩}) | 0 ≤ k ≤ m− 1, V0,k ∈ {0, 1}}
∪ { ({⟨A1, Bk, V1,k⟩, ⟨LT ⟩}, {⟨E⟩},
{⟨A3, Bk, V1,k⟩}) | 0 ≤ k ≤ m− 1, V1,k ∈ {0, 1}}

A2,3 = { ({⟨A0, Bk, V0,k⟩, ⟨EQ⟩}, {⟨E⟩},
{⟨A2, Bk, V0,k⟩}) | 0 ≤ k ≤ m− 1, V0,k ∈ {0, 1}}
∪ { ({⟨A1, Bk, V1,k⟩, ⟨EQ⟩}, {⟨E⟩},
{⟨A3, Bk, V1,k⟩}) | 0 ≤ k ≤ m− 1, V1,k ∈ {0, 1}}

We now summarize details of the R systemΛCS , which
executes the compare-and-swap operation.

ΛCS = (S,A)

S = {⟨Ai, Bj , V0,j⟩ | 0 ≤ i ≤ 3, 0 ≤ j ≤ m− 1}
∪ {⟨C, k⟩ | 0 ≤ k ≤ m− 1}
∪ {⟨GT ⟩, ⟨LT ⟩, ⟨EQ⟩, ⟨E⟩}

A = A1,1 ∪A1,2 ∪A1,3 ∪A1,4 ∪A2,1 ∪A2,2 ∪A2,3

Figure 2 illustrates an execution of the R systemΛCS . In the
example,m = 3, and an input is a pair of two binary numbers,
xin = 1100 andyin = 1011. In the example, at first, reactions
in A1,2 andA1,3 are applied because the highest bits of the two
numbers are same. Next, reactions inA1,1 andA1,3 are applied
because the next bits of the two numbers are different, and an
object ⟨GT ⟩ is created according to the comparison. Finally,
the output values are set toxout and yout using reactions in
A2,1.

D. Complexity of the R system

Since complexity of Step 1 in the above R systemΛCS is
O(m), we obtain the following theorem forΛCS .

Theorem 2:The R systemΛCS , which executes the
compare-and-swap operation for two binary numbers ofm

<A0,B3,1> <A0,B2,1> <A0,B1,0> <A0,B0,0>

<A1,B3,1> <A1,B2,0> <A1,B1,1> <A1,B0,1>

<C,3>

A1,2 and A1,3

<A0,B3,1> <A0,B2,1> <A0,B1,0> <A0,B0,0>

<A1,B3,1> <A1,B2,0> <A1,B1,1> <A1,B0,1>

 <C,2>

A1,1 and A1,3

<A0,B3,1> <A0,B2,1> <A0,B1,0> <A0,B0,0>

<A1,B3,1> <A1,B2,0> <A1,B1,1> <A1,B0,1>

 <GT>

A2,1

<A2,B3,1> <A2,B2,0> <A2,B1,1> <A2,B0,1>

<A3,B3,1> <A3,B2,1> <A3,B1,0> <A3,B0,0>

Fig. 2. An example of execution ofΛCS

bits, works inO(m) parallel steps usingO(m) types of objects
and reactions. 2

VI. SORTING

A. Input and output

In this section, we present an R system for sorting ofn
binary numbers ofm bits using the R system. An input and
an output of the R system is a set of binary numbers that are
denoted by the following set of memory objects.

{⟨Ai, Bj , Vi,j⟩ | 0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1}

B. An overview and complexity of the R system

The proposed P system is based on odd-even transposition
sort [12], which is a well-known parallel sorting algorithm. Let

(x0, x1, . . . , xn−1) be an input of the sorting. A basic idea of
the odd-even transposition sort is quite simple. At odd phases,
we perform the compare-and-swap operations for each pair
(x2i, x2i+1) (0 ≤ i ≤ n

2 − 1) in parallel. On the other hand,
we perform the same operations for each pair(x2i−1, x2i)
(1 ≤ i ≤ n

2 − 1) at even phases. It is proved that the input is
sorted aftern2 repetition of the above two steps [12].

Using the R system described in Section V, we can realize
the odd-even transposition sort on the R system as follows.
A basic idea of R system for sorting
Repeat the following stepsn2 times.

Step 1:Execute the compare-and-swap operations, which is
described in Section V, for pairs(x2i, x2i+1) (0 ≤
i ≤ n

2 − 1) in parallel.
Step 2:Execute the same compare-and-swap operations for

pairs (x2i−1, x2i) (1 ≤ i ≤ n
2 − 1) in parallel.

Since all reactions on the R system can be applied in
parallel, the above idea is implemented as an R system
ΛSORT , which sortsn binary number ofm bits, with a
modification of the R system proposed in Section V. Although
the main difficulty for the implementation is synchronization
of the compare-and-swap operations, we can solve the diffi-
culty by using object that works as a global counter. (The
precise description of the R system is omitted because an
implementation of reactions is redundant.)

We now consider complexity of the R systemΛSORT . The
above two steps are repeated byn

2 times, and each compare-
and-swap operation is executed inO(m) steps. Then, we
obtain the following theorem for the R systemΛSORT .

Theorem 3:The R systemΛSORT , which sortsn binary
numbers ofm bits, works in O(mn) parallel steps using
O(mn) types of objects and reactions. 2

VII. C ONCLUSIONS

In the present paper, we proposed R systems for logical
operations and sorting of binary numbers. We first proposed
an R system that executes any two-input logical operation,
and showed that the R system works inO(1) parallel steps
and usingO(1) types of objects and reaction rules. We next
proposed an R system for a compare-and-swap operation of
two binary numbers ofm bits, and showed that the R system
works inO(m) parallel steps and usingO(m) types of objects
and reaction rules. We finally proposed an R system for sorting
of n binary numbers ofm bits, and also showed that the R
system works inO(mn) parallel steps and usingO(mn) types
of objects and reaction rules.

As future work, we are considering reduction of the numbers
of types of objects and reactions in the R systems.

ACKNOWLEDGMENTS

This research was partially supported by JSPS KAKENHI,
Grand-in-Aid for Scientific Research (C), 24500019.

REFERENCES

[1] G. P̆aun, “Computing with membranes,”Journal of Computer and
System Sciences, vol. 61, no. 1, pp. 108–143, 2000.

[2] A. Leporati and C. Zandron, “P systems with input in binary form,”
International Journal of Foundations of Computer Science, vol. 17,
no. 1, pp. 127–146, 2006.

[3] L. Pan and A. Alhazov, “Solving HPP and SAT by P systems with active
membranes and separationrules,”Acta Informatica, vol. 43, no. 2, pp.
131–145, 2006.

[4] G. P̆aun, “P system with active membranes: Attacking NP-complete
problems,”Journal of Automata, Languages and Combinatorics, vol. 6,
no. 1, pp. 75–95, 2001.

[5] C. Zandron, G. Rozenberg, and G. Mauri, “Solving NP-complete prob-
lems using P systems with active membranes,”Proceedings of the Sec-
ond International Conference on Uncoventional Models of Computation,
pp. 289–301, 2000.

[6] H. Tagawa and A. Fujiwara, “Solving SAT and Hamiltonian cycle prob-
lem using asynchronous p systems,”IEICE Transactions on Information
and Systems (Special section on Foundations of Computer Science), vol.
E95-D, no. 3, 2012.

[7] K. Tanaka and A. Fujiwara, “Asynchronous p systems for hard graph
problems,”International Journal of Networking and Computing, vol. 4,
no. 1, pp. 2–22, 2014.

[8] A. Fujiwara and T. Tateishi, “Logic and arithmetic operations with
a constant number of steps in membrane computing,”International
Journal of Foundations of Computer Science, vol. 22, no. 3, pp. 547–
564, 2011.

[9] G. P̆aun, “Bridging P and R,”Research Topics in Membrane Computing,
vol. 1, no. 1, pp. 53–57, 2012.

[10] ——, “Towards fypercomputations (in membrane computing),”Lecture
Notes in Computer Science, vol. 7300, pp. 207–220, 2012.

[11] M. M. R. Brijder, A. Ehrenfeucht, “A tour of reaction systems,”
International Journal of Foundations of Computer Science, vol. 22,
no. 1, pp. 1499–1518, 2011.

[12] N. Haberman, “Parallel neighbor-sort (or the glory of the induction
principle),” AD-759 248, National Technical Information Service, US
Department of Commerce, Tech. Rep., 1972.

