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Abstract—In the present paper, we consider the reaction works in O(1) parallel steps and usin@(1) types of objects
system, which is a computational model based on biochemical gnd reaction rules.
reactions in living cells, and propose reaction systems for logical We next propose an R system for a compare-and-swap

operations and sorting. We first propose a reaction system that . - .
executes a two-input logical operations, such as AND, OR, and OPeration of two binary numbers of: bits. The R system

XOR, and show that the reaction system works inO(1) steps. first computes the most significant bit between the two input
We next propose a reaction system for a compare-and-swap values, and then, swap operation is executed according to the

operation of two binary numbers of m bits. We show that the result of the most significant bit. We show that the R system

reaction system works inO(m) parallel steps usingO(m) types of ; ; ;
objects and reaction rules. We finally propose a reaction system \;vr?drkrseglcgé;nilﬁg;a”el steps and using(m) types of objects

for sorting of n binary numbers of m bits. The reaction system ! . .
is based on an idea of the odd-even sort, and we show that the We finally propose an R system for sorting of binary
reaction system works inO(mn) parallel steps and usingOD(mn) numbers ofm bits. The R system is based on an idea of the
types of objects and reaction rules. odd-even sort, and the R system employs an object that works
as a counter, and executes the sorting for odd and even steps
using the counter. We show that the R system work3({mn)

A number of next-generation computing paradigms haygrallel steps and usin@(mn) types of objects and reaction
been considered due to limitation of silicon based computatigoles.
As an example of the computing paradigms, natural comput-
ing, which works using natural materials for computation, has Il. PRELIMINARIES
considerable attention. A membrane computing [1], which is/a Reaction system

computational model inspired by the structures and behaviorsy (eaction system [9], [10], [11] is a computational model

of living cells, is a representative of the natural computingsseq on biochemical reactions in living cells. In this paper,
A computational model of the membrane computing is call&ge first explain definition of a reaction on the reaction system,
P system, and a number of P systems [2], [3], [4], [5], [6]yhich is based on [11].

[7] have been proposed for solving NP problems. In addition, o reactiona is defined by the following equation.

a number of P systems [2], [8] are also proposed for basic

operations such as logical and arithmetic operations. a= (Rq, 1o, Pa)

On the other hand, a reaction system [9], [10], [11], WhiCh.iS ﬁa 1, and P, are sets of reactant, inhibitor and product
called R system, has been_ proposed as another_ CompUtatI?Qgpectively, and all of the three sets are finite nonempty sets
model of natural computing. The R system is based ori
biochemical reactions in living cells, and the fundamental idesé'_cl:_?] thatft, Nla= 0, ]VII :d ?“ - IC“ and |é\/‘§_| 2 2 "
of the R system is based on interaction between biochemica*. € reactlonc;] IS app||e ¢ If I, = Tdan admbT =V tor
reactions, which are the mechanisms of facilitation and inhiti- (ljmte setr’. The re_sut ola %n I'is gnott_a leffsg(T)’d
tion. For the reaction system, a number of primitive operatior"i‘?n Re.s‘l(T) = I In case that reaction is applied, an
are considered in [9], [10], [11], and no R system that execut%sherW'Se’RﬁS“(T) =0. | £ th .
basic operations, such as logic or arithmetic operations, h now show -an examp_e of the r_eactlon. Let -
been proposed. However, the reaction system for the baél 3 11,2}, {1,2,4}) andT; = {3’4}’T2._ 12,3,4}. In this
operation is needed to apply the reaction system on a wigase-esa(T1) and Res, (1) are sets given below.
range of problems. Resa(Ty) = P,=1{1,2,4}

In the present paper, we propose R systems for logical Reso(Ty) = 0
operations and sorting of binary numbers. We first propose
a reaction system that executes a two-input logical operationAs shown in the above example, all non-reacted objects,

such as AND, OR, and XOR. We show that the R systewhich are not included i#,, are disappeared after application

I. INTRODUCTION



for Boolean values has been proposed in [2], and we improve
the data structure in this paper. In the data structure, one object
(3,4} == {1,2,4} corresponds to one bit of a binary number. Therefore, we
use O(mn) objects to denote: binary numbers ofn bits.
In addition, the data structure enables the addressing feature,
@ <« {23} that is, each binary number is stored in a given address.

! Let V; ; € {0,1} be aj-th Boolean value stored in address
i. Then, the value is denoted using the following object on the
L ) R system.

_ _ (Ai, By, Vi j)
Fig. 1. Operation of R system

We call the above objeca memory objectfor Boolean

values.
of reactiona. The property is called non-persistency of the In case of a binary number, 1&f ,,,—1, Vi m—2,- -+, Vi o be
object. m Boolean values stored in addressThen, a non-negative

Next, we explain definition of the R system. R systénis integerV; stored in addresssatisfies the following condition.
defined by the following equation.

m
- » j—1
A= (5,4) V=2 s x2
j=1
In the above equationS is a set of all objects, and is The above binary number is represented sbymemory

a set of reactions. In addition, the result of a set of reaCtiOHBjects given below.
A for T is an union of obtained results of all reactionsAn
In other words,Res 4(T'), which is a set of result oft for a  (Ai, Bin—1, Viim—1), (Ai, Bm—2, Vim—2), -+, (A, Bo, Vi0)

finite setT', is defined as follows. For example, the binary number 1010 stored in the address

Resa(T) = U resq(T) 6 is represented by the following four objects.

acA
. © . . . <A67B371>7<A6aBQ7O>a<A65B171>3<A67B030>
In the R system, an application of all reaction is called a

transition. In this paper, we assume that all applicable reactions ~ |V. R SYSTEMS FOR LOGICAL OPERATIONS
are applied simultaneously in a transition, and also assume thatinput and output
each transition is called one parallel step. The complexity of
R system is defined the number of parallel steps execute
the computation.

For example, we show a simple R systelm which is
defined as follows.

. In this section, we propose a simple R system that executes a

dt\}vrb—input logical operation, such as AND, OR, and XOR. We
assume that input of the logical operation is a pair of Boolean
valuesz,y. The x,y are denoted by a pair of following two
memory objects on the R system.

§ = {1234 (Ao, Bo, Voo), (A1, Bo, Vi)

A = {a,b,c
_ &3} {i 2),{1,2}) We also assume that an output of the logical operation is a
@ = I Boolean valuez, which is denoted by the following memory
b = ({3,4}, {2}, {4}) object.
c = ({14}, {3}1{2,3}) <A2aBO7V2,O>

Figurel shows an execution of the R system in case thaBa R system for logical operations
set{3,4} is given as input. In this case, applicable reactions |, this subsection, we show an R system for the logical

area andb for the input set, and these two rules are appliegheration. Any two-input logical operation is defined in the
simultaneously. Since a result of the transition is an union g{,in, table in Table I. For exampley = 2, = 2 = 0 and

obtained objects, an obtained set of object§1is2,4} after 23 = 1 in case of AND operation. We propose an R system

the first transition. . . for any two-input logical operation based on the truth table.
Next, an applicable reaction fdrl,2,4} is only ¢, and an

obtained set of objects i§2,3} after the second transition.C. Details of the R system for the logical operation

Then, a set of objects becomes empty after the third transitionan output of the logical operation is determined according
since no reaction is applicable f¢2, 3}. to the truth table. Thus, we encode the truth table into the
R system as reactions. We now formally define the R system

Ao for any logical operations in the following.
In this subsection, we describe a unified data structure for

a binary number using objects in the R system. Data structure Ao =(S,A)

IIl. DATA STRUCTURE FOR BINARY NUMBERS



TABLE |

A TRUTH TABLE OF A TWO-INPUT LOGICAL OPERATION B. An overview of the R system
Mputz  Thputy | OUGpUTz Let z;, ; andy;, ; be j-th bit of two input binary nL_meers.
0 0 % The R system for the compare-and-swap consists of the
0 1 21 following two steps. First, in Step 1, each bit of the two input
i (l’ 2 binary numbersg;,, andy;,,, are compared from a higher bit to
2 a lower bit. We assume that,, ;, andy;, ;, are the first pair of
bits such that the bits are different in the comparison. Then,
Zin IS greater thany, if z;,r = 1,y = 0, Otherwise,
S = {<AO,BO,VO,0>,<A17BO,V17O>,<A2,BO,‘/270>7 Zin 1S less thany;,, and Tink = anin,k = 1. An object
(E)|Vo.0, V1,0, Va0 € {0,1}} that denotes a result of the comparison is created after the
A = {a1,as, a5, a4) comparison. -
Second, in Step 2, two binary numbers are exchanged and
ar = ({{Ao, Bo,0), (A1, Bo, 0) }, {(E)}, {{A2, Bo, 20)})  outputted tor,u; and you: in case ofzi, < yim. Otherwise,
az = ({(Ao, Bo,0), (A1, Bo, 1)}, {(E)}, {(A2, Bo, 21)})  x;, andy;, are copied intar,,; andy,.., respectively.
as = ({(Ao, Bo,1), (A1, By, 00}, {(E)}, {(As, By, 22)}) In the above two steps, it is worth while noticing that
a1 = ({{Ag, Bo, 1), (Ar, Bo, 1)}, {{ENY, {(As, Bo, 23)}) memory objects must be copied repeatedly because of non-

persistency of the object.
In the above R system,E) is an object that denotes an _
empty set, andy, 21, 22, z3 are Boolean values given in TableC: Details of the R system
I We now explain each step of the R system. In Step 1, each
For a simple example of the above R system, we assuiieof the two input binary numbers,,, andy;,,, are compared
that two input objectg Ay, By, 0) and (A, By, 1) are given from a higher bit to a lower bit. The comparison is executed
to the R system. Then, a reaction is applied, and an object using the following sets of reactions.
(As, By, 1) is obtained as an output of the R system.

Since computation of the above R systamy, is completed 411 = { ({{A0, Bk, 0), (A1, Bi, 1), (C, k) }, {{E)},
by only one transaction, we obtain the following theorem for {(Ao, Bg,0), (A1, By, 1), (LT)})
Aor. 10<k<m-—1}

Theorem 1:The R system\y,, which computes any two-

input logical operations, works i®(1) parallel steps using U { ({40, By, 1), {41, By, 0), (C, k) {(ED},

O(1) types of objects and reactions. O {(Ao, By, 1), (A1, Bk, 0),(GT)})
|0<k<m—1}
v COMPARE-AND-SWAP Az = { ({{40, By, 0), (41, By, 0), (C. )}, ((B)},
In this section, we present an R system for the compare-and- {{Ao, B, 0), (Ay, By, 0), (C, k — 1)})

swap operation of two binary numbersrafbits. The compare-

and-swap operation compares two input valags and y;,,, [1<k<m-—1}

and assigns the smaller and larger values to the variahle U { ({{Ao, Bx, 1), (41, Bi, 1), (C, k) }, {{E) },
and Yout respeCtiver' {<A07 Bkv 1>7 <A17 Bka 1>7 <Ca k — 1>})
|1<k<m-1}

A. Input and output
Two input binary numbers are denoted by the following sets In case ofj-th bit of two binary numbers are different,

of memory objects on the R system. reactions inA4, , are applied, and one of object&L.T") or
(GT), which denotest;, < yin Of Zin > yin, IS Created.
Zin : {{A0, Bj; Vo) [0 <j<m—1} Otherwise, two bits are copied, and the comparison is moved
Yin: {(A1,B;,V1,;) | 0<j<m-—1} to the next bit-position using reactions iy ».

In addition to the above, the other memory objects are

In addition to the above input, we assume that the following,nie repeatedly, due to non-persistency of the object, using
object is given to the R system. The object, which denotes bjf;o following sets of reactions.

position of the comparison, starts the R system.
Arz = { ({(Ao, B, Vo) }, {{C, k), (LT), (GT), (EQ)},

C,m—1
\Gm—1) {{(A0, Bi, Vo) }) |0 <k <m—1,Vy € {0,1}}
In addit_ion, two output binary pumbers are also denoted by U { ({(A1, B, Vi) }, {(C, k), (LT), (GT), (EQ)},
the following sets of memory objects. (AL, Bo, Vi)l [0 <k <m—1,Vig € {0,1}}

Tour i {{A2, By, Vo) [ 0 SZ <m-—1} In case ofz;, = y;,, reactions in the following4, 4 is
Your : {(As,B;,Va;) | 0<j<m—1} applied after comparisons of all bits, and an objeEr) is



( )

created. <Ay.B;.1> <A B, 1> <A B, 0> <A.B) 0>
Ais = { ({{Ao, Bo,0), (A1, By,0),(C,0)},{(E)}, <A, .B;,1> <A B, 0> <A, B,,1> <A, B,,1>
{<A07Bo,0>,<A1,Bo,O>, <EQ>}) } _-’<C,3>

U { ({(Ao, Bo, 1), (A1, Bo, 1),(C,0)}, {(E)},
{(Ao, By, 1), (A1, By, 1), (EQ)}) }

Next, in Step 2, two input binary numbers,, andy,,,, are
l Aj,and A

exchanged and outputted tg,; andy,,; in case that there
exists an objectGT). The swap and copy are executed using
the following set of reactiongl, ;. (" )
' <A,,B3,1> <A ,B,,1> <A),B, 0> <A B, 0>

Azr = { ({{4o, B, Vo), (GT)}, {H{E) }, <A,B;,1> <A, B, 0> <A, B,,I> <A, B,.1>

{(A43, B, Vo)}) | 0 <k <m—1,Vy € {0,1}} <o

U { ({<A17Bk’vl,k>7<GT>}5{<E>}’> |

{<A2,Bk, Vl,k>}) | 0<k<m-— 1, Vl,k c {0, 1}}

On the other hand, two input binary numbets, andy;,,
are copied tor,,; andy,.:, respectively, in case that there l A, and A, ,
exists(LT) or (EQ). The copy is executed using the following ' '
sets of reactionsd, » and As 3. s N

<Ay.B;,1> <A ,B,,1> <A),B, 0> <A B 0>

Azo = { ({{Ao, Br, Vor), (LT)}, {(E)},

((4s, By, Vo k>}) 0<k<m—1Vose {O 1 <A, B;.1> <A, B, 0> <A B, 1> <A By, 1>

U { ({(Ar, By, Vi i), (LT)}, {(E)}, 61>

{<A37-Bk7 Vl,k>}) | 0 S k S m— 17V1,k € {07 1}}
Arz = { ({(Ao, B, Vo), (EQ)}, {(E)}, \ J

{42, By, Vo)) [ 0 <k <m—1, Vo € {0,1}} lAz‘

U { ({<A17Bk>vl,k>7<EQ>}7{<E>}7 ,

{{(A3,Be, Vig)}) [0 <k <m — 1, Vi, € {0,1}} ( )

We now summarize details of the R systetag, which
executes the compare-and-swap operation.

Acs = (5, 4) <A, B;,1> <A, B, 0> <A, B,,1> <A, B, 1>
<A;,B;,1> <A, B,,1> <A; B, ,0> <A;,B, 0>
\_ J

S = {(4:;,B;,V,;)|0<i<3,0<j<m—1}
U{(Ck)|0<k<m-—1}
U {(GT), (LT),(EQ), (E)}

Fig. 2. An example of execution of¢cg

A = A171 U Al)g U A1}3 U A174 U A271 U A2,2 U Ag’g
Figure 2 illustrates an execution of the R systéms. In the  bits, works inO(m) parallel steps usin@(m) types of objects
example;n = 3, and an input is a pair of two binary numbersand reactions. U

x;, = 1100 andy;, = 1011. In the example, at first, reactions

in A; 2 andA; 3 are applied because the highest bits of the two

numbers are same. Next, reactionslin, andA; 3 are applied A. Input and output
because the next bits of the two numbers are different, and amn this section, we present an R system for Sortingnof
object(GT') is created according to the comparison. Finallinary numbers ofrn bits using the R system. An input and
the output values are set tQ,; andy,,: using reactions in an output of the R system is a set of binary numbers that are

VI. SORTING

Az 1. denoted by the following set of memory objects.

D. Complexity of the R system {(4;,B;,Vi;) | 0<i<n—1,0<j<m—1}
Since complexity of Step 1 in the above R systAmg is i i

O(m), we obtain the following theorem fakcs. B. An overview and complexity of the R system

Theorem 2:The R systemA¢g, which executes the The proposed P system is based on odd-even transposition
compare-and-swap operation for two binary numbersrof sort [12], which is a well-known parallel sorting algorithm. Let



(zo,x1,...,2,—1) be an input of the sorting. A basic idea of
the odd-even transposition sort is quite simple. At odd phaseﬁ]
we perform the compare-and-swap operations for each pair
(21, 2i41) (0 <4 < 2 —1) in parallel. On the other hand, [2
we perform the same operations for each pais;_1,x2;)
(1<i< % —1) at even phases. It is proved that the input ig3]
sorted afters repetition of the above two steps [12].

Using the R system described in Section V, we can realizg
the odd-even transposition sort on the R system as follows.
A basic idea of R system for sorting
Repeat the following step§ times.

(5]

Step 1Execute the compare-and-swap operations, which is
described in Section V, for pairGea;, v2i11) (0 < [6]
i <4 —1)in parallel.

Step 2:Execute the same compare-and-swap operations for
pairs (z2;—1,72;) (1 <i <% —1) in parallel. [7]

Since all reactions on the R system can be applied in
parallel, the above idea is implemented as an R systeﬁa\]
Asorr, Which sortsn binary number ofm bits, with a
modification of the R system proposed in Section V. Although
the main difficulty for the implementation is synchronization[9]
of the compare-and-swap operations, we can solve the diffig
culty by using object that works as a global counter. (The
precise description of the R system is omitted because 3H
implementation of reactions is redundant. )

We now consider complexity of the R systefaorr. The
above two steps are repeated Hitimes, and each compare-
and-swap operation is executed {(m) steps. Then, we
obtain the following theorem for the R systetyorr.

Theorem 3:The R systemAgorr, Which sortsn binary
numbers ofm bits, works in O(mn) parallel steps using
O(mn) types of objects and reactions. O

(12]

VIl. CONCLUSIONS

In the present paper, we proposed R systems for logical
operations and sorting of binary numbers. We first proposed
an R system that executes any two-input logical operation,
and showed that the R system works({1) parallel steps
and usingO(1) types of objects and reaction rules. We next
proposed an R system for a compare-and-swap operation of
two binary numbers ofn bits, and showed that the R system
works inO(m) parallel steps and using(m) types of objects
and reaction rules. We finally proposed an R system for sorting
of n binary numbers ofn bits, and also showed that the R
system works irO(mn) parallel steps and usin@(mn) types
of objects and reaction rules.

As future work, we are considering reduction of the numbers
of types of objects and reactions in the R systems.
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