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Abstract— The subject of this paper is the maximum legal
firing sequence problem (MAX-INLFS) for inhibitor-arc Petri
nets IN. It is well-known that modeling capability of inhibitor-arc
Petri nets is equivalent to that of Turing machines, and MAX-
INLFS has wide applications to fundamental problems of Petri
net such as the marking reachability problem, the scheduling
problem, and so on. It is known that, when IN has weighted
forward conflict-free structure and has only one place (called a
rivet) to which at least one inhibitor-arc is incident, MAX-INLFS
can be solved in pseudo-polynomial time if weights of all edges
entering the rivet are equivalent; otherwise it is NP-hard. In this
paper, when IN has more than one rivet rv, we show that MAX-
INLFS can be solved in in O(2|RV ||P||X|) time, where RV is a set
of rivets in IN.

I. Introduction

An inhibitor arc (or simply an inhibitor) is a special directed
edge (p, t) of unit weight, from a place p to a transition t such
that, whenever p has a token, t cannot be fired. Such a place p
is called a rivet. An inhibitor-arc Petri net IN = (P, T, I, E, α, β)
consists of a Petri net (called the underlying Petri net) with
any set of inhibitor arcs added. In figures of this paper, any
inhibitor arc is represented as a dashed line terminating with
a small circle attached to a transition. It is shown in [1] (see
also [2]) that modeling capability of inhibitor-arc Petri nets is
equivalent to that of Turing machines since inhibitor-arc Petri
nets can test “zero” (that is, whether a place has at least one
token or not).

The Legal Firing Sequence problem INLFS of inhibitor-
arc Petri nets is defined by “Given an inhibitor-arc Petri net
IN, an initial marking M0 and a firing count vector X, find
a firing sequence, or a sequence of transitions, which is legal
on M0 with respect to X.” A component X(t) of X denotes the
prescribed total firing number of a given transition t. Without
loss of generality we assume X(t) > 0 for any t ∈ T . We say
that a firing sequence δ is legal on an initial marking M0 if
and only if the first transition of the sequence is can be fired
at M0 and the rest can be fired one after another subsequently.
If such δ satisfies that each transition t appears exactly X(t)
times in δ then we say that δ is legal on M0 with respect to
X.

Let us introduce the Maximum Legal Firing Sequence
problem MAX-INLFS defined as follows (see Fig. 1): “Given
an inhibitor-arc Petri net IN, an initial marking M0 and a firing
count vector X, find a firing sequence δ such that δ is legal
on M0 within X: (i) δ is legal on M0 and δ ≤ X (meaning that
δ(t) ≤ X(t) for any t ∈ T ); (ii) the length |δ| of δ is maximum
among those sequences satisfying (i), where δ(t) is the total
number of occurrences of t in δ for any t ∈ T .” Let LFS
or MAX-LFS, respectively, denote INLFS or MAX-INLFS

for the underlying Petri net N of IN (that is, all inhibitor
arcs of IN are removed). MAX-INLFS has wide applications
to fundamental problems of Petri net such as the marking
reachability problem, the scheduling problem, and so on.

There are many related results for LFS, MAX-LFS, INLFS
and MAX-INLFS. It is shown in [3] that INLFS can be solved
in O(|X|) time for any inhibitor-arc Petri net with unweighted
state machine structure (that is, the underlying Petri net is an
unweighted state machine) if IN has only one rivet and is non-
adjacent type (see [3] for the definition). On the other hand,
RINLFS (a decision problem of INLFS) is NP-hard even if
the following condition (1) or (2) holds: (1) IN has unweighted
state machine structure and has at least three rivets, or (2) IN
has unweighted forward conflict-free structure and X(t) = 1 for
any t ∈ T . Note that NP-hardness under the above condition
(1) or (2) is proved when the number of rivets in IN is not
constant. It is shown in [4] that MAX-LFS for a weighted
conflict-free Petri net can be solved in O(|E||X|). Furthermore
MAX-INLFS can be solved in O(|P||X|) time when IN has
weighted marked graph structure (that is, the underlying Petri
net is a weighted marked graph) and has only one rivet. It
is shown in [5] that, when IN has weighted forward conflict-
free structure (that is, the underlying Petri net is a weighted
forward conflict-free) and has only one rivet rv, (1) MAX-
INLFS can be solved in O(|P||X|) time if weights of all edges
(t, rv) ∈ E are equivalent; (2) otherwise RINLFS is NP-hard.

In this paper, when IN has weighted forward conflict-free
structure (that is, the underlying Petri net is a weighted forward
conflict-free) and has more than one rivet rv, MAX-INLFS
can be solved in O(2|RV ||P||X|) time, where RV is a set of
rivets in IN.

II. Preliminaries

A Petri net is a bipartite digraph N = (P,T, E, α, β), where P
is the set of places, T is that of transitions such that P∩T = ∅,
and E = Ept∪Etp is an edge set such that Ept consists of edges
from P to T with weight function α : Ept → Z+ (non-negative
integers) and Etp consists of edges from T to P with weight
function β : Etp → Z+, In all figures in this paper, edge weight
one is not shown for simplicity.

We denote an inhibitor arc from u ∈ P to v ∈ T as (u, v)i.
Petri nets with inhibitor arcs are referred to as inhibitor-arc
Petri nets, denoted as IN = (P,T, I, E, α, β), We used the
notation N for an ordinary Petri net (without inhibitor arcs) and
IN for an inhibitor-arc Petri net unless otherwise stated. Let
•v = {u ∈ P∪T

∣∣∣ (u, v) ∈ E} and v• = {u′ ∈ P∪T
∣∣∣ (v, u′) ∈ E}.

Note that inhibitor arcs are ignored in these definitions. Let
◦v = {u ∈ P

∣∣∣ (u, v)i ∈ I} and v◦ = {u′ ∈ T
∣∣∣ (v, u′)i ∈ I}.
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Fig. 1. An example: an inhibitor-arc Petri net IN for which an optimum
solution of MAX-INLFS is δ = t6t3t1t2t5t7t4t6 with δ = [1, 1, 1, 1, 1, 2, 1] ≤ X.

We denote RV = {p ∈ P | p◦ , ∅}. Let Ts =
•RV and

P′ = {rv ∈ RV | M(rv) > 0} , ∅.
A marking M for N is a function M : P → Z+, and |M|

denotes the total sum of M(p) over all p ∈ P. A transition t
of Petri net N is enabled at a marking M of N (denoted as
M[t〉) if M(p) ≥ α(p, t) for any p ∈ •t. Firing such t on M
is to define a marking M′ such that, for any p ∈ P, we have
M′(p) = M(p) + β(t, p) if p ∈ t• − •t, M′(p) = M(p) − α(p, t)
if p ∈ •t− t•, M′(p) = M(p)−α(p, t)+ β(t, p) if p ∈ •t∩ t• and
M′(p) = M(p) otherwise. We denote as M′ = M[t〉. (Hence
M[t〉 denotes a marking after firing t at M and shows that t is
enabled at M.) For IN, t is enabled at M if M(p) ≥ α(p, t) for
any p ∈ •t and M(q) = 0 for any rivet q connected to t by an
inhibitor arc. Let δ = ti1 · · · tis be a sequence of transitions, and
δ(t) be the total number of occurrences of t in δ, where T =
{t1, . . . , tn} and i j ∈ {1, . . . , n}. δ = [δ(t1) · · · δ(tn)]tr (n = |T |) is
called the firing count vector of δ. Let |δ| denote the sum of δ(t)
over all t ∈ T . For a marking M and an n-dimensional vector
X = [X(t1) · · · X(tn)]tr, δ is called a firing sequence that is legal
on M (denoted as M[δ〉) if and only if ti j is enabled at M j−1 for
j = 1, · · · , s, where M0 = M and M j = M j−1[ti j〉. The resulting
marking Ms also denotes M[δ〉 for simplicity. Furthermore,
for the markings M and Ms, and the firing sequence δ, 〈δ]Ms
represents M. If δ ≤ X for such δ then we say that δ is legal
on M within X. A transition t is saturated (or unsaturated) in
δ if δ(t) = X(t) (or δ(t) < X(t)). Let δδ′ denote concatenating
δ′ at the rear of δ for two firing sequences δ and δ′.

A directed cycle consisting of a pair of edges (p, t) and (t, p)
is called a self-loop. In this paper, we assume that no self-loop
exists in N (and in IN). N is called a conflict-free Petri net if
and only if (i) or (ii) holds for any p ∈ P : (i) |p•| ≤ 1; (ii) any
t ∈ p• and p forms a self-loop. Since we assume that N has
no self-loop, we consider only (i) for conflict-free Petri nets
(which such a net is called a forward conflict-free Petri net).
N is a marked graph if and only if any p ∈ P has |•p| ≤ 1 and
|p•| ≤ 1. Any marked graph is conflict-free.

III. An algorithm forMAX-INLFS

We show an algorithm solve INLFS for fcf to solve MAX-
INLFS when IN has weighted forward conflict-free structure
(WFCF for short) structure.

An outline of the algorithm is as follows. Since rv ∈ P′ has
some tokens, firing of any transition t ∈ rv◦ is prohibited and
we consider MAX-LFS for N and Xv, where Xv(t)← 0 for any
t ∈ P′◦∪Ts and Xv(t′)← X(t′)−δ(t′) for any t′ ∈ T −(P′◦∪Ts).
Then some rivets rv ∈ P′ may have no tokens. If such rivets

exist then P′ is updated and then we consier MAX-LFS as
mentioned above again. This above operation is repeated as
many as possible. Then one transition ts, which is enabled,
in Ts is selected and it fires. The above two operations are
repeated as many as possible.

Now the description of the algorithm is given.
Algorithm solve INLFS for fcf ;
Input: An inhibitor-arc Petri net IN, an initial marking M0,
and a firing count vector X;
Output: A maximum firing sequence δm that is legal on M0
within X;

1. δm ← (an empty sequence); δ← (an empty sequence);
M ← M0;

2. extend sequence(δ);

Procedure extend sequence(δ);
1. δ1 ← (an empty sequence); δ2 ← (an empty sequence);
2. while P′ = {rv ∈ RV | M(rv) > 0} , ∅ do
2.1. Find a firing sequence δ2 obtained by repeating firing

of unsaturated enabled transitions t ∈ T − (P′◦ ∪ Ts)
beginning with a marking M as many times as possible,
where δδ1δ2(t) ≤ X(t) for any t ∈ T − (P′◦ ∪ Ts);

2.2. δ1 ← δ1δ2; M ← M[δ2〉; /* Since each tt ∈ P′• fires
as many times as possible, the number of tokens in
rv ∈ P′ becomes as small as possible. */

2.3. If there exist rivets rv ∈ P having no token for
the current marking M is P′ then break this loop;
otherwise, update P′; /* this loop is repeated */

3. T ′s = {t ∈ Ts | δδ1(t) < X(t), t is enabled};
4. while T ′s , ∅ do
4.1. Select ts from T ′s; T ′s ← T ′s \ {ts};
4.2. M ← M[ts〉; /* fire ts once */
4.3. extend sequence(δts);
4.4. M ← 〈ts]M; /* the resulting marking is M0[δδ1〉 */

5. If every t ∈ T satisfies (δδ1(t) = X(t)) or (δδ1(t) < X(t)
and t is not enabled at M) and |δm| < |δδ1| then δm ← δδ1;
/* If Step 4 executes then Step 5 does not execute */

6. M ← 〈δ1]M; /* the resulting marking is M0[δ〉 */ ut
We will prove the next theorem.
Theorem 3.1: MAX-INLFS can be solved in O(2|RV ||P||X|)

time if IN has WFCF structure. ut
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