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Abstract—Dealing with ill-defined problems, where the ac-
tual values of input parameters are unknown or not directly
measurable, is generally not an easy task. In this paper, we
propose a hybrid metaheuristic approach, incorporating a
sampling-based simulation module, in order to enhance the
robustness of the final solutions. Empirical application to the
classical mean-variance portfolio optimization problem, which
is known to be extremely sensitive to noises in asset means,
is provided through a genetic algorithm solver. Results of the
proposed approach are compared with that specified by the
worst-case scenario.

Keywords-robustness; simulation model; hybridization; evo-
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I. INTRODUCTION

Metaheuristics (MH) are a general class of approximate
algorithms, particularly useful for solving difficult optimiza-
tion problems. Usually simpler to implement compared with
gradient-based techniques, they selectively guide the search
in succeeding iterations to produce high quality solution(s).
The prominent classical families of metaheuristics, that have
been used through the years, are tabu search, evolutionary
algorithms such as genetic algorithms and evolutionary
strategies, simulated annealing, iterated local search and ant
colony optimization among others. However, in recent years
metaheuristic algorithms combining algorithmic ideas from
diverse metaheuristics and a variety of different disciplines
like computer science, operations research and artificial
intelligence, have been widely and frequently reported. Such
algorithms, so-called hybrid metaheuristics, do not restrict
their attention solely to the classical metaheuristic families,
but extend the scope of its applicability to wide algorithmic
areas. The goal is typically to make meaningful improve-
ments either in solution quality or in terms of running time.
According to the famous no free lunch theorem (NFL),
roughly stated as follows ”averaged over the space of all the
possible problems all search algorithms perform equally”, no
single algorithm will outperform random search in average.
That is to say, a standard metaheuristic will eventually gain
in performance when combined with efficient heuristics and
handy problem-specific knowledge. Thereby, hybridization
could be a promising tool in order to improve the relative
efficiency of the MH in hand for the target optimization

problem. The following figure1 depicts this view for un-
mixed, hybrid MHs and problem-oriented methods. The last
ones have the best efficiency since they are specifically
designed for the purpose of solving the target problem.
The first ones are instead quite monotonous involving little
problem-specific knowledge.
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Figure 1. Current view of hybrid MHs

The main focus of MH hybridization process is basically
turned to finding efficient good approximate solutions. How-
ever, finding robust solutions, which are less sensitive to
small changes in the problem variables, can be highly
important for effective reasons. In fact, from a practical point
of view, solutions of real-world optimization problems are
expected to be, not only optimal, but also insensitive to small
changes that affect problem variables, whether endogenous
or exogenous. Otherwise, a sensitive solution may not be
attainable in practice, due to the difficulty of meeting the
theoretical assumptions. In this paper, we propose a hybrid
metaheuristic approach for solving optimization problems
where some exogenous parameters are unknown or un-
kownable. The intent of hybridization is to enhance the
robustness of the final solutions, i.e. the design variables, to
changes in those parameters. In other terms, solutions that
do not exhibit larger departures when slight changes affect
exogenous parameters will be favoured.

The conception of our hybrid MH embeds two phases,
in addition to the MH itself, i.e. the algorithmic part, a
simulation procedure is performed. Theoretically, any MH,
independently of its structure, e.g. population-based or not,
related to local search or not, can be utilized within the

1This figure is redrawn from [1] and [2] who addressed the case of
evolutionary algorithms.



proposed approach. The combination between the MH and
the simulation is actually of high level nature, allowing each
part to retain its own identity. The aim of the simulation
procedure is to identify quality robust solutions among
a set of solutions. The overall process comprises, first
heuristically solving the problem for several instances of
the uncertain parameters, thereafter, evaluating the solutions’
performance under a large enough number of samples of the
uncertain parameters, slightly and randomly derived from
a nominal case. Percentage of being top-ranked solution
across the scenarios, plus the across-scenario average of
performance ratio, i.e. ratio between the solution evaluation
and the top-ranked evaluation for the related scenario, are
taken as measures of robustness.

The simulation model is described in the next section, while
the process of hybridization is presented in Section III. A
practical application involving a hybrid genetic algorithm to
the financial problem of mean-variance portfolio optimiza-
tion is provided in Section IV. Section V concludes this
study.

II. SIMULATION MODULE

This section briefly introduces the notation used in the
paper, and subsequently describes the simulation module to
be integrated later in the hybrid MH. Special emphasis is
given to finding a minimum sample size to guarantee reliable
estimates, in subsection B.

A. Notation and model specification

Consider the following constrained optimization problem,

max
x

f(θ̃, x) subject to x ∈ C ⊆ Rn, θ̃ ∈ ∆ ⊆ Rl, (1)

where x denotes a vector of design variables constrained
to a set C ⊆ Rn and θ̃ ∈ ∆ ⊆ Rl is a vector of ran-
dom variables representing uncertain exogenous parameters,
while f(θ̃, x) : ∆×C → R is an objective function assumed
to be scalar-valued. This problem is not well-defined, since it
involves the random parameters θ̃ that lead to an ambiguous
function f(θ̃, x). We make it well-defined by assuming that
the parameters θ̃ vary within an uncertainty set Θ, defined
as a norm-bounded ball with a center θ0,

Θ ≡ {θ ∈ ∆ : ||θ − θ0||p ≤ ξ} = Bξ(θ0) ⊆ Rl,

where ||.||p denotes the lp norm in Rl, e.g. p = 1, 2,∞. We
shall call θ0 the nominal value of θ̃.

The focus of our simulation is to detect optimal design
variables, that have desirable robustness properties within
the uncertainty set Θ. To this purpose, given a set of optimal
solutions X = {x1, x2, x3, ..., xk}, we proceed by studying
their behaviour in terms of performance throughout a num-
ber of randomly generated samples of θ̃ ∈ Θ, that we shall
call scenarios. N independent and identically distributed
(i.i.d.) scenarios of θ̃ are drawn, θ1, θ2, ..., θN ∈ Θ. To

measure robustness of an instance x ∈ X , we have chosen
two measures RX1 (x) and RX2 (x). The first one reports the
percentage across scenarios of being top-ranked solution, i.e.
having the best f value compared with the other solutions,
for the corresponding scenario. Using the following indicator
function,

IX (θ, x) =

{
1, if f(θ, x) = max

y∈X
f(θ, y)

0, otherwise

∀θ ∈ {θ1, θ2, ..., θN}, ∀x ∈ X ,

we can obtain an estimate of RX1 (x),

R̂X1 (x) =
1

N

N∑
i=1

IX (θi, x) ∀x ∈ X , (2)

which is equivalent to,

R̂X1 (x) =
MX (x)

N
∀x ∈ X , (3)

with MX (x) is the number of scenarios θ, such that
x ∈ arg max

y∈X
f(θ, y). The second measure RX2 (x) starts by

computing for each scenario θi the ratio: f(θi, x)/fXmax(θi).
f(θi, x) is the evaluation of x correspondingly to θi, and
fXmax(θi) = max

y∈X
f(θi, y) is the maximum function value

reached for θi. Afterwards, these ratios are averaged over
all scenarios. An estimate can be written as,

R̂X2 (x) =
1

N

N∑
i=1

f(θi, x)

fXmax(θi)
.

fXmax(θi) can be also expressed as,

fXmax(θi) =
∑
y∈X

IX (θi, y)f(θi, y).

The reason of using the first measure is intuitive. It relates
the robustness of a solution to the number of times it is
optimum (according to X ) for a number of random samples
θ̃. The advantage of the second measure is however to take
into account the relative span of each solution x to the top-
ranked solution across scenarios. Indeed this ratio may be
desirable to know if a solution is rarely ranked best, but
frequently exhibits a small gap to the top-ranked solutions.

X︷ ︸︸ ︷
x1 x2 ... xk

(I1) scenario θ1 f(θ1, x1) f(θ1, x2) ... f(θ1, xk) →fXmax(θ1)

(I2) scenario θ2 f(θ2, x1) f(θ2, x2) ... f(θ2, xk) →fXmax(θ2)

... ... ... ... ...

(IN ) scenario θN f(θN , x1) f(θN , x2) ... f(θN , xk) →fXmax(θN )

RX
1 (x) - - ... -

RX
2 (x) - - ... -

Table I. Description of the simulation module



Table I illustrates the overall simulation module. In perform-
ing the simulation, three elements need to be set:
• X , the set of optimal solutions to be compared. This set

will be generated according to the hybridization process
described in Section 3,

• N , the number of randomly generated samples of θ̃,
which will be discussed in the following section,

• and the distribution of the random draw of θ̃ ∈ Θ. This
includes the shape, e.g. Gaussian, uniform, etc, and the
magnitude, i.e. the parameter ξ of Θ = Bξ(θ0), of the
noise distribution. The related choice will be mentioned
in the application example.

B. Minimum sample size

The estimate (3) of RX1 , formally known as relative
frequency, is empirically derived from the actual data, i.e.
the used scenarios. A crucial question is to know how many
samples of scenarios have to be drawn in our simulation
in order to obtain reliable estimates of RX1 with a high
probability. In other words, we are seeking a minimum
number of N such that the probability value of the difference
|R̂X1 (x) − RX1 (x)| ≤ ε with ε ∈ (0, 1), is sufficiently high.
Given a margin error ε ∈ (0, 1) and a confidence level
δ ∈ (0, 1), we will make use of this inequality,

P(|p̂X (x)− pX (x)| ≤ ε) ≥ 1− δ, (4)

with p̂X (x) = R̂X1 (x) and pX (x) = RX1 (x). Since for all
i ∈ [|1, N |] the θi’s are drawn independently, the event
whether a solution x is top-ranked solution or not for a
scenario θi, which can be expressed as IX (θi, x), is viewed
as an independent Bernoulli trial. Thus, the estimated prob-
ability of the global process, which is a binomial process,
i.e. sum of independent Bernoulli trials, can be expressed
in accordance with (2) as p̂X (x) = 1

N

∑N
i=1 IX (θi, x). The

expectation and the variance of the general process are,

E(p̂X (x)) =
E(
∑N
i=1 IX (θi, x))

N
= pX (x),

V ar(p̂X (x)) =
V ar(

∑N
i=1 IX (θi, x))

N2
=
σ2
X (x)

N
,

where σ2
X (x) is the variance of the parameter IX (θi, x).

Note that, pX (x) is actually the probability of success
in each trial IX (θi, x). By directly applying Chebyshev’s
inequality, which is formally stated as follows, given a
random variable Y ,

P(|Y − E(Y )| ≥ ε) ≤ V ar(Y )

ε2
, ∀ε ∈ (0, 1),

we obtain the following inequality,

P(|p̂X (x)− pX (x)| ≤ ε) ≥ 1− σ2
X (x)

N ε2

≥ 1− pX (x) (1− pX (x))

N ε2
.

The corresponding confidence level is then,

δ =
pX (x) (1− pX (x))

N ε2
.

Taking into account, pX (x) (1 − pX (x)) ≤ 1
4 , the sample

size is bounded, as follows,

N ≥ 1

4ε2δ
. (5)

This bound is known as Bernoulli bound. Its expression
is actually given in the well-known Bernoulli’s theorem of
weak law of large number. A tighter bound derived from
Hoeffding’s inequality2, called Chernoff bound, improves the
minimum sample size. Hoeffding’s inequality in our case is
written as,

P(
∣∣∣ 1

N

N∑
i=1

IX (θi, x)−E(
1

N

N∑
i=1

IX (θi, x))
∣∣∣ ≤ ε) ≥ 1−2e−2ε

2N .

The confidence level here is,

δ = 2 exp(−2ε2N),

which subsequently leads to the expression of the Chernoff
bound,

N ≥ ln(2/δ)

2ε2
. (6)

The bound (5) is specified for any random variable, while
the bound (6) requires a sum of random variables. The main
disadvantage of (5) is that, it requires a large minimum
sample size. For instance, Bernoulli and Chernoff bound
for ε = δ = 0.1% are respectively N = 2.5 108 and
N ≈ 3.80 106. Tight and rigorous bounds as Chernoff bound
are more desirable, since they allow for exact approximation
of the minimum value of N necessary for reliable estimates.

III. HYBRIDIZATION

Hybrid MHs are classified according to several aspects.
The level of hybridization: deep combination or high level
cooperation, the order of execution: batch, interleaved or
parallel and the control strategy: integrative or collaborative,
are among others classification criteria of heuristic systems3.
Control strategy concerns the nature of relationship between
the hybrid MH parts. It is integrative if one part is subordi-
nate to the other, as in memetic algorithms where the local
search improvement is embedded into genetic algorithm
procedures. In the collaborative way however, there is an
exchange of information in a synergetic manner without
any subordination. Our approach falls into the second class.
On one side the simulation technique presented in the
previous section, and separately on the other side, the MH
algorithm. Before running the simulation, the MH will be
performed several times for several instances of the uncertain
parameters. Let V denote the number of those runs. For

2The formal proof of this inequality can be found in [3].
3This taxonomy of classification is mentioned with respect to [4].
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θ′1
1 ) ... f(θN , x

θ′1
K ) f(θN , x

θ′2
1 ) ... f(θN , x

θ′2
K ) f(θN , x

θ′3
1 ) ... f(θN , x

θ′3
K )

RX1 (x) - ... - - ... - - ... -
RX2 (x) - ... - - ... - - ... -

Choosing the K best solutions x1, x2, ..., xK ∈ X according to RX1 or RX2

Figure 2. General scheme of the proposed hybrid algorithm

example, in Figure 2 V = 3, the MH is run three times for
three randomly generated variables θ′1, θ

′
2, θ
′
3 ∈ Θ with θ0

the nominal value. The overall solutions outputted by the
MH runs are grouped to be considered as inputs for the
simulation module. The set of input solutions X considered
here according to Figure 2 is,

X = {xθ
′
1

1 , x
θ′1
2 , ..., x

θ′1
K , x

θ′2
1 , x

θ′2
2 , ..., x

θ′2
K , x

θ′3
1 , x

θ′3
2 , ..., x

θ′3
K}.

If we suppose that the MH generates K ≥ 1 solutions,
the final output of the hybrid MH will be also of size K,
more specifically the K best solutions sorted according to
RX1 or RX2 . Notice that, it is obviously possible to consider
the nominal value θ0 side by side with θ′1, θ

′
2, θ
′
3, and the

simulation can be computationally costly if the number of
required scenarios is quite large. Each new scenario adds at
least a cost of V ×K evaluations. Thus, finding a mechanism
that may reduce the number of sampled scenarios is of high
interest, even if it is not considered in this paper.

Facing optimization under uncertainty, one well-applied
approach is the worst-case analysis, known also as max-
min, and extensively used in robust optimization. It is
based on optimizing the original problem under the worst
realization of the uncertain parameters contained within a
specially constructed set, called the uncertainty set. This
approach is preferred to other optimization approaches under
uncertainty, as dynamic and stochastic methodologies, since

it is more tractable computationally, i.e. the optimization is
performed only one time. We shall compare our simulation
result: solutions ranked according to RX1 or RX2 , to the
results indicated by the the worst-case scenario θwc among
the set {θ1, θ2, ..., θN} seen here as an uncertainty set. To
spot θwc, we seek given the set of the θi’s, a lower value of
the following expression4,∑

x∈X
f(x, θi), ∀i ∈ [|1, N |]. (7)

This comparison will allow us to evaluate further the dif-
ferences between the results of our approach and those
suggested by the worst-case view.

IV. APPLICATION

In this section, we apply our hybrid metaheuristic
construction to the problem of portfolio optimization.
Originally proposed by Markowitz in 1952 [5], the problem
of finding the best financial investment strategy can be
pinned down mathematically, according to Markowitz’
model, as an optimization problem based on two criteria,
minimizing the risk while maximizing the expected return
of an investment which consists of several financial assets,
e.g. stock securities, bonds, real estate investment, options,
etc. It is called the mean-variance model (MV), as the

4If our problem is a minimization problem, we will seek a higher value.



investment risk is measured by variances and covariances
of asset returns. The model considered in this section is
the standard single-period MV problem, stated for n risky
assets as,

maximize
w

{EU(w)} = {µ′w − λw′Σw } (8)

= {
n∑
i=1

wiµi − λ
n∑
i=1

n∑
j=1

wiwjσij}

subject to
n∑
i=1

wi = 1, and ∀i ∈ [|1, n|], 0 ≤ wi ≤ 1

where w ∈ Rn is the n-vector of weights corresponding to
the decision variable, each wi is the fraction held in the i-
th asset. The expected return (mean) of the i-th asset and
the covariance between the return of the i-th and j-th assets
are respectively denoted by µi and σij , such that σii = σ2

i

is the variance of the i-th asset. Accordingly, µ = (µi)i
and Σ = (σij)i,j are the n-vector of means and the n × n
covariance matrix in the same order. The objective function
is designated by the expected utility function EU(w), and
the parameter λ indicates the degree of the investor’s risk
aversion. The higher λ the more the investor is risk-averse.
Nevertheless, the MV analysis suffers from the drawback of
extreme sensitivity to input’s errors, especially concerning
asset means µ. This is an issue because the model inputs are
predominantly based on statistical estimations from histori-
cal data, which may induce potential and significant errors in
asset means and return covariances. Actually, this sensitivity
issue is considered a major barrier for POP to be effective
in real-life situations. Several studies have addressed this
problem: Jobson and Korkie [6], Michaud [7], Best and
Grauer [8], Chopra and Ziemba [9] and Broadie [10].

A. Genetic Algorithm solver

Concerning the MH choice, we apply Genetic Algorithm
(GA), which is a well-known population-based metaheuristic
grounded on the darwinian natural selection principle –
survival of the fittest. In GA, the population of individuals
evolves through three main operators to fit a goal formulated
by the fitness function, a function that evaluates the accuracy
of the evolved individuals to the problem in hand. The
first operator is selection, which selects parent individuals
intended to generate the next generation via two evolution
operators which are crossover that merges features of the
parents and mutation that slightly changes them. GA is
typically applied to global optimization problems, especially
solving complex nonlinear problems where exact solutions
are difficult to obtain. The choice of GA, in the current
application, is due to its superior performance reported for
solving MV models in comparison with other MHs. For
instance, Chang et al. [11] compared three MHs, namely

Tabu search, Simulated Annealing and GA, for solving
a cardinality constrained MV optimization problem. They
found that in the unconstrained case, i.e. without cardinality
constraints, which corresponds to our target problem (8),
GA gives the best approximate solutions with an almost
zero mean percentage error. For more information about GA
based applications to portfolio optimization, the reader is
referred to the surveys [12] [13] [14] which cover single
and multi-objective GA-based applications.

Since the optimization problem (8) is continuous, we adopt
a real-valued representation rather than the original binary-
string representation that is well suited for discrete problems.
Simulated binary crossover (SBX) and polynomial mutation
(PM) are equally employed. These two operators, proposed
respectively by Deb and Agrawal [15] and Deb [16] are
specifically designed for real-valued encodings. SBX is the
real domain analog of single-crossover operator of binary
GA in terms of search power. It uses for offspring production
a probability distribution similar to that of binary single-
crossover. PM, on the other hand, is a nonuniform mutation
where the underlying distribution is similar to that of SBX,
i.e, polynomial. Both operators have been shown to yield
improved results over real-valued encodings, according to
[15] and [16]. For the selection procedure, we used a binary
tournament operator with elitism. The binary tournament
compares the fitness of a set of randomly chosen individ-
uals, it retains after the best ranked solution, i.e. the one
with the highest fitness. This process is repeated until the
mating pool, from which the next generation will be drawn,
is complete. The elitism is applied by keeping the two
fittest solutions of the population for the next generation.
The following table summarizes the GA operators and the
parameter values used in the current application.

GA Parameter Value
Population size 100
Generations 300
Selection tournament (size = 2)
Crossover SBX
Mutation polynomial
Crossover probability 0.25
Mutation probability 0.01

Table II. GA parameters

B. Data

We use the following dataset, taken from Michaud [17,
p. 16]. It describes monthly sampled expected returns and
covariances for six developed countries. The data is given
over a period of 18 years (T = 216), from January 1978 to
December 1995.



Asset Standard
means deviation

1 Canada Equity .39 5.50
2 France Equity .88 7.029
3 Germany Equity .53 6.220
4 Japan Equity .88 7.039
5 U.K. Equity .79 6.010
6 U.S. Equity .71 4.300
7 U.S. Bonds .25 2.010
8 Europe Bonds .27 1.558

Correlation matrix
1 2 3 4 5 6 7 8

1 1
2 .4099 1
3 .2999 .6199 1
4 .2500 .4200 .3500 1
5 .5799 .5401 .4798 .3999 1
6 .7099 .4399 .3402 .2200 .5599 1
7 .2596 .2200 .2703 .1399 .2500 .3598 1
8 .3300 .2600 .2805 .1603 .2903 ..4207 .9191 1

Table III. Historical means and return correlation matrix

C. Methodology and results

We focus on errors in asset means, since their impact
can be 10 times or more important than those in variances
and covariances, in terms of cash equivalent loss [9]. Conse-
quently, the uncertain parameter here is the n-vector of asset
means θ̃ = µ̃. By taking a margin error ε = 0.5% and a con-
fidence level σ = 0.5%, the corresponding Chernoff bound,
according to (6), is 1.198105. For the entire experiment, we
fix the sample size at N = 1.5 105, and the risk-aversion
parameter at λ = 2. About the scenarios’ random draw, we
opt for a uniformly iid sampling from the set,{

µ ∈ Rn : |µi − µ0 i| ≤ ξ, ∀i ∈ [|1, n|]
}

= Bξ(µ0),

where µ0 represents the nominal vector of asset means given
by Table III. Two noise magnitudes ξ are considered, a low
magnitude ξ = 0.01 and a large one ξ = 0.3. To investigate
the impact of the initial choice of asset means5, ten instances
of µ are considered (from µ0 to µ9); nine are randomly
sampled according to the same sampling process described
above, plus the nominal value µ0. For each case of ξ, 100
runs of the hybrid GA are performed, the average value
are reported thereafter. For each run of the hybrid GA, the
following solution set X is constituted,

X = {wµj

i ,∀i ∈ [|1, 100|],∀j ∈ [|0, 9|]},

with w
µj

i is the portfolio number 1 ≤ i ≤ K = 100,
generated using the asset mean µj , 0 ≤ j ≤ 9. K refers to
the GA population size. The set X is slightly changed in
our program by removing identical portfolios wµj

i that are
found using different µj . Only the first occurrence of these
duplicates are retained. It is attributed to the initial µj that

5The corresponding initial choice of Figure 2 is θ′1, θ
′
2 and θ′3.

finds them.

In our setting, we compare three populations induced
from the final output, namely the first K portfolios sorted
according to RX1 and to RX2 measures and to the worst-case
scenario (wc), identified by expression (7). Following the
results obtained for ξ = 0.01.

1) Low noise magnitude: Figure 3 compares the three
populations (according to wc, RX1 and RX2 ) averaged over
100 runs of the hybrid GA. The µj in the figure’s legend
represents the instance of asset means used in the portfolios
generation. In general, the three populations do not differ
much. However, the ones according to the worst-case sce-
nario and RX1 are quite similar, expect very small differences
between slots which does not exceed 0.4% (larger difference
for µ0). On the other hand, the RX2 population, even similar,
allows more space for the nominal portfolios (generated
using µ0), for almost 21.35%. Table IV gives an example
of the best ten rankings across the populations, for one run
among the 100 used runs. It shows that, in this particular
case, portfolios generated using µ1 are more adapted to
the worst-case scenario, which corresponds to the scenarios
number 38 886 of this instance run. Also, portfolios gener-
ated using µ4 have better RX2 measure, averagely performing
better across scenarios, i.e. higher performance ratio. The
first rankings by RX1 are however more diverse, including
portfolios yielded by µ6, µ5, µ4 and µ1 among others. In
summary, while the 10th first rankings of the populations can
be completely different, the overall repartition according to
wc scenario and RX1 looks much alike.

wc population RX
1 population RX

2 population

ranking portfolio µ portfolio µ portfolio µ

1st wµ1
1 µ1 wµ6

1 µ6 wµ4
1 µ4

2nd wµ1
2 µ1 wµ5

1 µ5 wµ4
2 µ4

3rd wµ1
15 µ1 wµ4

1 µ4 wµ4
10 µ4

4th wµ1
19 µ1 wµ1

1 µ1 wµ4
12 µ4

5th wµ1
20 µ1 wµ8

1 µ8 wµ4
13 µ4

6th wµ1
21 µ1 wµ0

1 µ0 wµ4
14 µ4

7th wµ1
55 µ1 wµ7

1 µ7 wµ4
15 µ4

8th wµ1
58 µ1 wµ9

1 µ9 wµ4
18 µ4

9th wµ1
59 µ1 wµ9

95 µ9 wµ4
19 µ4

10th wµ8
78 µ8 wµ3

1 µ3 wµ4
21 µ4

Table IV. An instance of best portfolios by population for
ξ = 0.01

Figure 4 shows the distribution of rankings across 100 runs
of the hybrid MH. For each top ranked portfolio, which has a
rank 1, of each population (according to wc, RX1 or RX2 ), we
examine its analogous ranking in the other wc, RX1 and RX2
populations. This is done 100 times (100 runs of hybrid MH)
in order to construct the box plots of Figure 4. Rankings
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Figure 3. Repartition of final populations, according to wc, RX1 and RX2 , in terms of asset means instances µi (for ξ = 0.01)

below the red line designate portfolios that can be part of
the final population, i.e. having a ranking less or equal than
K = 100. From the figure, we observe that RX1 measure
assigns high rankings to the top portfolios according to wc
(the first box plot from the left), which suggests a similarity
between rankings in wc and RX1 populations. However, this
is not reciprocal, the best portfolios according to RX1 have
spread ranks in wc population (the third box plot). We can
similarly notice that RX1 measure also allocates high ranks
to the best RX2 individuals (the sixth box plot). First ranked
portfolios by RX1 cover large area of rankings in populations
of both measures RX2 and wc, according to the two blue box
plots of Figure 4. All the box plot means are above the red
line, except the first and sixth ones.
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Figure 4. Distribution of the analogous rankings of the best
portfolios according to wc, RX1 and RX2 (for ξ = 0.01)

2) Large noise magnitude: The second part of the experi-
mentation concerns the magnitude of ξ = 0.3. Figures 5 and
6 are respectively the equivalent results of Figures 3 and 4.
Same observations concerning the rankings distributions of
law magnitude can be made here also. The overall popula-

tions’ repartitions follow likewise, although the populations
according to RX2 gives more room to the nominal portfolios,
for around 28.31%. Notice that the nominal asset means
µ0 based portfolios take, according to Figure 5, negligible
proportions in wc and RX1 populations, for around 4.1%.
This is consistent with the high risk of having unlimited
belief in nominal values of uncertain parameters.

The implementation of the overall hybrid MH, GA and
simulation module, is made in the Java environment6. The
various tests are done on a machine with an Intel Core i7
CPU at 3GHz and 8GB DDR3 RAM, using JDK 1.7.0.
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Figure 6. Distribution of the analogous rankings of the best
portfolios according to wc, RX1 and RX2 (for ξ = 0.3)

V. CONCLUSION

In order to capture the randomness of input parameters
for ill-defined problems, we proposed a hybrid metaheuristic
(MH) approach incorporating a simulation module. This

6The code is available upon request by email.
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Figure 5. Repartition of final populations, according to wc, RX1 and RX2 , in terms of asset means instances (for ξ = 0.3)

module is created for the purpose of finding less sensitive
solutions to perturbations affecting some uncertain input
parameters. Two measures of robustness are used within the
simulation module :

1) (RX1 ) the percentage of being top-ranked solution
throughout randomly sampled scenarios of the uncer-
tain parameters,

2) (RX2 ) the average across scenarios of the solution
performance ratio, which corresponds to the solution
evaluation over top-ranked evaluation for the related
scenario.

Empirical experimentations are conducted for the problem of
portfolio optimization against noises in the expected returns
of assets, which are inputs of the model. The emphasis of
the application is on comparing ranks of the final solutions
induced by three criteria: both robustness measures (RX1 and
RX2 ) plus ranks implied by the worst-case scenario (wc).

Results have shown, for both cases of high and low mag-
nitude perturbations, that the final population to the RX1
measure is highly similar to that suggested by the wc
scenario, meanwhile RX1 population performs better when
it comes to ranking the top-ranked portfolios according to
the other measures RX2 and wc.

In future work, we intend to extend the hybrid approach
by embedding in it a selection mechanism of the sampled
scenarios. Instead of treating scenarios equally, the user can
have more control over the process.
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