
A Fixed-Parameter Algorithm
for Max Edge Domination

Tesshu Hanaka and Hirotaka Ono

Department of Economic Engineering, Kyushu University,
Fukuoka 812-8581, Japan

Abstract. In a graph, an edge is said to dominate itself and its adjacent
edges. Given an undirected and edge-weighted graph G = (V,E) and an
integer k, Max Edge Domination problem (MaxED) is to find a subset
K ⊆ E with cardinality at most k such that total weight of edges dom-
inated by K is maximized. MaxED is NP-hard due to the NP-hardness
of the minimum edge dominating set problem. In this paper, we present
fixed-parameter algorithms for MaxED with respect to treewidth ω. We

first present an O(ω2 · 26ω+3ω2

· k3 · n)-time algorithm. We then improve
the running time into O(ω · 26ω · k3 · n), whose exponent is a linear of ω.
This improvement enables us to design a subexponential fixed-parameter
algorithm of MaxED for apex-minor-free graphs, which is a graph class
that includes planar graphs.

Keywords: max edge domination, fixed-parameter algorithm, bounded
treewidth, subexponential FPT

1 Introduction

LetG = (V (G), E(G)) be an undirected and positive edge-weighted graph, where
V (G) is the set of n vertices and E(G) is the set of m edges. These V (G) and
E(G) are simply denoted by V and E, respectively. For an edge e = {u, v} ∈ E,
its weight is denoted by we or wuv. For E

′ ⊆ E, we denote by V (E′) the set of
vertices that appear in E′, that is, V (E′) =

∪
e∈E′ e. An edge is said to dominate

itself and its all adjacent edges. We denote by DG(e) the set of edges dominated
by an edge e, that is, DG(e) = {e′ ∈ E(G) | e′ ∩ e ̸= ∅}. For a set E′ of edges,
we denote by DG(E

′) the set of edges dominated by an edge in E′, that is,
DG(E) = {e ∈ E(G) | e ∩ V (E′) ̸= ∅}. In these notations, we may omit the
subscript G if it is clear.

Given G = (V,E) and an integer k, Max Edge Domination problem (MaxED)
is to find a subset K ⊆ E with cardinality at most k such that total weight of
edges dominated byK is maximized. This problem is formulated by the following
optimization problem:

max
K⊆E,|K|≤k

∑
e∈D(K)

we.

In a sense of the decision problem, MaxED for an unweighted graph is equivalent
to the well-known Minimum Edge Dominating Set (EDS), that is, the problem to
find a minimum subset of E′ dominating all edges in E. Due to the NP-hardness
of EDS, MaxED is NP-hard, and several approximability (or inapproximability)
results are known. For example,MaxED is APX-hard [20], and a greedy algorithm
achieves approximation ratio max{1− 1/e, k/s}, where s is the size of maximal
matching [16].

In this paper, we consider fixed-parameter tractability of MaxED. Given a
problem with input size n and a parameter γ, the problem is said to be fixed-
parameter tractable (FPT, for short) if it can be solved in f(γ) · nO(1) time,
where f is a certain function that depends only on parameter γ. An algorithm
that achieves the above running time is called a fixed-parameter algorithm. Par-
ticularly, if f(γ) = 2o(γ), the problem is called subexponential fixed-parameter
tractable. For general concepts of fixed parameter tractability and related top-
ics, see [8, 11, 21]. It is known that EDS is FPT with respect to the solution size
[9], but this does not imply the fixed parameter tractability of MaxED with re-
spect to k, because the solution size of EDS can be much larger than k in general.
In fact,MaxED with parameter k has shown to beW [1]-hard even for unweighted
bipartite graphs [15]. This implies that there unlikely exists a fixed-parameter
algorithm for MaxED with parameter k.

In this paper, we show that (1) MaxED with respect to treewidth ω is FPT,
and (2) MaxED with respect to k is subexponential FPT for apex-minor-free
graphs, which is a graph class that includes planar graphs. For the former result,
we first present a basic O(ω2 ·26ω+3ω2 ·k3 ·n)-time algorithm forMaxED, and then
improve the running time into O(ω ·26ω ·k3 ·n). The fixed-parameter tractability
of MaxED with respect to treewidth is rather straightforward, but the improved
running time plays a key role of the latter result.

There are many combinatorial optimization problems that have subexpo-
nential fixed-parameter algorithms for superclasses of planar graphs. A powerful
meta-theorem to design a subexponential fixed-parameter algorithm is known
for problems having bidimensionality ([4, Theorem 8.1]). Roughly speaking, if
a problem has bidimensionality, the treewidth of a planar graph (or a graph
in some superclasses of planar graphs) is bounded by O(

√
k∗), where k∗ is the

optimal value of the problem. By combining this with 2O(ω)nO(1)-time algo-
rithm, a subexponential fixed-parameter algorithm can be obtained. Although
EDS with respect to solution size is an example of problems having bidimension-
ality, MaxED with respect to k is unfortunately not. Instead, we try to choose a
special K∗ among all the optimal solutions. In this strategy, K∗ and its neigh-
bors are localized so that the treewidth of the subgraph of G induced by K∗ and
its neighbors is bounded by O(

√
k). Then, we can expect a similar speeding-up

effect. The points become (i) how we localize K∗, and (ii) the design of a fixed-
parameter algorithm whose exponent is linear of ω. This scheme is proposed
by [13] to design a subexponential fixed-parameter algorithm of Partial Vertex
Cover with respect to k, which is also not a bidimensional problem, subexpo-
nential fixed-parameter algorithms with respect to k for the partial dominating

set and the partial vertex cover of apex-minor-free graphs. Another example of
employing this scheme is found in [18]. To apply the scheme, we utilize a gener-
alized version of EDS, say r-EDS, and investigate the approximability. Based on
these together with the faster algorithm mentioned in the previous paragraph,
we show that there is an algorithm solving MaxED for apex-minor-free graphs

in 2O(
√
k) · nO(1) time.

1.1 Related work

As mentioned above, MaxED is strongly related to EDS. EDS is the problem of
finding a minimum subset S ⊆ E such that all edges e ∈ E \S are adjacent to at
least one edge in S. EDS is also known as Minimum Maximal Matching. There
are many studies for EDS from the viewpoint of (in)approximability, parame-
terized complexity and exact algorithms. For example, EDS is 2-approximable
in polynomial time [14], NP-hard to approximate within any factor better than
7/6 [3], and can be exactly solved in O∗(1.3160n) time, where O∗-notation sup-
presses all polynomially bounded factors [23]. EDS is also known to be fixed-
parameter tractable with respect to several parameters, e.g., the solution size
of EDS, treewidth, and so on. For example, an O∗(1.821τ)-time algorithm of
EDS [22] and an O∗(2.1479k

∗
)-time algorithm of EDS for cubic graphs are pro-

posed, where τ is the solution size of the minimum vertex cover, and k∗ is the
solution size of EDS.

As mentioned before, EDS with solution size is known to be a bidimensional
problem. By using the bidimensonality theory, a subexponential fixed-parameter
algorithm for apex-minor-free graphs can be designed [5].

Compared with EDS, MaxED itself is less studied. MaxED is a special case of
Maximum Coverage Problem (MaxC): Given n elements xi with positive weight
wi, i = 1, 2, . . . , n, sets of S1, S2, . . . , Sm ⊆ {x1, x2, . . . , xn} and a positive in-
teger k, find a set C ⊆ {1, 2, . . . ,m} such that |C| ≤ k and

∑
xi∈

∪
j∈C Sj

wi is

maximized. Since MaxC is known to be (1 − 1/e)-approximable in polynomial
time [7, 17], so is MaxED. Though the approximation ratio is tight for MaxC
under P̸=NP ([10]), MaxED is just known to be APX-hard [20]. As for the pa-
rameterized complexity, MaxED with respect to k has been recently shown to be
W[1]-hard even for unweighted bipartite graphs [15].

This paper is organized as follows. In Section 2, we introduce notations and
definitions. In Sections 3 and 4, we present two fixed-parameter algorithms for
MaxED. We first present a basic algorithm in Section 3, and then improve the

running time in Section 4. Finally, we show that a 2O(
√
k) ·nO(1)-time algorithm

of MaxED for apex-minor-free graphs in Section 5.

2 Preliminaries

Let G = (V,E) be an undirected and edge-weighted graph. For V ′ ⊆ V , let
G[V ′] denote a subgraph of G induced by V ′. For E′ ⊆ E, we simply denote
G[V (E′)] by G[E′].

Here, we introduce the following Lemma 1, whose proof is shown in Appendix.

Lemma 1. There is an optimal solution K∗ for MaxED, where K∗ forms a
matching, that is, every two e, e′ ∈ K∗ satisfy e ∩ e′ = ∅.

By Lemma 1, we assume that our algorithms for MaxED finds an optimal
solution that forms a matching.

2.1 Tree Decomposition

Our algorithms that will be presented in Sections 3 and 4 are based on dynamic
programming on tree decomposition. In this subsection, we give the definition
of tree decomposition.

A tree decomposition of a graph G = (V,E) is defined as a pair ⟨X , T ⟩,
where X = {X1, X2, . . . , XN ⊆ V }, and T is a tree whose nodes are labeled by
1, 2, . . . , N , such that

1.
∪

i∈I Xi = V .

2. For ∀{u, v} ∈ E, there exists Xi such that {u, v} ⊆ Xi.

3. For all i, j, k ∈ {1, 2, . . . , N}, if j lies on the path from i to k in T , then
Xi ∩Xk ⊆ Xj .

In the following, we call T a decomposition tree, and we use term “nodes” (not
“vertices”) for T to avoid a confusion. The width of a tree decomposition ⟨X , T ⟩
is is defined by maxi∈{1,2,...,N} |Xi| − 1, and the treewidth of G, denoted by
tw(G), is the minimum width over all tree decompositions of G. We sometimes
use ω to represent tw(G).

In general, computing tw(G) of a given G is NP-hard [1], but fixed-parameter
tractable with respect to the treewidth [2]. In the following, we assume that a
decomposition tree with the minimum treewidth is given.

2.2 r-Edge Dominating Set

We define a new problem by extending the notion of domination. We first define
distance between two edges e1 = {u1, v1} and e2 = {u2, v2} as the shortest
path length among (u1, u2)-path, (u1, v2)-path, (v1, u2)-path and (v1, v2)-path,
which we denote by d(e1, e2). r-Edge Dominating Set (r-EDS) is the problem of
finding an edge set S ⊆ E with minimum size such that for every e ∈ E \ S,
d(e, e′) < r holds for some edge e′ ∈ S. This problem is clearly a generalization
of EDS, because 1-EDS is equivalent to EDS. To design a subexponential fixed-
parameter algorithm in Section 5, we design a constant-factor approximation
algorithm for 2-EDS.

3 Basic Algorithm Based On Dynamic Programming

In this section, we present a dynamic programming (DP) algorithm based on a
decomposition tree. By the assumption above, we are already given a decom-
position tree with treewidth of ω. We assume that a decomposition tree T is a
rooted binary tree without loss of generality. The algorithm first prepares k + 1
DP tables for each Xi, so (k + 1) ·N tables in total. The algorithm runs in the
bottom-up manner; it fills tables from leaf nodes to the root node. For simplic-
ity, we assume that the indices of Xi correspond to the order that the algorithm
visits Xi; the algorithm fills tables of X1, X2, . . . , XN in this order.

We further give several assumptions for the tree decomposition. We define a
mapping g from E to Xi. For an edge e ∈ E, there exists at least one bag Xi such
that e ⊆ Xi by the definition of tree decomposition. If |{Xi ∈ X | Xi∩e ̸= ∅}| =
1, we define g(e) = Xi such that Xi ∩ e ̸= ∅. If |{Xi ∈ X | Xi ∩ e ̸= ∅}| > 1, we
define g(e) = Xi where i is the smallest index such that Xi ∩ e ̸= ∅. By defining
g, we make clear in which node we handle e. Based on g, we partition E into
E1, E2, . . . , EN , where Ei = {e ∈ E | g(e) = Xi}. We then define a subgraph
Gi = (Vi, Ei) of G, where Vi = Xi.

3.1 DP table and its computation

In the basic algorithm, we prepare DP table A
(r)
i , r = 0, 1, 2, · · · , k, for a bag

Xi. Here, r represents the number of edges selected as a part of a solution at

the moment. See Table 1 as an example of A
(r)
i . In the table, |Vi| = ni and

|Ei| = mi. Table A
(r)
i consists of ni +mi + 1 columns and 4ni · 2mi rows. The

first ni+mi columns represent the statuses of vertices and edges in Gi. The last
column represents the evaluation value ξ of the corresponding statuses. We call
the ni +mi statuses of a row a status vector.

Table 1. A
(r)
i

vi1 vi2 · · · vini
ei1 ei2 · · · eimi

ξ

0 0 · · · 0 N N · · · N 10
1 0 · · · 0 N N · · · N 11
...

...
...

...
...

...
1 1 · · · 1 Y Y · · · Y 25
2 0 · · · 0 N N · · · N 13
...

...
...

...
...

...
...

2 2 · · · 2 Y Y · · · Y 25
3 0 · · · 0 N N · · · N 13
...

...
...

...
...

...
...

3 3 · · · 3 Y Y · · · Y 25

Now we explain the statuses of vertices and edges. As a status of vertex vj , we
define four statuses FUT, CUR, PAST and NULL. Status FUT represents

that vj does not touch any edge that is or was selected as a part of solution, but
touches an edge that will be selected as a part of solution. A vertex of status
FUT should appear in a parent node. Note that the root node cannot take status
FUT. Status CUR represents that vj touches an edge in Gi that is selected as
a part of solution. Status PAST represents that vj touches an edge that was
selected as apart of solution in its offspring node. The remaining vertices take

status NULL. In a DP table A
(r)
i , we use 3, 2, 1, 0 instead of FUT, CUR,

PAST and NULL, respectively.
For edge statuses, we define two statuses Y and N, where Y represents that

the edge is selected as a part of solution and N represents that the edge is not
selected as a part of solution. Recall that each edge appears in exactly one Gi.
Therefore, the vertex status CUR and the edge status Y are correspond.

Let jL and jR be two children nodes of i on T . We define the evaluation value
of status vector p as follows:

ξ(A
(r)
i (p)) =

∑
u∈{vi|vi ̸=0}

{u,v}∈Ei

wuv + max
s+t+|Ki(p)|=r

{ξ(A(s)
jL

(pL)) + ξ(A
(t)
jR
(pR))}, (1)

where pL (resp., pR) is a status vector of A
(s)
jL

(resp., A
(s)
jR

) that is consistent to
p, and Ki(p) is the set of edges in Ei whose status is Y. In (1), s and t are the
numbers of edges selected as a part of solutions in the offsprings of XjR and XjL

respectively. The first term represents the edge weight dominated in Xi under p.
The second term represents the maximum sum of the evaluation values derived
from two children nodes. After filling up the tables of root node, we can obtain
an optimal value, and also can obtain an optimal solution by reversely traversing
the tables.

Probably a bit tricky part of the algorithm is to define the status FUT.
This status is introduced to avoid overlooking of the weight of edges that appear
in an offspring node. This should be considered because we use the partition
(E1, E2, . . . , EN) of E.

Another important notion is consistency of p,pL and pR. We call p is incon-
sistent if it contains impossible statuses. For example, for e = {u, v} ∈ Ei, p is
inconsistent if both of the statuses of u and v are NULL and e ∈ Ki(p). For p

L

and pR, we need to pay an attention for v ∈ VJL ∩ VjR . Let αL and αR be the
statuses of v in pL and pR, respectively. Then, the following gives all possible
combinations:

(αR, αL) ∈ { (NULL,NULL), (FUT,FUT), (FUT,CUR), (FUT,PAST),

(CUR,FUT), (PAST,FUT)}.

The cases (αR, αL) = (CUR,CUR), (CUR,PAST), (PAST,CUR), (PAST,
PAST) can be excluded, because in these combinations solutions do not form a
matching. Moreover, we have to consider consistency of the parent node and the
children nodes. For example, if v’s statuses in jL and jR are respectively FUT
and CUR, v’s status of i should be PAST, because v is selected at jR (i.e., it is
a past of i). Let α be the status of p (i.e., at node i). For each (αR, αL) above,

we see possible statuses of α by thinking its chronological order. We then have
the following:

– For (αR, αL) = (NULL,NULL), α is NULL.
– For (αR, αL) = (FUT,FUT), α is FUT or CUR.
– For (αR, αL) = (FUT,CUR) or (CUR,FUT), α is PAST.
– For (αR, αL) = (FUT,PAST) or (PAST,FUT), α is PAST.

Overall, we present the following algorithm.

Basic Algorithm
Step 0. Let i := 1.

Step 1. Initialize A
(r)
i for r = 0, . . . , k.

– Delete rows such that vertex statuses are not consistent to edge statuses.

– Delete rows such that there is a vertex where α = FUT in A
(r)
i , while

there is not in the parent node of Xi.
Step 2. For every p, compute (1)

Step 3. If i = N , output maxr,p ξ(A
(r)
N (p)). Otherwise, let i := i+1 and return

to Step 1.

We consider the running time of the basic algorithm. The running time of
Step 1 is O(4ω · 2ω2 · k · ω2) time, because ni = O(ω), mi = O(ω2) and the

number of rows is O(4ω · 2ω2 · (k + 1)).

In Step 2, we check all the combinations A
(s)
jL

, A
(t)
jR

and A
(r)
i for s = 0, 1, . . . , k,

t = 0, 1, . . . , k, and r = 0, 1, . . . , k. This takes O(43ω · 23ω2 · k3 ·ω2)-time in total.
Since the procedure of Steps 2 , 3 and 4 is repeated N times, total running time
of this algorithm is O(43ω · 23ω2 · k3 · ω2 · n) time. As a result, we obtain the
following theorem.

Theorem 1. There is an O(ω2 · 26ω+3ω2 · k3 · n)-time algorithm for MaxED.

4 Improvement of the Running time

4.1 Improved Algorithm

We improve the basic algorithm. For the improved algorithm, we prepare a DP
table as a new table instead of Table 1. A new DP table is obtained from the
corresponding old one by deleting the edge statuses. The size of this DP table
is 4ni . Notice that the size of an improved DP table is much smaller than a
basic one. Due to the lack of information, it might be difficult to keep an explicit
solution, but it does not matter because we can still compute the evaluation
value. In this setting, what we need to consider is to check the consistency. In
the basic algorithm, we can easily check the consistency of p by referring the
status vector, but it is not possible for this case.

Actually, this case is also possible to check the consistency. In a new p, all the
vertices whose statuses are CUR, say Vi(p), should touch an edge selected as a

part of solution in Gi. Since we assume that the selected edges form a matching
by Lemma 1, each vertex in Vi(p) touches exactly one edge selected as apart
of solution in Gi. In other word, the selected edges form a perfect matching of
Gi[Vi(p)]. This is clearly a necessary and sufficient condition of the consistency
of p, and it can be checked in polynomial time since the maximum matching
problem can be solved in polynomial time [19].

Based on the observation, we can rewrite the evaluation value as follows:

ξ(A
(r)
i (p)) =

∑
u∈{vi|vi ̸=0}

(u,v)∈Ei

wuv + max
s+t+

|Vi(p)|
2 =r

{ξ(A(s)
jL

(pL)) + ξ(A
(t)
jR
(pR))},

where pL (resp., pR) is a status vector of A
(s)
jL

(resp., A
(s)
jR

) that is consistent
to p. Note that the scheme of the improved algorithm is same as the one of the
basic algorithm. Only the difference is how we check the inconsistency of p.

4.2 The Running time of Improved Algorithm

We explain the running time of the improved algorithm. Since the scheme of the
basic and improved algorithms are the same, we can easily amount the running
time. In Step 1, we should delete the rows whose status vectors are inconsistent.
This can be done by applying a maximum matching algorithm, whose running
time is O(ω2.5) [19]. Other parts are similarly analyzed, and the total running
time of the improved algorithm is O(43ω · k3 · ω · n)-time.

Theorem 2. There is an O(ω · 26ω · k3 · n)-time algorithm for MaxED.

5 Subexponentioal fixed-parameter Algorithm

In this section, we will show the following theorem by presenting a subexponen-
tial fixed-parameter algorithm.

Theorem 3. There exists a 2O(
√
k) · nO(1)-time algorithm for MaxED on apex-

minor free graphs.

Let G be an apex-minor-free graph. If tw(G) = O(
√
k) holds, then Theorem 2

proves Theorem 3. Otherwise we will remove a set I of irrelevant edges from G
so that at least one optimal solution is a subset of E \ I and optimal also for
the problem in G[E \ I], and we have tw(G[E \ I]) = O(

√
k). Then, applying

Theorem 2 to G[E\I], we obtain Theorem 3. To identify such a set I of irrelevant
edges, we introduce the notion of lexicographically smallest solution. The ideas
follow from the ones given by Fomin et al. [13] as mentioned in Introduction.

Definition 1. Given an ordering σ = e1e2 . . . em of E and subsets X and Y of
E, we say that X is lexicographically smaller than Y , denoted by X ≤σ Y , if
X is lexicographically smaller than Y , if Ei

σ ∩ X = Ei
σ ∩ Y and ei+1 ∈ X \ Y

for some i ∈ {0, 1, . . . ,m}, where Ei
σ = {e1, e2, . . . , ei} for i ∈ {1, 2, . . . ,m} and

E0
σ = ∅. We call a set K ⊆ E the lexicographically smallest (optimal) solution

for MaxED if for any other solution K ′ for the MaxED we have that K ≤σ K ′.

Let σ = e1e2 . . . em be an ordering of the edges according to the total weight
of the edges dominated by an edge in non-increasing order. For e ∈ E, let
µ(e) =

∑
e′∈D(e) we′ . In the ordering σ,

µ(e1) ≥ µ(e2) ≥ · · · ≥ µ(em−1) ≥ µ(em),

holds. Throughout the section, we assume that E is ordered by σ, and may use
Eσ instead of E to emphasize this. We also denote {e1, e2, . . . , ei} by Ei

σ. We will
propose an algorithm that finds not an optimal solution but the lexicographically
smallest optimal solution for MaxED, which can make it clear to define a set of
irrelevant edges. To this end, we give the following three lemmas, though the
proof of Lemma 4 is omitted.

Lemma 2. Given a graph G = (V,Eσ), let K = {ui1 , ui2 , . . . , uik}be the lexico-
graphically smallest solution for MaxED, where uik = ej for some j. Then, K is
a 2-EDS of size at most k for G[Ej

σ].

Proof. Show this by contradiction. Assume that a lexicographically smallest so-
lution K of MaxED is not a 2-EDS for G[Ej

σ]. This implies that there exists an
edge ei (1 ≤ i ≤ j) such that D2(ei)∩K = ∅. Let K ′ = K \ {ej}∪ {ei}. Clearly,
|K ′| = |K|. Since any edge e ∈ D(ei) is not dominated by K, we have

µ(K ′) ≥ µ(K)− µ(ej) + µ(ei) ≥ µ(K),

a contradiction. ⊓⊔

Lemma 3. Let G be an apex-minor-free graph. If G has an r-EDS of size at
most k, tw(G) = O(r

√
k).

Proof. IfG has an r-EDS of size k, then it has (2k, r)-center. Therefore, according
to Lemma 8 of [18], the treewidth of G is O(r

√
k). ⊓⊔

Lemma 4. On apex-minor-free graphs, there exists an EPTAS for r-EDS.

Now we are ready to give a subexponential fixed-parameter algorithm. First,
we sort e1, e2, . . . , em ∈ Eσ and scan it from em to e1. We put a stick in the
right of em and let s := m. In an intermediate stage, if G[Ej

σ] does not have a
2-edge dominating set of size at most (1+ ϵ)k, let s := j−1, N := N ∪{ej}, and
then we move the stick to the left of ej . Notice that the edges in the left of the
stick belong to E \ N and the edges in the right are in N . The contraposition
of Lemma 2 denotes that the lexicographically smallest solution for MaxED K
lies E \ N , that is, K ⊆ E \ N . If G[Ej

σ] has a 2-edge dominating set of size
at most (1 + ϵ)k, then we find a subgraph G′ such that tw(G′) = O(

√
k) and

there exists K ′ ⊆ E(G′) satisfying µ(K) = µ(K ′) for an optimal solution K of
G, where |K ′| ≤ k and |K| ≤ k.

Given the parameter (G = (V,Eσ), k, ϵ, ∅) where ϵ > 0, the algorithm is
described as follows.

Subexponential fixed-parameter Algorithm
Step 0. Let p := m
Step 1. While there does not exist 2-edge dominating set of size at most (1+ϵ)k

for G[Ep
σ], repeat N := N ∪ {ep}, p := p− 1.

Step 2. Let I = {e | e ∈ N,D(e) ⊆ N} and E′ = E \ I.
Step 3. Find a tree decomposition of G′ = G[E′] using the constant factor

approximation algorithm of Demaine et al. [6] for computing the treewidth
of H-minor-free graph.

Step 4. Apply the algorithm of Theorem 2 to G[E′].

The correctness of the algorithm can be shown by following the proof of
Theorem 1 of [13]. In Step 1, we identify an edge set N such that N ∩K = ∅.
Let ep be a maximum index edge in E \N . We check whether G[Ep

σ] has 2-edge
dominating set of size at most (1 + ϵ)k by Lemma 4. If G[Ep

σ] does not have it,
then K = {ui1 , ui2 , . . . uik} where uik = ep is not the lexicographically smallest
solution for MaxED by Lemma 2. Therefore, ep /∈ K. We will show letter half is
valid. Note that edges in N are not candidates. Thus, an edge e ∈ N adjacent
to only edges in N is not dominated by K, that is, the set I is a set of irrelevant
edges. Therefore, we delete a set of such edges as I. Let E′ = E\I. There existsK
of size at most k in G such that µ(K) = maxK⊆E,|K|≤k µ(K) if and only if there
exists K ′ ⊆ E′ in G′ such that |K ′| ≤ k and µ(K ′) = maxK′⊆E′,|K|≤k µ(K

′).
Hence, we will find K ′ in G′ where |K ′| ≤ k by Theorem 2.

We analyze the running time of this algorithm. When the loop in Step 2. is
broken out, G[E\N] has 2-edge dominating set of size at most (1+ϵ)k. LetD2 be
2-edge dominating set of size at most (1+ϵ)k. Then, D2 is 3-edge dominating set
for G[E′] because all edges such that e ∈ N ∩E′ are adjacent to edges in E \N .
Therefore, tw(G′) = O(3

√
(1 + ϵ)k) = O(

√
k) is shown by Lemma 3. We use the

constant factor approximation algorithm of Demaine et al. [6] to compute the
treewidth of H-minor-free graph, then we find tree decomposition such that the
size of treewidth is O(

√
k) for G[E′] in nO(1)-time. Finally, we use the algorithm

of Theorem 2 to find optimal solution for MaxED in O(26ω · k3 · ω · n)-time.

Therefore, our algorithm achieves running time 2O(
√
k) · nO(1).

References

1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM Journal on Algebraic Discrete Methods 8(2), 277–284 (1987)

2. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing 25(6), 1305–1317 (1996)

3. Chleb́ık, M., Chleb́ıková, J.: Approximation hardness of edge dominating set prob-
lems. Journal of Combinatorial Optimization 11(3), 279–290 (2006)

4. Demaine, E.D., Hajiaghayi, M.: The bidimensionality theory and its algorithmic
applications. The Computer Journal 51(3), 292–302 (2008)

5. Demaine, E.D., Hajiaghayi, M.: Linearity of grid minors in treewidth with appli-
cations through bidimensionality. Combinatorica 28(1), 19–36 (2008)

6. Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.i.: Algorithmic graph minor the-
ory: Decomposition, approximation, and coloring. In: Proceedings of 46th Annual
IEEE Symposium on Foundations of Computer Science. pp. 637–646. IEEE (2005)

7. Dobson, G.: Worst-case analysis of greedy heuristics for integer programming with
n onnegative data. Mathematics of Operations Research 7(4), 515–531 (1982)

8. Downey, R.G., Fellows, M.R.: Parameterized complexity, vol. 3. Springer-
Heidelberg (1999)

9. Escoffier, B., Monnot, J., Paschos, V., Xiao, M.: New results on polynomial in-
approximability and fixed parameter approximability of edge dominating set. In:
Parameterized and Exact Computation, Lecture Notes in Computer Science, vol.
7535, pp. 25–36. Springer Berlin Heidelberg (2012)

10. Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM
(JACM) 45(4), 634–652 (1998)

11. Flum, J., Grohe, M.: Parameterized complexity theory, vol. 3. Springer (2006)
12. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Bidimensionality and eptas.

In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms. pp. 748–759. SIAM (2011)

13. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Subexponential algorithms
for partial cover problems. Information Processing Letters 111(16), 814–818 (2011)

14. Fujito, T., Nagamochi, H.: A 2-approximation algorithm for the minimum weight
edge dominating set problem. Discrete Applied Mathematics 118(3), 199–207
(2002)

15. Guo, J., Shrestha, Y.: Parameterized complexity of edge interdiction problems. In:
Computing and Combinatorics, Lecture Notes in Computer Science, vol. 8591, pp.
166–178. Springer International Publishing (2014)

16. Hanaka, T., Ono, H.: Approximation ratios of greedy algorithms for max edge
domination. In: Proceedings of Hinokuni Information Symposium (in Japanese).
Information Processing Society of Japan (2013)

17. Hochbaum, D.S.: Approximating covering and packing problems: set cover, vertex
cover, independent set, and related problems. In: Approximation algorithms for
NP-hard problems. pp. 94–143. PWS Publishing Co. (1996)

18. Ishii, T., Ono, H., Uno, Y.: Subexponential fixed-parameter algorithms for partial
vector domination. In: Combinatorial Optimization, pp. 292–304. Lecture Notes in
Computer Science, Springer International Publishing (2014)

19. Micali, S., Vazirani, V.V.: An O(
√

|V ||E|) algoithm for finding maximum matching
in general graphs. In: Proceedings of 21st Annual Symposium on Foundations of
Computer Science. pp. 17–27. IEEE (1980)

20. Miyano, E., Ono, H.: Maximum domination problem. In: Proceedings of the Seven-
teenth Computing: The Australasian Theory Symposium-Volume 119. pp. 55–62.
Australian Computer Society, Inc. (2011)

21. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press (2006)

22. Xiao, M., Nagamochi, H.: Parameterized edge dominating set in cubic graphs. In:
Frontiers in Algorithmics and Algorithmic Aspects in Information and Manage-
ment, Lecture Notes in Computer Science, vol. 6681, pp. 100–112. Springer Berlin
Heidelberg (2011)

23. Xiao, M., Nagamochi, H.: A refined exact algorithm for edge dominating set. In:
Theory and Applications of Models of Computation, Lecture Notes in Computer
Science, vol. 7287, pp. 360–372. Springer Berlin Heidelberg (2012)

A APPENDIX

This appendix provides the proofs of the results that have been omit-
ted due to space reasons. They may be read to the discretion of the
program committee.

A.1 Proof of Lemma 1

Proof. When k ≥ s where s is the size of a minimum maximal matching, a
minimum maximal matching is an optimal solution for MaxED.

Thus we assume that k < s. Let the set K be an optimal solution for MaxED
and we call an edge e ∈ K optimal edge. Suppose that there is no optimal
solution with a matching structure. Then, there exists at least one vertex incident
to at least two one optimal edges. We call such a vertex heavy vertex and edges
composing it composing edges. Suppose that heavy vertices touches two optimal
edges. Notice that there is at least one edge not dominated by K due to k < s.
Let an edge e∗ be one of such uncovered edge and let a vertex v∗ be heavy
vertex closest to e∗. Then, we consider the shortest path from v∗ to e∗ through
composing edges. Let the edge e′ be a composing edge closer to e∗ and let a vertex
v′ be another endpoint of e′, that is, e′ = {v∗, v′}. All edges incident to v′ are not
optimal edges because v∗ is heavy vertex. closest to e∗. If there is at least one edge
incident to v′ not dominated by K except for e′, we can replace optimal edge e′

with it without changing the total weight dominated by K. Then, this optimal
solution has a matching structure(*), thus this is contradiction. Otherwise, let
K ′ = K \ {e′} ∪ {e∗}. Then, K ′ dominates at least more e′ than K. Therefore,
this contradicts to the optimality of K.

In the case that more than three optimal edges compose a heavy vertex, K
does not have a matching structure in (*). However, we can lead a contradiction
by considering the shortest path again. ⊓⊔

A.2 Proof of Lemma 4

To show Lemma 4, we use the result of [12].
For a problem Π, let ϕΠ(G,S) be the feasibility constraint returning true

if S is feasible and false otherwise. Let κΠ(G,S) be objective function. In most
case, κΠ(G,S) will return |S|. We will only consider problems such that every
instance has at least one feasible solution. Let U be the set of all graphs. For
a graph optimization problem Π, let π : U → N be the function returning the
objective function value of optimal solution of Π on G. For a graph G and a
partition of V (G) into L

⊎
S
⊎
R such that N(L) ⊆ S and N(R) ⊆ S, we define

GL(GR) as a graph obtained from G by contracting every connected component
of G[R](G[L]) into the minimum index vertex in S.

Definition 2 ([12]). A contraction-bidimensional problem has the separation
property if given any graph G and a partition of L

⊎
S
⊎

R such that N(L) ⊆ S
and N(R) ⊆ S, and given an optimal solution OPT to G, π(GL) ≤ κΠ(GL, OPT\
E(G[R])) +O(|S|) and π(GR) ≤ κΠ(GR, OPT \ E(G[L])) +O(|S|).

Definition 3 ([12]). A graph optimization problem Π with objective function
κΠ is called reducible if there exists a MIN/MAX-CMSO problem Π ′ and a
functionf : N → N such that

– there is a polynomial time algorithm that given G and X ⊆ V (G) outputs G′

such that π′(G′) = π(G)±O(|X|) and tw(G′) ≤ f(tw(G \X).
– there is a polynomial time algorithm that given G and X ⊆ V (G), G′

and a vertex (edge) set S′ such that holds PΠ′(G′, S′), outputs S such that
ϕΠ(G,S) = true and κΠ(G,S) = |S′| ±O(|X|)

Then, the following lemma has been shown.

Lemma 5 ([12]). Let Π be a reducible contraction-bidimensional problem with
the separation property and H be a (apex) graph. There is an EPTAS for Π on
the class of graphs excluding H as a minor.

Therefore, there exists EPTAS for r-EDS if it is reducible and has separation
property.

Proof of Lemma 4. Let V (G) = L
⊎
S
⊎

R such that N(L) ⊆ S and N(R) ⊆ S.
Let Z be an optimal solution of r-EDS for G and ZL be an optimal solution
of r-EDS for GL. Moreover, in a graph GL, let K∗

L[S] be an edge set such that
|K∗

L[S]| ≤ |S| and for arbitrary non-isolated vertices u and v in S there exists at
least one edge such that {u, v} ∈ K∗

L[S]. Then, (Z \E(G[R]))∪K∗
L[S] is r-EDS of

GL because the edges dominated by e ∈ E(G[R]) or (u, v) ∈ E(G) where u ∈ R
and v ∈ S are dominated by K∗

L[S]. Because ZL is an optimal solution in GL,

|ZL| ≤ |(Z \ E(G[R])) ∪K∗[S]|
≤ |(Z \ E(G[R]))|+ |K∗[S]|
≤ |(Z \ E(G[R]))|+ |S|.

Therefore, r-EDS has separation property.
Given a graph G and edge set Y , let X be a vertex set of endpoints of edges

in Y . Let G′ = G \X and R = Dr(Y) \ Y . Note that tw(G′) = tw(G \X). The
annotated problem Π ′ is to find the minimum sized edge set S′ ⊆ E(G′) such
that every edge e ∈ E(G) \ (S ∪R) is at distance at most r from some edges in
S. Here, for any r-edge dominating set in G of Π, S \ Y is a feasible solution
in G′ of Π ′. Conversely, for any r-edge dominating set in G′ of Π ′, S′ ∪ Y is a
feasible solution in G of Π. Because π′(G′) ≤ |S \ Y | ≤ |S| − |Y | for any S,

π′(G′) ≤ π(G)− |Y | ≤ π(G)− 1

2
|X|.

Also, given G, Y ⊆ E(G) and a set X ⊆ V (G) of endpoints of Y , G′ and an
edge set S′, let S = S′ ∪ Y . Then, considering |Y | ≤ |X| ≤ 2|Y |, they holds:

– ϕΠ(G,S) = true
– κΠ(G,S) = |S′|+ |Y | = |S′|+O(|X|).

Therefore, r-EDS is reducible. ⊓⊔

