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Abstract—The main contribution of this paper is to present
an efficient hardware algorithm for RSA encryption/decryption
based on Montgomery multiplication. Modern FPGAs have a
number of embedded DSP blocks (DSP48E1) and embedded
memory blocks (BRAM). Our hardware algorithm supporting
2048-bit RSA encryption/decryption is designed to be imple-
mented using one DSP48E1, one BRAM and few logic blocks
(slices) in the Xilinx Virtex-6 family FPGA. The implementation
results showed that our RSA module for 2048-bit RSA encryp-
tion/decryption runs in 277.26ms. Quite surprisingly, the multi-
plier in DSP48E1 used to compute Montgomery multiplication
works in more than 97% clock cycles over all clock cycles. Hence,
our implementation is close to optimal in the sense that it has
only less than 3% overhead in multiplication and no further
improvement is possible as long as Montgomery multiplication
based algorithm is used. Also, since our circuit uses only one
DSP48E1 block and one Block RAM, we can implement a number
of RSA modules in an FPGA that can work in parallel to attain
high throughput RSA encryption/decryption.

Keywords: Modular exponentiation, Montgomery multipli-
cation, FPGA, RSA, DSP

I. INTRODUCTION

RSA [1] is one of the most widely used public key cryp-
tography, which can be done by computing modulo expo-
nentiation such as P = CP mod M. The security of the
RSA cryptosystem is based on the problem of factoring large
numbers problem. An RSA operation is a modular expo-
nentiation, which requires repeated modular multiplications.
For security reasons, greater than 1024-bit length of keys are
suggested recently, which leads to a huge time consumption.
Therefore, Montgomery Modular Multiplication algorithm [2]
is proposed as the most efficient modular multiplication algo-
rithm available. Most of literatures have reported to implement
RSA by Montgomery Multiplication such as [3]-[5]. With
Montgomery Multiplication algorithm, trial division can be
replaced by the modulus with a series of additions and shift
operations.

An FPGA is a programmable logic device designed to be
configured by the customer or designer by hardware describe
language after manufacturing. Since FPGA chip maintains
relative lower price and programmable features, it is widely
used in those fields which need to update architecture or
functions frequently such as communication and education.
The most common FPGA architecture consists of an array
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of logic blocks, I/O pads, Block RAMs and routing chan-
nels. A recent trend has been to take the coarse-grained
architectural approach a step further by combining the logic
blocks and interconnects of traditional FPGAs with embedded
microprocessors which broaden a growing range of other
areas. Furthermore, embedded DSP blocks have integrated
into an FPGA that makes a higher performance and a broader
application.

The main contribution of this paper is to present an efficient
hardware algorithm of modular exponentiation, maximized
making use of the DSP blocks in our target FPGA, Xilinx
Virtex-6 family. Our hardware algorithm requires only one
DSP block, as well as one Block RAM with a small quantity of
logic blocks. A multiplier in the DSP block works in more than
90% over all the clock cycles. From 64-bit, up to 2048-bit RSA
encryption/decryption can be applied in the same architecture
without any modification.

Our modular exponentiation algorithm implemented in
Xilinx Virtex-6 family FPGA XC6VLX240T-1 uses only
one DSP48E1 Block, one Block RAM, and few logic
blocks (slices). The implementation results showed that our
RSA module for 2048-bit RSA encryption/decryption runs
in 447.027MHz using 123940864 clock cycles, that is,
in 277.26ms. Quite surprisingly, Montgomery multiplication
based RSA encryption/decryption needs 120434688 times 17-
bit multiplication, and thus, a multiplier in DSP48El1 is used in
more than 97% clock cycles over all clock cycles. Hence our
implementation is close to optimal in the sense that it has only
less than 3% overhead and no further improvement is possible
as long as Montgomery multiplication based algorithm is used.
For the comparison purpose, our circuit also implemented in
obsolete generation Xilinx Virtex-5 and Virtex-4 FPGA. Also,
since our circuit uses only one DSP48E1 block and one Block
RAM, we can implement a number of RSA modules in an
FPGA that work in parallel to attain high throughput RSA
encryption/decryption. Actually, we have implemented 128
RSA encryption/decryption circuits to improve the throughput
greatly.

The remaining contents of this paper are organized as
follows. Section II introduces modular exponentiation and
Montgomery modular multiplication algorithm and its relative
researches. Section III describes our proposed hardware algo-
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rithm and its architecture. Section IV gives the experimental
result, its analysis and comparisons with relative literatures.

II. MODULAR EXPONENTIATION

In the RSA encryption/decryption, the modular exponenti-
ation C' = PP mod M or P = CP mod M are computed,
where P and C are plain and cypher text, and (E, M) and
(D, M) are encryption and decryption keys. Usually, the bit
length in P, E, D, and M is 512 or larger. Also, the modulo
exponentiation is repeatedly computed for fixed F, D, and
M, and various P and C. Since modulo operation is very
costly in terms of the computing time and hardware resources,
Montgomery modular multiplication [2] is used, which does
not directly compute modulo operation.

A. Montgomery Modular Multiplication

Montgomery multiplication [2], introduced in 1985 by Peter
Montgomery, is an optimal method to calculate modular
exponentiation. Three R-bit numbers X, Y, and M are given,
and (X - Y +¢q-M)-2"%mod M is computed, where an
integer ¢ is selected such that the least significant R bits of
X -Y + q- M are zero. The value of ¢ can be computed
as follows. Let (—M 1) denote the minimum non-negative
number such that (—M~')-M = —1( or 2% —1) (mod 2F).
Since M is odd, then (—M~!) < 2% always holds. We
can select ¢ such that ¢ = ((X -Y) - (=M~1))[r — 1,0].
For such ¢, (X -Y + ¢ - M)[r — 1,0] are zero. For the
reader’s benefit, we will confirm this fact using an exam-
ple. Suppose X 10010011(147), Y 01011100(92),
M 11111011(251), and R = 8. We have the product
XY =011010011010100(13524). Next, we need to select an
integer ¢ such that the least significant R bits of X -Y +¢q-M
are zero. In this case, (—M ') = 11001101(205), because
(-M~1)-M = 1100100011111111(51455) = —1 (mod 2%).
Thus ¢ = (X - Y)[R - 1,0] - (=M ~1) = 11000100(196) is
selected. Then the product g-M = 1100000000101100(49196)
and the sum X -Y +¢-M = 1111010100000000(62720) could
be obtained. Now, we have (XY +¢-M)[R—1, 0] = 00000000
and (X Y +q-M)-27F=(X-Y+¢q-M)2R-1,R] =
11110101(245). Since 0 < X, Y < M < 2F and 0 < ¢ < 27,
it is guaranteed that (X - Y 4 ¢ - M) -2~ < 2M. Therefore,
by subtracting M from (X -Y +q- M) -2~ we can obtain
(X-Y +q-M)-27Fmod M if it is not less than M.

Radix-2" Montgomery multiplication is shown in Algo-
rithm 1. In Algorithm 1, d = [R/r] presents the number of
digits in radix-2" operands. The multiplier Y is partitioned by
each r-bit and Y; represents the i-th digit of Y. Therefore,
Y could be given by YV = Z‘f;ol 2" . Y;. After d loops,
R-bit Montgomery multiplication can be computed. As far
as now, Montgomery multiplication could be computed by
multiplication, addition and shift operations without modulo
operations. The later is time cost and resource cost.

- Algorithm 1: radix-2" Montgomery Multiplication -
radix-2", d = [R/r], X,Y,M € {0,1,...,2F — 1},
Y =302 v, Vi €{0,1,..,2" — 1}
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(-M~Y) - M=-1mod 2", -M~t €{0,1,...
Input: X,Y,M,—M~!
Output: Sq=X-Y 279 mod M
1. Sp«0
.for i =0 to d—1do
g+ ((Si+X-Y;)-(=M~")) mod 2"
end for
if (M S Sd) then Sd — Sd -M

Since XY +¢-M=X"'Y (mod M), we write (XY +
q-M)-2Bmod M = X -Y -27F mod M. Let us see how
Montgomery modular multiplication is used to compute C' =
PE mod M. Suppose we need to compute C = P¥ mod M.
For simplicity, we assume that E is a power of two. Since R
and M are fixed, we can assume that 228 mod M is computed
beforehand. We first compute P-(22% mod M)-2f mod M =
P-2F mod M using the Montgomery modular multiplication.
We then compute the square (P - 2% mod M) - (P - 2% mod
M)-27R mod M = P?-2% mod M. It should be clear that,
by repeating the square computation using the Montgomery
modular multiplication, we have PF - 2% mod M. After that,
we multiply 1, that is (P? - 2% mod M) -1-2"% mod M =
PP mod M is computed. In this way, cypher text C' could be
obtained.

Algorithm 2 shows the modular exponentiation using Mont-
gomery multiplication of Algorithm 1. In Algorithm 2, Ej
represents the size of E. Inputs 22¢" mod M and —M ! are
given. To use Montgomery modular multiplication, C' and P
are converted from 1 and P in the 1st line and the 2nd line,
respectively. The portion underlined in Algorithm 2 can be
computed using Montgomery multiplication of Algorithm 1.
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- Algorithm 2: Modular Exponentiation -
0<E<2B 1, E=%" "2 .E E €{0,1}
Input: P,E,M,—M~" 2% mod M

Output: C = PF mod M

1. C (22" mod M) -1-279" mod M;

2. P+ (224" mod M) - P-2~% mod M;

3. for i = E;, — 1 downto O do

4 C+ C-C-27% mod M;

5 if Bj=1then C + C-P-2"% mod M;
6 end for

7. C+ C-1-27% mod M;

B. Related Researches

There are several researches reported to implement modular
exponentiation by Montgomery multiplication algorithm. In
[6], the number of multiplications and additions, the times of
memory access, and the size of memory necessary to compute
Montgomery modular multiplication are evaluated by software
implementation. Mclvor et al. implemented and evaluated
three algorithms shown in [6] on FPGAs [7]. Blum and Paar
proposed a modular exponentiation hardware algorithm with
a radix-2 Montgomery multiplication using systolic array [3].
Also, a radix-2* modular exponentiation circuit that is an
extended method of the radix-2 circuit is proposed [4]. The



circuits of the above are fixed for the size of operands.
However, the following methods that are independent of the
size of operands were proposed. Tenca et al. presented a
radix-2 scalable Montgomery multiplication architecture [5].
This architecture uses fixed processing elements to deal with
variable bit length of operands. Nakano er al. presented a
radix-2'® Montgomery multiplier and RSA encryption hard-
ware algorithm using embedded Block RAMs of an FPGA
efficiently [8]. In the algorithm, they uses a method to prevent
a long carry delay in huge integer addition with redundant
number system. Mazzeo et al. proposed a small RSA encryp-
tion circuit [9]. They compute Montgomery multiplication in
Digit-Serial way using Radix-2. Suzuki proposed a high speed
modular exponentiation circuit featuring a Xilinx FPGA which
contains DSP blocks with radix-217 [10]. Several DSP blocks
are used to achieve a high operation frequency. Alho et al.
implemented the modular exponentiation using Altera FPGA
with a single DSP block in radix-2'8 [11].

Above literatures introduce methods to implement modular
exponentiation in FPGA using Montgomery multiplication fea-
turing radix, device and scalability. In this work, we propose an
efficient method to implement modular exponentiation using
Xilinx FPGA in radix-2'7. The radix-2'7 is decided by the
feature of embedded DSP blocks in our target device.

III. OUR MODULAR EXPONENTIATION ALGORITHM

In our hardware algorithm, we use an embedded DSP block
and a Block RAM in Xilinx FPGA. This section mainly shows
a Montgomery modular multiplication circuit and a modular
exponentiation circuit with it.

A. FPGA architecture

Our proposed algorithm is implemented in a Xilinx Virtex-
6 family FPGA which is a low-power-cost and high speed
device [12]. In this section, features of Virtex-6 are briefly
described necessary to explain our hardware algorithm. How-
ever, our algorithm can be implemented to other families of
Xilinx FPGA; Xilinx Virtex-5 [13] and Virtex-4 [14]. The
implementation results will be discussed in Section IV.

The schematic diagram of Virtex-6 FPGA is shown as
Figure 1. An FPGA chip is composed by CLBs (Configurable
Logic Blocks), which are the basic programmable logic blocks,
configurable inner connections and input/output blocks (I/0
Blocks). To compensate for processing speed insufficiency
of CLBs, Virtex-6 FPGAs have a DSP48E1 block that is a
DSP block with a multiplier and an adder, which can perform
multiply-accumulate operation in high clock frequency. Also,
Virtex-6 FPGAs have a Block RAM to compensate for mem-
ory insufficiency of CL.Bs. In our proposed algorithm, these
blocks are used efficiently.

The CLB in Virtex-6 consists of 2 sub-logic blocks called
Slice. With the components LLUT (I.ook Up Table) and Flip-
Flop in the slice, various combinatorial circuits and sequential
circuits can be implemented.

The DSP48E1 block has a two-input multiplier followed by
multiplexers and a three-input adder/subtracter/accumulator.
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Fig. 1. Internal Configuration of Virtex-6 FPGA

The DSP48E1 multiplier has an 18-bit and a 25-bit two’s com-
plement operands and produces one 48-bit two’s complement
operand. Programmable pipelining of input operands, interme-
diate products, and accumulator outputs enhances throughput
and improves the frequency. Our algorithm utilizes a DSP48E1
block using multiply accumulate (MACC) of 17-bit operands.
Among the operators of the DSP48El, since the pipeline reg-
isters are used, its latency has been increased. This latency is
absorbed by always performing the multiplier in our algorithm.

The Block RAM is a synchronized write and read embedded
memory. In Virtex-6 FPGA, it can be configured as a 36k-
bit dual-port Block RAMs, FIFOs, or two 18k-bit dual-port
RAMs. In our architecture, it is used as a 1k x 18-bit dual-port
RAM.

B. Our Montgomery Modular Multiplication Algorithm

1) Montgomery Modular Multiplication Algorithm: Al-
gorithm 3 shows our proposed algorithm of Montgomery
multiplication. Let {A : B} denote a concatenation of A
and B. For example, if A = (FF);4 and B = (EC)1,
{A: B} = (FFEC);6. Algorithm 3 is an improved algorithm
from Algorithm 1 introduced in Section II-A. Considering the
features of our target Virtex 6 FPGA, radix-2'7 is selected.
Let R denote the size of Montgomery multiplier operands X,
Y, and M. Also, d = [R/17] is the number of digits of
the operands on radix-2'7. In the algorithm, we introduce the
condition 17d > R + 3 to ignore the subtraction shown in the
6th line of Algorithm 1. If the condition is satisfied, we can
guarantee that at least 3-bit 0 is padded to the most significant
bits of the most significant digit as the redundancy. Due to
the stringent page limitation, the proof is omitted. However,
we can say that M > C is always satisfied in the modular
exponentiation shown in Algorithm 2 . Further, in practical
RSA encryption, the size of operands is radix-2 numbers such
as 512-bit, 1024-bit, 2048-bit, and 4096-bit. For radix-2'7
system, the condition 17d > R+ 3 is satisfied. If the condition
is not satisfied, we just need to append one redundant digit at
the most significant digit.

Algorithm 3 is a radix-2'7 digit serial Montgomery algo-
rithm from Algorithm 1. In other words, each 17-bit, as 1 digit,
is processed every clock cycle. For this reason, the operands



X,Y, M, and S; are split into 17-bit digits X}, Y, M;, and
S(i,5)» respectively. The loop from the 2nd to 11th lines of Al-
gorithm 3 corresponds to the 2nd to 5th lines of Algorithm 1.
Comparing the two algorithms, S; 1 « (X -Y;+q;- M +S;) /
2" of the 4th line of Algorithm 1 corresponds to the digit serial
processing by 4th to 10th lines of Algorithm 3. In Algorithm 3,
Co, C3, Cy, and Cg are carries and they are added at the
next loop. In the algorithm, Cy,C are 17-bit carries for 17-
bit MACC, and C,,,Cs are 1-bit carries for 17-bit addition.
For example, at the 6th line a product of X; and Y;, and an
addition of the product and C, are computed. The resulting
upper 17-bit denotes a carry C', which can be added at next
loop. The lower 17-bit of result is o which is used at the 8th
and 9th lines. These carries in our algorithm appear in both
the 17-bit MACC and the 17-bit adder to prevent a long carry
chain that causes circuit delay.

- Algorithm 3: Our Montgomery Algorithm -
radix-2'7, d = [R/17],17d > R+ 3,

X,Y,M,S; € {0,1,...,28 — 1},

-M~Y a,B,7,Ca,Cs € {0,1,...,2'7 — 1}, C,,Cs € {0,1},
X =2 Xy Xy € {0,1,..,217 =1}, X, =0

Y =210 217 Y, Y € {0,1,...,2'7 — 1}

M=Y"0 217 My, M; € {0,1,...,2 T — 1}, My = 0
Si=3020 2" S5y, S € £0,1,..,217 = 1}, 84 =0
Input: X,Y,M,—M~1!

Output: Sq=X-Y -27174 mod M

1. So +~ 0

2. for i =0 to d—1do

3. e (Xo-Yi+Sa) - (~M1)) mod 217
4, Co,Cp,Cy,Cs 0

5. for j =0 to ddo

6. {Co:a}+ X; Y, +C,

7. {Cs:B}+q-M;+Cps

8. {Cy v} +—a+p+C,

9. {Cs : S(i+1,j—1)} — v+ S(iyj) + Cs
10.  end for

11.end for

2) Architecture of Montgomery Multiplier: Figure 2 shows
the architecture of Montgomery multiplier using Algorithm 3.
The inputs of Montgomery multiplier are supplied from a
Block RAM and registers of modular exponentiation circuit.
Given the inputs, the operations of Algorithm 3 are executed
by the MACC composed with one DSP48E1 and one adder
composed with CLBs. The data flow of these operations is
shown in Table I.

The computations of the 3rd, 6th and 7th lines are executed
with the DSP48E1. In order to obtain ¢ in the 3rd line, Xo-Yy+
S(i,0) is obtained first. After that, (Xo-Y;+S(;0))- (=M ~") is
computed. According to Table I, 6 clock cycles are necessary
to compute g. In the 6th line, 17-bit multiplication X - Y; is
computed and the carry C,, for the digit is added at the same
time. The production and the addition are computed using the
DSP48E1. After that, the lower 17-bit of the result will be
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Fig. 2. Structure of our Montgomery multiplier

added in the following adder composed by CLB. On the other
hand, the upper 17-bit of the result is stored as a carry into
the pipeline register and added at the next clock. The 7th line
q - M; + Cp is computed as the same as the 6th line using
DSP48E1. As shown in Table I, the sums of products of the
6th and 7th lines in Algorithm 3 are computed by alternate
input of X;,Y; and M;, q. Since the carries are stored to the
pipeline register in the DSP48E1, our circuit is able to be
performed efficiently.

The adder, that is composed by CLBs, following the
DSP48E1 computes o + 8 + C, v + S(i,5) + Cs of the 8th
and 9th lines in the Algorithm 3. Since C, and Cs are 1-bit
carry, they can be computed by a two-input 17-bit adder. The
operands S(; ;) comes from the Block RAM, a, 3 come from
DSP48E1 and 7 is feedback of a+$+C.,. The most significant
bit of the output is feedback to the adder as carries C's and
C,. Also, the lower 17-bit of the output is feedback to the
adder, while at the same time S(;y;,;_1) is stored into Block
RAM. These can be computed using registers and multiplexers
as shown in Figure 2.

3) Necessary Clock Cycles of Our Algorithms: In our
algorithm, based on the radix-2!7 number system, R-bit
operands are split into d = [R/17] blocks. Let MM,
denote the number of clock cycles to compute the Montgomery
multiplication. In [6], the number is computed by the following
equation;

MM, = 2d° +d (D)



TABLE 1
DATA FLOW OF OUR MONTGOMERY MULTIPLIER

T(clock) Multiplier(DSP48E1) Adder(DSP48E1) Adder(CLB)
k Xo - Yi {Cs:B} < q-Ma+Cp {Cs:Sua—2}y < v+ Si_1,4-1)+Cs

k41 Xo-Yi + 53,0 {Cy i} a+B+Cy

k+2 {Cs :Si.a-1)} & v+ Sii—1.4) + Cs

k+3 4+ (Xo Yi+Suo) (=M 1)

k+4

k+5

k+6 X0 Y;

k+7 q - Mo {Co:a}« Xo-Y; +C4

k+8 X1-Y; {Cﬁ:ﬂ}(—q-Mo—FCﬁ

kE+9 q- M {Ca:ia}+ X1 - Yi+C4 {Cy v}~ a+B8+Cy

k410 X2 Y {Cs,B8} < a- M1 +Cp {Cs:Stit1,—1)} < v+ Sti,0) +Cs
k+2d+6 Xq-Y: {Cs:B}+q - Mu_1y+Cs | {Cs:Sug14-3)}+ v+ Sit.d-2+Cs
k+2d+7 q- Mgy {Coia} «— Xq-Y; +C4 {Cy i} +—a+B8+C,
k+2d+38 Xo - Yit1 {Cs:B}+q-Mg+Cp {Cs : Stig1.a-2)} < ¥+ Si.a—1) + Cs
k+2d+9 Xo-Yig1 + Scit1,0) {Cy iy}~ a+B8+C,
k + 2d + 10 {Cs : Stit1,a—1)} < v+ Su.a) + Cs
k+2d+ 11 q(—(XO ')/i+1+5(i+1,0))'(_M_1)
k+2d+ 12
k+2d+ 13
FT2dT 14 X0 Yies

98

96

94

92

utilization rate[%]

1000 2000 3000 4000

Bit length R of operand in Montgomery Multiplier [bit]

Fig. 3. Embedded multiplier utilization rate of our Montgomery
multiplier( MM ,.; / MM q11,)

The equation means that d> multiplications are necessary to
compute X -Y and ¢- M, and d multiplications are needed to
obtain g¢.

On the other hand, the number of clock cycles MM,y of
our Montgomery algorithm is computed by Equation 2.

MMey, = ((d+1)-2+6)-d+4=2d>+8d+4 (2)
It shows that from the 5th to 10th lines of Algorithm 3, (d+1)-
246 cycles are necessary for the loop, and d cycles are needed
for loop from 2nd to 11th lines. Also, in order to complete
the computation of operands of the modular exponentiation
Montgomery circuit shown in Section III-C, another 4 cycles
are necessary.

Figure 3 shows the utilization rate of the multiplier in
our proposed algorithm. From this figure, when the size of
operands R is larger than 500-bit, the utilization rate is more
than 90%. Also, if the size of operands is 2048-bit, the
utilization rate is more than 97%. Since the size of operands
should be large in practice, our proposed algorithm is optimal
for a single DSP48E1 slice.
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C. Our Modular Exponentiation Circuit

In our modular exponentiation circuit, the modular multipli-
cation shown in Algorithm 2 is applied. In the algorithm, the
modular exponentiation C' = P” mod M can be computed
by iterations of the Montgomery multiplication. The block
diagram of our modular exponentiation circuit is shown in
Figure 4. The internal configuration of Block RAM is shown
in Figure 5. The modular exponentiation circuit is consists of
MM control circuit and ModExp control circuit. The data flow
shown in Table I is controlled by MM control circuit. and it
supplies the inputs of the multiplier inside of the Montgomery
processor. Also, the number of shift for E to the decide the
inputs of the Montgomery block by ModExp.

The inputs of modular exponentiation are R-bit integers
P, E, M,2%" mod M and 17-bit —M ~'. The output is R-bit
integer C. Also, R-bit S is used to store the interim results
of Montgomery multiplier. The storage architecture of a 1k
% 18-bit Block RAM is shown as Figure 5. According to the
figure, six R-bit memory spaces and one 17-bit memory space
are necessary. In our work, in order to simplify the control
circuit, 1k address space is used and split into 8 portions
as shown in Figure 5. Furthermore, a flag bit is appended
as MSB to every 17-bit block to find the end of each data.
Considering the condition d = [R/17] of Algorithm 3, when
only one Block RAM is used, the maximum size of operands
is R=128-17 — 3 = 2173-bit.

The number of clock cycles necessary to perform modular
exponentiation using Algorithm 2 and Montgomery multiplier
shown in Section IV can be calculated by Equation 3 and
Equation 4. Equation 3 represents the maximum number of
cycles when all the bit of E are 1. Actually it could not
happen in practice since F is a prime number, then, the average
number of cycles are computed as Equation 4 which represents
the condition that Ej/2-bit of E is 1.
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Fig. 5. Internal configuration of BRAM in our modular exponentiator

ME i oz = (2d° + 8d +4) - (2E; + 3) 3)

MEclk,avr (2d2 + 8d + 4) . (15Eb + 3) (4)

D. Our Parallel Processing Circuit

Our proposed modular exponentiation is implemented on
Xilinx Virtex-6 FPGA. The experimental results discussed
in Section IV shows that the resource consumption of our
algorithm is quite small. Comparing with [8], [10], it seems
that our circuit is executed slower. However, the architecture
from Nakano’s paper [8] has no scalability and architecture
from Suzuki’s paper [8] uses 17 DSP blocks with substantial
slice consuming. Thus, one of the advantages of our proposed
architecture is that our modular exponentiation circuit could
be executed in parallel conveniently.

Figure 6 illustrates our parallel execution modular expo-
nentiation circuit. In this circuit, 128 processors work in
parallel. Each processor is independent and controlled by
individual run signal. Signal done is used when a processor
has accomplished its processing. The output done signal is
the result of AND operation collecting all done signals of
every processor. Although our circuit fetches out only one
done signal, according to application, each signal done flag
could be fetched out only doing a little modification. Instead,
a parameter n can be used to enable necessary number of
processors. For example, the maximum number of processors
in this circuit is 128. If we set the parameter n = 128, all
the processors could be used by user. However, if parameter
n is set to 64, only 64 processors could be used while other
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done 0 done_127
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Fig. 6. Our modular exponentiator executed in parallel way

64 will be limited. Moreover, based on different devices, the
maximum number of available processors can be calculated
by Equation 5,

S_Slice
O_Slice )
where P_Num represents the maximum processor numbers,
S_Slice denotes the usable slices of device, O_Slice denotes
the occupied slices, DSP means maximum usable DSP blocks
of device and BRAM means maximum usable Block RAMs.
Any minimum number of the three elements decide the max-
imum reproducible number of processors. Since, in practice,
our modular exponentiation circuit could be implemented in a
small scale, the main impact factor is the number of DSP
blocks and Block RAMs. Even if the device contains no
DSP blocks, parallel processing is also possible using our
architecture only replacing DSP with embedded multiplier.

P_Num = Min( ,DSP, BRAM)

IV. EXPERIMENTAL RESULT AND DISCUSSION

The proposed modular exponentiation circuit is imple-
mented and evaluate on Xilinx Virtex-6 FPGA XC6VLX240T-
1, programmed by hardware description language Verilog
HDL and synthesized by Xilinx ISE Foundation 11.4 mapping
tool.

Table II shows the synthesized result of Virtex-6. As shown
in Section III-A, Table II lists the resource cost, where the
number of slices means how many configurable logic block
we have used. The number of RAMB16s represents how many
embedded memory we use. Also the number of DSP48Els
shows how many DSP blocks we used. The maximum fre-
quency means how fast our circuit could be executed. From
Table II, it shows that the scale of our circuit is so small
that only 180 slices, one BRAM and one DSP48E1 are used.
Also, since the maximum clock frequency of DSP48El is
600MHz, an extremely high frequency can be obtained by
our algorithm. Table IIT shows the worst execution time of
modular exponentiation based on Equation 3 and Table II.
Any bit length of operands of Modular exponentiation less
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than 2173-bit can be executed in the same circuit without any
modification.

Table III shows the number of clock cycles and execution
time of our modular exponentiation circuit using Virtex-6.
In this table, the number of clock cycles is computed by
Equation 3.

For comparison, our proposed algorithm is also imple-
mented on Xilinx Virtex-5 FPGA XC5VSX50T-1 and Xilinx
Virtex-4 FPGA XC4VSX35-10. Virtex-5 FPGA and Virtex-4
FPGA are the previous generations FPGA produced by Xilinx.
Comparing with Virtex-6 FPGA, although there are some
differences on programmable logic and DSP block, proposed
algorithm can be implemented in these device using almost
same Verilog code. However, description of DSP should be
modified. For Virtex-5 and Virtex-4 FPGA, their pipeline
register and MACC are also contained in DSP block, as shown
in Figure 7. Thus proposed algorithm can be applied with
the same configuration. Table IV and V show the synthesized
results. Although it is difficult to compare the performance
because of the different structures of these devices, it is
obviously shown that our proposed architecture is compatible
to all kind of FPGAs.

TABLE 1T
EXPERIMENTAL RESULT OF OUR MODULAR EXPONENTIATOR USING
VIRTEX-6 FPGA

Virtex-6
Number of occupied Slices 180/301440
Number of 18k-bit BRAMs 1/416
Number of DSP48Els 1/768
Maximum Frequency[MHz] 447.027

TABLE IV
EXPERIMENTAL RESULT OF OUR MODULAR EXPONENTIATOR USING
VIRTEX-5 FPGA

Virtex-5
Number of occupied Slices 128/8160
Number of 18k-bit BRAMs 1/132
Number of DSP48Es 17288
Maximum Frequency[MHz] 362.5

Table VI shows experimental results of our proposed par-
allel modular exponentiation circuit with the Virtex 6 FPGA.
From the table, 128 processors occupy 23040 slices. Since a
single processor occupies 180 slices and 23040 = 180 x 128,
no extra slice is necessary in our circuit. Also, 64 Block
RAMs are used in our 128 core circuit. Since one Block RAM
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TABLE V
EXPERIMENTAL RESULT OF OUR MODULAR EXPONENTIATOR USING
VIRTEX-4 FPGA

Virtex-4
Number of occupied Slices 251715360
Number of RAMB16s 1/192
Number of DSP48s 1/192
Maximum Frequency[MHz] 291.4

in Virtex 6 is 2K x 18k-bit in size, it is obvious that two
cores have shared one Block RAM. According to Equation 5,
slices, BRAM and DSP supporting core number are decided
by 1674 = 301440/180, 832 = 416 x 2 and 768 respectively.
Therefore the maximum number of cores supported in our
target FPGA is 768. Table VII shows the maximum throughput
for above condition.

TABLE VI
EXPERIMENTAL RESULTS OF OUR PROPOSED PARALLEL MODULAR
EXPONENTIATION CIRCUIT

Virtex-6
Number of occupied Slices 23040/301440
Number of 18k-bit BRAMs 64/416
Number of DSP48Els 128/768
Maximum Frequency[MHz] 447.027

There are a number of literatures reported to implement
modular exponentiation using FPGA as described in Sec-
tion II-B. Performances such as device, circuit size, frequency,
execution time and scalability of 1024-bit modular exponentia-
tion circuit are compared in Table VIII. Execution time denotes
the worst case when all the 1024-bit of E are 1. Average
case evaluates the execution time corresponding to the average
case that a half (512-bit) of 1024-bit of E is 1. Blum et
al. [4] implemented a high speed modular exponentiation
circuit based on radix-2¢ using Montgomery multiplication.
Comparing with proposed algorithm, it is not scalable and too
many logic blocks are used without memory blocks or DSP.
Nakano et al. [8] implemented modular exponentiation by re-
dundant number system and LUT. The scale of circuit is huge
and scalability is not supported. However, the authors have
used the embedded Block RAMs and embedded Multipliers
to achieve a high speed circuit. Suzuki [10] implemented the
circuit on Xilinx Virtex-4 FPGA with DSP blocks. In his work,
17 DSP blocks DSP48 are used and little resource costs. His
circuit works in extremely high speed and it is scalable. In
paper [9], Mazzeo et al. have presented that radix-2 based
Montgomery multiplier works in Digit-Serial way without
memory blocks or DSP blocks. The scale is small. Although
Table VIII shows the execution time when E = 27 4+ 1,
comparing with our work, it is too slow in worst case. As the
same as proposed architecture, Alho et al. [11] implemented
modular exponentiation using DSP blocks in Digit Serial way.
Since the target device is different that there are 2 multipliers
in DPS block of Alhos’ circuit, the number of clock cycles
are just half comparing with our algorithm.

Since DSP48E1s and Block RAMs are efficiently used in



TABLE IIT
WORST-CASE EXECUTION TIME OF OUR MODULAR EXPONENTIATOR USING VIRTEX-6 FPGA

bit length R 64 128 256 512 1024 2048
blocks d 4 8 16 31 61 121
frequency[MHz] 447.027 | 447.027 | 447.027 | 447.027 447.027 447.027
clock cycles 9344 51456 | 332288 | 2231296 | 16259072 | 123940864
execution time[ms] 0.02 0.12 0.74 4.99 36.37 277.26
TABLE VII
THROUGHPUT OF OUR PROPOSED PARALLEL MODULAR EXPONENTIATION CIRCUIT APPLYING MAXIMUM CORES
bit length R 64 128 256 512 1024 | 2048
maximum processor P_Num 768 768 768 768 768 768
maximum throughput[Mbits/s] | 2343.75 | 781.25 | 253.378 | 75.15 | 20.62 | 541
TABLE VIII
COMPARISON WITH PREVIOUS 1024-BIT MODULAR EXPONENTIATOR ALGORITHMS
Blum [4] Nakano [8] Suzuki [10]
device Xilinx XC40250XV | Xilinx XC2VP30-6 Xilinx XC4VFEX12-10
logic block 6633 CLBs 11589 Slices 3937 Slices
memory block - 29 BRAMs 7 BRAMs
DSP block - 64 18 18-bit multipliers | 17 DSP48s
frequency[MHz] 45.6 529 400, 200
execution time[ms] 11.95(worst case) 2.52(worst case) 1.71(worst case)
scalable no no yes
Mazzeo [9] Alho [11] this work
device Xilinx Virtex-E2000-8 | Altera Stratix EP1S40 | Xilinx XC6VLX240T-1
logic block 1188 Slices 341 LEs 180 Slices
memory block - 13604-bit 1 BRAM
DSP block - 1 DSP 1 DSP48E1L
frequency[MHz] 86.2 198 447.027
execution time[ms] | 3.86(E =217 +1) 28(average case) 36.37(worst case)
scalable no yes yes
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