2011 IEEE International Parallel & Distributed Processing Symposium

CRT-based DSP Decryption using Montgomery Modular Multiplication on the
FPGA

Bo Song, Yasuaki Ito, and Koji Nakano
Department of Information Engineering
School of Engineering, Hiroshima University
1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, JAPAN
{songbo,nakano,kawakami} @cs.hiroshima-u.ac.jp

Abstract—The main contribution of this paper is to present
an efficient hardware algorithm for Chinese Remainder The-
orem (CRT) based RSA decryption using Montgomery multi-
plication algorithm. Our hardware algorithm supporting up-to
2048-bit RSA decryption is designed to be implemented using
one DSP48E1 block, one Block RAM and few logic blocks in the
Xilinx Virtex-6 FPGA. The implementation results show that
our RSA core for 1024-bit RSA decryption runs in 11.263ms.
Quite surprisingly, the multiplier in DSP block used to compute
Montgomery multiplication works in more than 95% clock cy-
cles during the processing. Hence, our implementation is close
to optimal in the sense that it has only less than 5% overhead in
multiplication and no further improvement is possible as long
as CRT-based Montgomery multiplication based algorithm is
applied. We have also succeeded in implementing 320 RSA
cores in one Xilinx Virtex-6 FPGA XC6VLX240T-1 which work
in parallel. The implemented parallel 320 RSA cores achieve
26.2 Mbit/s throughput for 1024-bit RSA decryption.

Keywords-RSA decryption; FPGA; Montgomery modular
multiplication; Chinese Remainder Theorem; DSP block;

1. INTRODUCTION

The main contribution of this paper is to present an effi-
cient hardware algorithm for Chinese Remainder Theorem
(CRT) based RSA decryption using Montgomery multipli-
cation algorithm. Our algorithm uses only one DSP block,
and one Block RAM and a small quantity of logic blocks in
an FPGA. It is noteworthy that this algorithm does not only
need few hardware resources, but also holds the scalability
that from 64 bits to 2048 bits RSA decryption can be
processed by the same circuit without any modification.

The CRT based RSA decryption algorithm is implemented
in Xilinx Virtex-6 FPGA using only one DSP48E1 block,
one Block RAM, and a few of logic blocks (slices). The im-
plementation results show that our RSA module for 1024-bit
RSA decryption runs in 410.678MHz using 4625348 clock
cycles, namely 11.263ms. Since our decryption method is
based on the CRT. We have achieved 4 times speedup com-
paring with direct decryption by modular exponentiation.

Our algorithm repeatedly uses a 17-bit multiplier in the
DSP48E1 block. Since the multiplier is used in more than
95% clock cycles over all clock cycles, our implementation
is close to optimal in the sense that it has only less than 5%

1530-2075/11 $26.00 © 2011 IEEE
DOI 10.1109/IPDPS.2011.208

527

overhead, and no further improvement is possible as long
as Montgomery modular multiplication based algorithm is
applied.

We have also succeeded in implementing 320 RSA cores
in one Xilinx Virtex-6 FPGA XC6VLX240T-1 which work
in parallel. The implemented parallel 320 RSA cores achieve
26.2 Mbit/s throughput for 1024-bit RSA decryption.

A. RSA

RSA [1] is one of the most well known algorithms for
public-key cryptography, which is suitable for encryption as
well as digital signature. RSA is widely used in electronic
commerce protocols, and is believed to be secure given
sufficiently long keys such as 1024 bits or more. The RSA
algorithm involves three steps: key generation, encryption
and decryption. RSA involves a public key and a private key.
The public key can be known to everyone and is used for
encrypting messages. Messages encrypted with the public
key can only be decrypted using the private key. Let p and
g be distinct prime numbers chosen uniformly at random
with the same bit-length. Their product M = p x ¢ is used
as the modulus for both the public and private keys. We
also select another prime number E, and compute the value
D = E~!' mod [(p—1)(q — 1)], where E~! is the modular
multiplicative inverse of E. We use a pair (E, M) as a public
key to be known to everybody and to be use for encryption,
and (D, M) as a private key to be secret.

Given a plain text P expressed as a bit sequence corre-
sponding to an integer smaller than M, the RSA encryption
can be done by computing the cypher text C using a public
key (E, M) as follows:

C = PP mod M (1)

The original plain text P can be recovered using a private
key (D, M) as follows:

P=C” mod M (2

Note that E can be usually short in bit-length, say 16
bits for efficient encryption. On the other hand, D becomes
as long as the modulus M resulting in huge computing
consumption. Thus, the computation of decryption defined

IEEE
computer
pSOC|ety

=
o
=
o

[o]

<
o
=
o

[/0

o
=
@
o
=
@
e}
o
®
o
=
@

DsP
48E1

BRAM

-
o

= =

E

. ; °
-
o

B CLB B

!

CLI

-

CL

CLB CLB CLB CLB CLB

DsP
48E1

BRAM

CLB CLB CLB CLB CLB

Figure 1. Internal Configuration of Virtex-6 FPGA

by Equation (2) is much larger than that of encryption
defined by Equation (1). The main contribution of this paper
is to accelerate the decryption using CRT-based decryption
algorithm and implement it in the FPGA.

B. FPGA

An FPGA is an integrated circuit designed to be config-
ured by the designer after manufacturing. The FPGA config-
uration is generally specified using a hardware description
language (HDL), similar to that used for an application-
specific integrated circuit (ASIC). FPGAs can be used to
implement any logical function that an ASIC could perform,
but cost less and can easily re-configured if any modifica-
tion is made. FPGAs show plenty of advantages for many
applications thus FPGAs are selected as our target device
to evaluate our hardware algorithm of CRT based RSA
decryption.

This paper applies the algorithm on Xilinx Virtex-6 FPGA
which is the latest high performance FPGA appearing re-
cently [2].

The schematic diagram of Virtex-6 FPGA is shown as Fig-
ure 1. An FPGA chip is composed by CLBs (Configurable
Logic Blocks), which are the basic programmable logic
blocks, configurable inner connections and input/output
blocks (I/0O Blocks). The CLB in Virtex-6 consists of 2 sub-
logic blocks called Slice. With the components LUT (Look
Up Table) and Flip-Flop in the slice, various combinatorial
circuits and sequential circuits can be implemented. To
compensate for processing speed insufficiency of CLBs,
Virtex-6 FPGAs have a DSP48El block that is a DSP
block with a multiplier and an adder, which can perform
multiply-accumulate operation in high clock frequency [3].
Also, Virtex-6 FPGAs have a Block RAM to compensate
for memory insufficiency of CLBs. If these blocks are used
in design, the consumption of CLBs can be cut down a
lot. Since consumption of CLBs is an essential evaluating
indicator, a lower consumption usually implies lower cost
and power consumption. Designers always try their best
to reduce the use of logic blocks in the FPGA on the

528

ALL 0s

PCIN

17bit Shifters

Figure 2. Architecture of DSP48E1

assumption that a high frequency can be achieved.

As the Figure 2 shows, the DSP48E1 block has a two-
input multiplier followed by multiplexers and a three-input
adder/subtractor/accumulator. The DSP48E1 multiplier can
apply multiplication with a 18-bit and a 25-bit two’s com-
plement number and produces one 48-bit two’s complement
production. Programmable pipelining of input operands,
intermediate products, and accumulator outputs enhances
throughput and improves the frequency. Among the opera-
tors of the DSP48E1, since the pipeline registers are inserted,
its latency has been increased. This latency is absorbed by
always performing the multiplier in our algorithm.

The Block RAM is a synchronized write and read embed-
ded memory. In Virtex-6 FPGA, it can be configured as a
36k-bit dual-port Block RAMs, FIFOs, or two 18k-bit dual-
port RAMs. In our architecture, it is used as a 2kx 18-bit
dual-port RAM.

C. Related Work

To accelerate the RSA encryption/decryption, several re-
search used a GPU (Graphics Processing Units) support [4],
[5]. However, the iteration of exponentiation in modular
exponentiation is not suitable for GPU. Therefore, the GPU
cannot compute effciently.

Grofischiddl proposed an algorithm for RSA decryption
by Chinese Remainder Theorem which can half the length
of operands and be implemented in a hardware core [6].
Our work carries forward with Grofschiddl’s algorithm a
further step by implementing CRT-based RSA decryption
on the FPGA. Also, there are several researches reported to
implement modular exponentiation by Montgomery multi-
plication algorithm [7]. In [8], the number of multiplications
and additions, the times of memory access, and the size
of memory necessary to compute Montgomery modular
multiplication are evaluated by software implementation.
Mclvor et al. implemented and evaluated three algorithms
shown in [8] on FPGAs [9]. Blum and Paar proposed a
modular exponentiation hardware algorithm with a radix-2
Montgomery multiplication using systolic array [10]. Also,

a radix-2* modular exponentiation circuit that is an extended
method of the radix-2 circuit is proposed [11]. The circuits
of the above are fixed for the length of operands. However,
the following methods that are independent of the length of
operands were proposed. Tenca er al. presented a radix-2
scalable Montgomery multiplication architecture [12]. This
architecture uses fixed processing elements to deal with
variable bit length of operands. Nakano et al. presented
a radix-2'® Montgomery multiplier and RSA encryption
hardware algorithm using embedded Block RAMs of an
FPGA efficiently [13]. In the algorithm, they use a method
to prevent a long carry delay in huge integer addition with
redundant number system. Mazzeo et al. proposed a small
RSA encryption circuit [14]. They compute Montgomery
multiplication in Digit-Serial way using Radix-2. Suzuki
proposed a high speed modular exponentiation circuit featur-
ing a Xilinx FPGA which contains DSP blocks with radix-
217 [15]. Several DSP blocks are used to achieve a high
operation frequency. Alho et al. implemented the modular
exponentiation using Altera FPGA with a single DSP block
in radix-2'8 [16].

Above literatures introduce methods to implement mod-
ular exponentiation in FPGA using Montgomery multipli-
cation featuring radix, device and scalability. In this work,
we propose an efficient method to implement modular
exponentiation using Xilinx FPGA in radix-2'7. The radix-
217 is decided by the feature of embedded DSP blocks in
our target device.

In our previous work [17], we have presented an RSA en-
cryption hardware using one DSP and one Block RAM. The
implementation result shows that this hardware performs
1024-bit RSA encryption in 36.37ms in XC6VLX240T-1.

The main contribution of this paper is to use CRT tech-
nique to further accelerate our previous work [17]. We have
also implemented 320 cores in XC6VLX240T-1 for parallel
computation.

II. MODULAR EXPONENTIATION

Modular exponentiation is a type of exponentiation per-
formed over a modulus and is the primary operation in RSA.
RSA encryption and decryption is given by Equation (1) and
Equation (2) which are the typical modular exponentiation.
In RSA, (E, M) and (D, M) are encryption and decryption
keys. During the processing, modular exponentiation is
repeated by modular multiplication with fixed FE, D and
M. Usually, the bit-length of P, C, D and M is at least
1024 which leads to a huge cost in terms of time and
hardware resources. In the most of literatures, Montgomery
multiplication algorithm [7] is used as the most efficient
algorithm for this problem, which replaces trial division by a
series of additions and shift operations that modulo operation
is not necessary any more.

529

A. Montgomery Multiplication Algorithm

Montgomery multiplication algorithm [7], introduced in
1985 by Peter Montgomery, allows modular arithmetic to
be performed efficiently when the modulus is large. Suppose
X xY mod M is required. This formula implies modular re-
duction which is very expensive computationally equivalent
to dividing two numbers. The Montgomery algorithm is used
to compute this formula in much more efficient way than the
classical method of taking a product over the integers and
reducing the result modulus M.

In the Montgomery algorithm, three R-bit numbers X,
Y, and M are given, and (X -Y +¢- M) 27" mod M is
computed, where an integer ¢ is selected such that the least
significant R bits of X -Y + ¢ - M can become zero. The
value of ¢ can be computed as follows. Let (—M ~1) denote
the minimum non-negative number such that (—M ~1). M =
—1(or 28 — 1) (mod 2%). Since M is odd, the situation
(=M 1) < 28 always holds. We can select ¢ such that ¢ =
(X-Y)-(=M~1))[r—1,0]. For this ¢, (XY +q-M)[r—1,0]
will become zero. For reader’s benefit, we will confirm
this fact using an example. Suppose X = 10010011(147),
Y = 01011100(92), M = 11111011(251), and R = 8.
We have the product X - Y = 011010011010100(13524).
Next, we need to select an integer ¢ such that the least
significant R bits of X - Y + ¢ - M becomes zero. In
this case, (—M ') = 11001101(205), because (—M ') -
M = 1100100011111111(51455) = —1 (mod 2%). Thus
q = (X-Y)[R-1,0]-(—=M~1) = 11000100(196) is selected.
Then the product ¢ - M = 1100000000101100(49196) and
the sum X -Y +¢-M = 1111010100000000(62720) could be
obtained. Now, we have (XY +¢-M)[R—1, 0] = 00000000
and (X Y +¢q-M)-27F = (XY +q- M)[2R -
1,R] = 11110101(245). Since 0 < X,Y < M < 2f and
0 < q < 2%, it is guaranteed that (X -Y +q-M)-2=% < 2M.
Therefore, by subtracting M from (X -Y + ¢ - M) -27E,
we can obtain (X -Y +¢q-M)-2"F mod M if it is no less
than M.

- Algorithm 1: radix-2" Montgomery Multiplication -
radix-2", d = [R/r], X, Y, M € {0,1,...,2F — 1},
Y =202y, Vi€ {0,1,...,2" — 1}
(—M1)- —1mod 2", —-M~'€{0,1,...,2" — 1}
Input: X,Y,M,—M™!
Output: Sy =X -Y -27% mod M
. S() ~0
.for i=0 to d—1do
¢+ ((Si+X-Y;) - (—M~1)) mod 2"
Sit1 X Yi+q -M+S;)/12"
end for
if (M < Sd) then Sy <+ S;— M

N

Algorithm 1 shows radix-2" Montgomery multiplication,
where d = [R/r] presents the number of digits in radix-2"
operands. The multiplier YV is partitioned by each r-bit and

Y, represents the ¢-th digit of Y. Therefore, Y could be given
by Y = Z?:_Ol 2i" . Y;. After d loops, R-bit Montgomery
multiplication can be obtained. As far as now, Montgomery
multiplication could be computed by multiplication, addition
and shift operations without modulo operations. The result
of Montgomery multiplication just needs an amendment by
inputting it with 1 into the Montgomery multiplier.

Since X - Y +¢q-M = X -Y (mod M), we write
(X Y +q-M)-27Bmod M = X -Y - 2B mod M.
Let us see how Montgomery modular multiplication is used
to compute C = P¥ mod M. Assume that E is a power
of two. Since R and M are fixed, we again assume that
22E mod M is computed beforehand. We first compute
P22 mod M) - 2 mod M = P - 2% mod M using
the Montgomery modular multiplication. We then compute
the square (P - 2% mod M) - (P - 2F mod M) - 2= mod
M = P?-2% mod M. It should be clear that, by repeating
the square computation using the Montgomery modular
multiplication, we have P¥ -2 mod M. At last, we input 1
and the previous result, that is (P?-2% mod M)-1-27% mod
M = P¥ mod M. Finally, cypher text C' is obtained.

- Algorithm 2: Modular Exponentiation -
0<E<2®l 1, E=SIF"" 2. E, E € {0,1}
Input: P,E,M,—M~",224" mod M
Output: C = P¥ mod M
. C (2% mod M) -1-2 % mod M;
P+ (2% mod M) - P -27% mod M;
. for i = |E| — 1 downto 0 do

C+ C-C-27% mod M;

if B;=1then C « C-P-2"% mod M;
end for
. C+ C-1-27% mod M;

No e W~

Algorithm 2 shows the modular exponentiation using
Algorithm 1, where | E| represents the bit length of E. Inputs
224" mod M and —M~! are given beforehand. To use
Montgomery modular multiplication, C' and P are converted
from 1 and P in the Ist line and the 2nd line, respectively.
The portion underlined in Algorithm 2 can be computed by
Montgomery multiplication of Algorithm 1.

III. CRT-BASED RSA DECRYPTION

The complexity of the RSA decryption defined in Equa-
tion (2) directly depends on the size of D and M. The
decryption exponent D specifies the numbers of repeated
modular multiplications and the modulus M determines the
size of the intermediate results. Chinese Remainder Theorem
(CRT) provides a method to reduce the size of both D and
M so that the complexity of the RSA decryption can be
reduced.

Theorem 1 (Chinese Remainder Theorem): Let ny, no,
..., ng be k positive integers which are pairwise coprime.

530

For any given set of integers x1, xs, ..., T, there exists an
integer x solving the system of simultaneous congruences:

x =z (mod ny)
T = 9 (mod ns)
x =z (mod ny)

has a simultaneous solution which is unique modulo
ning...n; and any two solutions are congruent to one
another. Furthermore there exists exactly one solution z
between 0 and n — 1.

Note that the theorem implies that there is a unique
solution. However, it does not say how we obtain the value
of x. The solution can be obtained by a method known
as Gauss’s algorithm as follows. Let N = nins---ng,
N, = N/n; and d; = N;' (mod n;) (1 < i < k). We
have,

T

= o1 Nidi+- -+ xNpdy (mod N). (3)

From the Fermat’s Little Theorem, we have NZ-"Z'*1
(mod n;) = 1. Thus, d; can be easily computed by the fol-
lowing formula: d; = N; ' (mod n;) = N2 (mod n;).

We use Equation (3) for £ = 2 to perform RSA decryption
defined in Equation (2). Since M = pq and the Chinese
Remainder Theorem, the value of P can be computed by
the following two equations:

P,=CP mod p=Cl? modp)
P, = CP mod ¢ = qu mod g, (5)
where C}, = C' mod p, C; = C mod ¢, D, = D mod (p —
1), and D, = D mod (¢ — 1). Let Z, = ¢! mod M and
Z, = p? ! mod M. Once we have the values of P, and

D,, we can compute the value of P by Equation (3) by the
following formula:

P (Ppq(g~" mod p) + P,p(p~"' mod ¢)) mod M
(Ppq(¢"~% mod p) + P,p(p?~? mod ¢)) mod M
(Py(¢" ' mod M) + P,(p? * mod M)) mod M
(PpZy + PyZy) mod M (6)
Note that D, D,, Z, and Z, can be precomputed, because
their values are independent of the value of P. In summary,

the following steps can perform the RSA decryption, that is,
can compute the plain text P from the cypher text C.
CRT-based RSA decryption
Step 1: Compute), = C' mod p and C, = C' mod q.
Step 2: Compute P, = C’,?" mod p and P, = C’qD" mod

D.

Step 3: Compute S, = PFP,Z,modM and S, =
P,Z, mod M.

Step 4: Compute the sum P = S, + S,;. If P > M then
let P=P— M.

Let us briefly compare the computational costs of the direct
RSA decryption by Equation (2) and the CRT-based RSA
decryption. Suppose that both p and ¢ has R/2 bits, and thus,
M has R bits. Then, the decryption key and the cypher text
C' can have R bits. We assume that the computational cost of
Equation (2) is R®, and roughly evaluate the computational
cost of the CRT-based RSA decryption. Since in the CRT-
based RSA decryption, the cost of Step 2 is dominant, we
ignore the other steps. Since all of the p, C,, and D, has R/2
bits, the computational cost of P, is R?/8. Similarly, that
of P, is also R3/8. Thus, the total cost of Step 2 is R?/4.
Consequently, the CRT-based RSA decryption can reduce
the computational cost by quarter.

IV. IMPLEMENTATION ON THE FPGA

In our hardware algorithm, we use an embedded DSP
block and a Block RAM in Xilinx FPGA. This section
mainly shows a Montgomery modular multiplication circuit
and a CRT based RSA decryption circuit with it.

A. Our Montgomery Modular Multiplication Algorithm

Algorithm 3 shows our hardware algorithm of Mont-
gomery multiplication. Let {A : B} denote a concatenation
of A and B. For example, {A : B} = (FFEC)s for
A = (FF)16 and B = (EC)1. Algorithm 3 is an improved
algorithm from Algorithm 1 introduced in Section II-A. Our
circuit performs radix-2'7 based algorithm to match the size
of inner multiplier in DSP48El. Let R denote the size
of Montgomery multiplier operands X, Y, and M, then
d = [R/17] is the number of digits of the operands. If
17d > R + 3, the subtraction shown in the 6th line of
Algorithm 1 can be ignored. If at least 3-bit 0 is padded
to the most significant bits of the highest digit as the
redundancy, we can guarantee such condition is satisfied.
Due to the stringent page limitation, the proof is omitted.
Furthermore, M > C is always satisfied in the modular
exponentiation shown in Algorithm 2. In the practical, the
size of operands is radix-2 numbers such as 512-bit, 1024-
bit, 2048-bit, and 4096-bit. For the radix-27 system, the
condition 17d > R+ 3 is just satisfied. If the condition is not
satisfied, we can append one redundant digit at the highest
digit. Thus our hardware Montgomery algorithm does not
perform the reduction at last.

Algorithm 3 is a radix-2'7 digit serial Montgomery al-
gorithm from Algorithm 1. In other words, each 17 bits,
as 1 digit, is processed every clock cycle. For this reason,
the operands X, Y, M, and S; are split into 17-bit digits
X;, Y;, M;, and S(Lj)’ respectively. The loop from the
2nd to 11th lines of Algorithm 3 corresponds to the 2nd
to 5th lines of Algorithm 1. Comparing the two algorithms,
Sit1 «— (X Y, +q; - M+ S;) /2" of the 4th line of
Algorithm 1 corresponds to the digit serial processing by
4th to 10th lines of Algorithm 3. While Cy, Cjs, C,, and
Cs are carries and they are added at the next loop. In the

531

algorithm, C, and Cg are 17-bit carries for 17-bit MACC,
and C, and Cs are 1-bit carries for 17-bit addition. For
example, at the 6th line a product of X; and Y;, and an
addition of the product and C,, are computed. The resulting
upper 17-bit denotes a carry C,, which can be added at next
loop. While the lower 17-bit of result is a which is used at
the 8th and 9th lines. These carries in our algorithm appear
in both the 17-bit MACC and the 17-bit adder to prevent a
long carry chain that causes circuit delay.

- Algorithm 3: Our Montgomery Algorithm -
radix-2'7, d = [R/17],17d > R + 3,
X,Y,M,S; € {0,1,...,.2% — 1},
—M~%,0,8,7,Ca,Cs € {0,1,...,2 = 1}, C,, Cs € {0,1},
X=Y"1o X, X, €{0,1,...,28" =1}, X4 = 0

d— i
YV =30 2l Y, Yi€{0,1,..,27 - 13
M =Y4"0 2" My, M; € {0,1,...,2' T — 1}, My =0
d—1 o175
S; = Z]’:O 2175 . S(i7j):S(i7j) S {0, 1, ..., 217 _ 1},Sd =0
Input: X,Y,M,—M~*!
Output: Sy =X -Y 27174 mod M

1. So ~0
2. for i=0 to d—1do
3. g+ ((Xo-Yi+Su0) (—M~")) mod 2'7

4, Ca,05,07,05 +—0

5. for =0 to ddo

6. {Ca:a}+X;- Y, +C,

7. {Cﬂ:ﬁ}(—q-M]’-l-Cg

8. {Cy v} e—a+p+C,

9. {CS : S(i-l—l,j—l)} — v+ S(i,j) + Cs
10. end for

11.end for

1) Architecture of Montgomery Multiplier: Figure 3
shows the architecture of Montgomery multiplier using
Algorithm 3. The inputs of Montgomery multiplier are
supplied from a Block RAM and registers of CRT based
RSA decryption circuit. Given the inputs, the operations of
Algorithm 3 are executed by the MACC composed with one
DSP48E1 and one adder composed with CLBs.

The computations of the 3rd, 6th and T7th lines are
executed with the DSP48El. In order to obtain ¢ in the
3rd line, Xy - Yy + S(;,0) is obtained first. After that,
(Xo - Y; + S(i0)) - (~M ') is computed. The number of
clock cycles necessary to compute ¢ is 6. In the 6th line,
17-bit multiplication X; - Y; is computed and the carry C,
for the digit is added at the same time. The production and
the addition are computed using the DSP48E1. After that,
the lower 17-bit of the result will be added in the following
adder composed by CLB. On the other hand, the upper 17-
bit of the result is stored as a carry into the pipeline register
and added at the next clock. The 7th line ¢ - M; 4+ Cj is
computed as the same as the 6th line using DSP48E1. The
sums of products of the 6th and 7th lines in Algorithm 3 are

’/17(carry bit)

------- b 17(lower bit) \

1 1 1 .

. CLB . s i

F—— | i -

; (&) i

1 2 1

1 1

i +]

1 1

! b 17(lower bit) | !

i 1

i \ 2 S(m 2R

: S e i it . -t ’

Figure 3. Structure of our Montgomery multiplier

computed by alternate input of X;,Y; and A}, q. Since the
carries are stored to the pipeline registers in the DSP48E1,
our circuit is able to be performed efficiently.

The adder, that is composed by CLBs, following the
DSP48E1 computes a+(3+C, and y+5(; j)+Cs of the 8th
and 9th lines in the Algorithm 3. Since C, and C's are 1-bit
carries, they can be computed by a two-input 17-bit adder.
The operands S(; ;) come from the Block RAM, «a and j
come from DSP48E1, and -y is a feedback of a+(+C.,. The
most significant bit of the output is a feedback to the adder
as carries C's and C. Also, the lower 17-bit of the output is
a feedback to the adder, while at the same time S(;y; ;1)
is stored into the Block RAM. These can be computed using
registers and multiplexers as shown in Figure 3.

2) Necessary Clock Cycles of Our Algorithms: In our
algorithm, based on the radix-2'7 number system, R-bit
operands are split into d = [R/17] blocks. Let MM,
denote the number of clock cycles to compute the Mont-
gomery multiplication. In [8], the number is computed by
the following equation:

MM, = 2d*> +d @)

The equation means that d? multiplications are necessary
to compute X -Y and ¢- M, and d multiplications are needed
to obtain q.

On the other hand, the number of clock cycles MM, of

532

98
9% yd —
T o 7
T &
g 92 i
=
2
g9
5 88
86
84 ‘
0 1000 2000 3000 4000
Bit length R of operand in Montgomery Multiplier [bit]
Figure 4. Embedded multiplier utilization rate of our Montgomery

multiplier(MM, .1 /| MM 1)

our Montgomery algorithm is computed by Equation 8.

MMy = ((d+1)-2+6)-d+4=2d>+8d+4 (8)

It shows that from the 5th to the 10th lines of Algorithm 3,
(d+ 1) -2+ 6 cycles are necessary for the loop, and d
cycles are needed for the loop from the 2nd to the 11th
lines. Also, in order to complete the computation of modular
exponentiation, another 4 cycles are necessary.

Figure 4 shows the utilization rate of the multiplier in
our proposed algorithm. From this figure, when the size
of operands R is larger than 500-bit, the utilization rate
is more than 90%. Also, if the size of operands is 1024-
bit and 2048-bit, the utilization rate is more than 95% and
97%, respectively. Since the size of operands should be large
in practice, our proposed algorithm is optimal for a single
DSP48EL1 slice.

B. Our CRT based RSA decryption circuit

1) Architecture of CRT based RSA decryption circuit:
Recall that there are 4 steps to compute CRT based RSA
decryption. In Step 1, Step 2, and Step 3, two independent
but same computations can be performed, respectively. More
specifically, in Step 1, €, = C'mod p and C; = C' mod g,
in Step 2, P, = C,P” mod p and P, = CqD" mod p, and in
Step 3, Sp, = P,Z, mod M and S, = P,Z,, mod M can be
computed in parallel, respectively. However, to reduce the
cost of the hardware resource, we process them in serial. In
other words, we serially compute C,, Cy, Pp, Py, Sp, and
Sy in our CRT based decryption circuit. Also, in Step 4, it
is easy to obtain the final result P only by adding .S, and
S, together.

We just discuss one of the procedures in the following
paragraphs and assume the modulus M is 1024 bits. The
other is totally the same. In Step 1, €, = C'mod p is
computed. In the case of 1024-bit RSA, C is 1024 bits
while C), is 512 bits on the assumption that the size of p is

MM
control

r~—~===1 control F——"~- 1
1 1
i :
prun ModExp |__ 1
1 control o
1 1 1
: i
input/output
Montgomery BRAM [
Multiplier
—— dataline
--=- control line

Figure 5. Structure of our CRT based RSA decryption circuit

512 bits. We first input C' and sz mod p into Montgomery
multiplier introduced in Section IV-A1 to get an intermediate
result, where R, represents the integer gbitlength(p) which is
computed beforehand. Next the intermediate result and 1
(padding to 512 bits with all O in the significant bits) are
input to correct the result.

Step 2 is a typical modular exponentiation. We compute
it by Algorithm 2. Note that in this step, all the operands
are 512 bits if the size of modulus M is 1024 bits.

Step 3 is a single Montgomery multiplication as the same
as Step 1. We also first input P, with R* mod M which
is compute beforehand. Next we compute S, = P,Z, mod
M by input intermediate result with Z,. At last, again the
intermediate result and 1(padding to 512 bit with all O in the
significant bits) are input to get the final result. In Step 3, we
compute a reduction that the production of a 512-bit operand
and a 1024-bit operand with a 1024-bit modulus.

Note that the sizes of operands in each step are different.
In our Montgomery multiplier shown in Figure 3, if the size
of input Y equals to the size of modulus, we can guarantee
that the computation is correct.

In our CRT based RSA decryption circuit, we use only one
DSP block and one Block RAM. The circuit contains two
controllers. One is used for Montgomery algorithm and the
other is used for the state machine and deciding the address
between DSP block and Block RAM. The block diagram of
our CRT based decryption circuit is shown in Figure 5.

The size of a single Block RAM in Virtex-6 is 36 Kbits. In
order to reduce the hardware resource cost, only one Block
RAM is used in our circuit. The 36 Kbits Block RAM is split
to 2 sub-blocks as shown in Figure 6. The upper one is used
to store the plain text, cypher text, encryption parameters as
well as intermediate results, and thus furthermore split to
smaller blocks with each size in 128 x 18 bits. Our circuit
is a decryption circuit, while we also use the circuit as
encryption. Thus we have reserved a space for encryption.
The lower space of the Block RAM is also split to several
parts to store CRT based parameters, intermediate result and
decrypted text. Since in our CRT based circuit, the size of
operands is half, the size of the lower sub-block is half

533

Flag(1 bit) Data(17 bit) Flag(1 bit) Data(17 bit)
A A

Addr Addr L 0 1234
1000 Zq 0000 P 0 1234 P

0001 C 0
10010 C, 0010 S)

1 1234
10011 C, 0011 REmod M
10100 P 0100 M
10101 a 0101 EorD Depth = 1024
10110 -pt 0110 VD (128 X 8 X 18bit)
10111 —qt
11000 X
11001 Y __Block RAM
11010 S
11011 R? mod p
11100 R2mod q
11101 D,
11110 D,
11111 1
36kbit
Figure 6. Internal configuration of BRAM in our CRT based RSA

decryption circuit

compared with upper sub-blocks, that is 64 x 18 bits.

Note that our algorithm is radix-17 based data, which
means that we split operands into every 17 bits. However,
the width of our Block RAM is 18 bits. The most significant
bit of each data is used as a flag bit to indicate the end 17
bits of the input sequence. It means if a flag bit is equal
to 1, all 17-bit blocks of the operand has been input to the
Montgomery multiplier. Since every sub-block is 64 x 18
bits, our circuit supports RSA decryption from 17 bits to
2176 (64 x 17 x 2) bits without any modification. Therefore,
our circuit can be said scalable.

2) Necessary clock cycles of CRT based RSA decryp-
tion: The number of necessary clock cycles of a single
Montgomery multiplication can be computed by Equation 8.
Note that this equation is for the ordinary Montgomery
multiplication whose size of 2 inputs X, Y and modulus M
is the same. However, in our CRT based RSA decryption,
the size of operands is different since the number of digits
d for X and Y is different. We modify Equation 8 to be fit
for our algorithm as following,

MM . = ((d1+1)'2+6)'d2+4=2d1d2+8d2+4 9

where d; and d, denote the numbers of digits for input X
and Y, respectively. Specifically, suppose the modulus M is
1024 bits, then the sizes of these two inputs are 1024 bits
and 512 bits, respectively. That is d; = [1024/17] = 61 and
dy = [512/17] = 31. With Equation 9, we can compute the
necessary clock cycles for our CRT based algorithm.

In our implementation, the first 3 steps are processed. In
Step 1, Montgomery multiplication is performed twice with
different input size. Step 2 is a modular exponentiation.
Therefore Equation 8 is available. Note that the size of
operands in Step 2 is half of the size of Step 1. Thus
the size of operands is d = dy. In Step 3, three times
of Montgomery multiplication are necessary with different

input size. Finally, we can obtain the necessary clock cycles
as follows:

CRT .y, = 2 x {(2d2® + 8ds + 4)(2ds x 17 + 4)
+(2d1dy + 8d2 + 4) + (2d2dy + 8dy + 4)
+(2d1dy +8d1 +4)}
= 4(14 + 8d, + 88d? + 3dydy + 140dy” + 34d,")
(10)
3) Our parallel processing system: A parallel system is
implemented so that the throughput of our circuit can be
improved a lot.

sel | T data
']]
MUX
dbus i i l

~N

16 cores 16 cores 16 cores 16 cores

J

Figure 7. The top module of our parallel system

clk2 (200MHz) i dane

wr_en
—> wr_done

d | —
rd_en Controller |— rd_done

FIFO

Address
counter

i

BRAM

abus
dbus

DSP DSP

)
1

11

Clk1 (400MHz)

Figure 8. The parallel sub-processor

Our parallel system is built up by several sub-processors
each containing 16 CRT based RSA cores. Figure 7 shows
the top module of our parallel system. There is one data
input/output port with a selection port to select the datapath.
Input data follows the value of selection port going to the
target sub-processor. A multiplexer controls the selection of
the datapath according to the value of selection port. A data
bus is shared by all the sub-processors that only one sub-
processors can write or read data at one time.

Figure 8 shows the structure of our sub-processors. Every
sub-processor is embedded 16 CRT based RSA decryption
cores with an data exchanging interface. The interface is
composed by complicated multiplexer network, thus it works
much slower than RSA cores. Since the data exchanging is
occurred only twice before processing and after processing,

534

and it will not cause undesirable effect on data processing,
we separate the clock resources. The slower one is for the
interface and the higher one is for the CRT core. An FIFO
is used between interface and RSA core in order to packing
the timing gap between two clocks. Data is written or read
into each core in serial that means all the cores have to wait
until all the core receiving the data. If there is no data, O is
padded into the Block RAM.

In our implementation, we made maximum use of the
FPGA which around 300 cores is embedded in such parallel
system.

V. EXPERIMENTAL RESULT AND DISCUSSION

The proposed CRT based RSA decryption circuit is
implemented and evaluated on the Xilinx Virtex-6 FPGA
XC6VLX240T-1, programmed by hardware description lan-
guage Verilog HDL and synthesized by Xilinx ISE Founda-
tion 11.5 mapping tool.

Table 1 shows the synthesized results in Virtex-6 and
lists the resource costs for single core and multiple cores,
where the SRs and SLUTs stand for how many configurable
logic blocks including slice registers and slice LUTs are
occupied. BRAMs represents the number of used Block
RAMs. DSP48E1s shows how many DSP blocks are neces-
sary. The maximum frequency means how fast our circuit
could be executed. For a single core, there is just a global
clock resource. While for the multiple cores, two clocks
are necessary which the slower one is connected with data
interface and the other faster one is for the data processing.
The numbers below each item shows the maximum resource
of our target device. From Table I, it shows that the scale
of our circuit for a single core is so small that only 201
slices registers, 374 slices LUTs, 1| BRAM and 1 DSP48E1
are necessary. Thus, we can implement a multiple cores
system easily. Also, since the maximum clock frequency of
DSP48E1 is 600MHz, an extremely high frequency can be
obtained by our algorithm.

Table II shows the necessary clock cycles, execution time
and maximum throughput in the worst case from 64-bit to
2048-bit CRT based RSA decryption. The execution time is
computed by the production from necessary clock cycles
with circuit delay. The data is taken from Equation 10
and Table II. Any size of operands less than 2176-bit can
be executed in the same circuit without any modification.
Our CRT based RSA decryption circuit processes 1024
bits RSA decryption in 11.263 ms. It achieves nearly 3.5
times speedup comparing with our previous work. Since our
previous RSA circuit does not apply CRT, the architecture
is less complicated, the maximum frequency is higher and
up to 447MHz. Our circuit works on 410MHz, thus the
speedup is less than 4 times. If our circuit works on the
same frequency, in theorem, we can achieve at most 4
times speedup by CRT based algorithm. Also, since the
architecture of our single core so compact that we can

Table T

SYNTHESIS RESULT OF

OUR CRT BASED RSA

Cores SRs SLUTs BRAMs | DSP48Els Maximum frequency[MHz]
Subs/Cores | -/301440 | -/150720 -/416 -/768 clkl/clk2
-1 201 374 1 1 410.678(2.435ns)
20/320 68038 133164 340 320 237.530(4.210ns)/379.203(2.673ns)
16/272 54614 106434 288 272 242.424(4.125ns)/425.512(2.350ns)
Table 1T
WORST-CASE EXECUTION TIME AND THROUPUT OF OUR CRT BASED RSA DECRYPTION CIRCUIT
bit length R 64 128 256 512 1024 2048
blocks dy /do> 472 8/4 16/8 31/16 61/31 121/61
frequency[MHz] 410.678 | 410.678 | 410.678 | 410.678 410.678 410.678
clock cycles 4312 19768 110392 | 713048 | 4625348 | 33067148
execution time(CRT based decryption)[ms] 0.011 0.048 0.269 1.736 11.263 80.519
execution time(direct decryption in 447MHz)[ms] 0.02 0.12 0.74 4.99 36.37 277.26
throughput(single core)[kbit/s] 5952.54 | 2596.86 | 930.044 | 287.973 88.786 24.936
throughput(320 cores)[kbit/s] 1.7589 x 10° 767339 274816 85093 26236 7368
throughput(272 cores)[kbit/s] 1.4951 x 10% 652238 233594 72329 22301 6263
Table IIT

COMPARISON WITH PREVIOUS 1024-BIT MODULAR EXPONENTIATOR ALGORITHMS

Blum [11] Nakano [13] Suzuki [15]
device Xilinx XC40250XV | Xilinx XC2VP30-6 Xilinx XC4VFX12-10
logic block 6633 CLBs 11589 Slices 3937 Slices
memory block - 29 BRAMs 7 BRAMs
DSP block - 64 18x 18-bit multipliers | 17 DSP48s
frequency[MHz] 45.6 529 400, 200
execution time[ms] | 11.95(worst case) 2.52(worst case) 1.71(worst case)
throughput[kbit/s] 83.682 396.825 584.795
scalable no no yes
Mazzeo [14] Alho [16] this work
device Xilinx Virtex-E2000-8 | Altera Stratix EP1S40 | Xilinx XC6VLX240T-1
logic block 1188 Slices 341 LEs 201 Slices Registers and 374 Slice LUTs
memory block - 13604-bit 1 BRAM
DSP block - 1 DSP 1 DSP48E1
frequency[MHz] 86.2 198 410.678
execution time[ms] | 3.86(E = 217 + 1) 28(average case) 11.263(worst case)
throughput[kbit/s] 295.067 35.714 88.786
scalable no yes yes

implement multiple cores in parallel system easily. Thus, an
extremely high throughput can be obtained by our system.
For 1024-bit RSA decryption, the maximum throughput is
up to 26236kbit/s.

There are a number of literatures reported to implement
RSA using FPGA as described in Section I-C. Performances
such as device, circuit size, frequency, execution time,
throughput and scalability of 1024-bit modular exponentia-
tion circuit are compared in Table III. Note that direct RSA
decryption sharing the same modular exponentiation circuit
with encryption. It makes sense that we do such comparison.
Execution time denotes the worst case when all the 1024-
bit of E are 1. Average case evaluates the execution time
corresponding to the average case that half of 1024-bit of
E is 1. Blum et al. [11] implemented a high speed modular
exponentiation circuit based on radix-2* using Montgomery

multiplication. Comparing with proposed algorithm, it is
not scalable and too many logic blocks are used without
memory blocks or DSP. Nakano et al. [13] implemented
modular exponentiation by redundant number system and
LUT. The scale of circuit is huge and scalability is not
supported. However, the authors have used the embedded
Block RAMs and embedded Multipliers to achieve a high
speed circuit. Suzuki [15] implemented the circuit on Xilinx
Virtex-4 FPGA with DSP blocks. In his work, 17 DSP
blocks DSP48 are used and little resource costs. His circuit
works in extremely high speed with scalability and a high
throughput that nearly 585kbit/s is achieved. In paper [14],
Mazzeo et al. have presented that radix-2 based Montgomery
multiplier works in Digit-Serial way without memory blocks
or DSP blocks. The scale is small. Although Table IIT shows
the execution time when E = 27 4+ 1, comparing with

535

our work, it is too slow in worst case. As the same as
proposed architecture, Alho et al. [16] implemented modular
exponentiation using DSP blocks in Digit Serial way. Since
the target device is different that there are 2 multipliers in
DPS block of Alhos’ circuit, the numbers of clock cycles
are just half comparing with our algorithm.

Since DSP48E1s and Block RAMs are efficiently used in
our circuit, the size of our modular exponentiation circuit is
very small. Also, the DSP48E1 works almost all the clock
cycles shown in Section IV-A2. Therefore we have achieved
a quality performance with high execution frequency and
our architecture could be said most optimal when only 1
multiplier is used.

VI. CONCLUSION

In this paper, we have proposed a hardware algorithm for
CRT based RSA decryption using minimum logic units with
maximized use of a DSP block. Our hardware algorithm is
close to optimal in the sense that running clock cycles is
close to the lower bound of the number of multiplications
involved in Montgomery multiplication. In other words, a
multiplier in a DSP block works during almost all the
processing clocks. Our algorithm is evaluated in the latest
Xilinx Virtex-6 family FPGA. Experimental result shows
that our implementation performs in extremely high speed
and throughput.

REFERENCES

[1] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,”
Communications of the ACM, vol. 21, no. 2, pp. 120-126,
1978.

[2] Xilinx Inc., “Virtex 6 ML605 Hardware User Guide(v1.2.1),”

2010.

[3] ——, “Virtex-6 FPGA DSP48El Slice User Guide(v1.2),”

2009.

[4] W. Fan, X. Chen, and X. Li, “Parallelization of RSA algo-

rithm based on compute unified device architecture,” in Proc.

of The Ninth International Conference on Grid and Cloud

Computing, 2010, pp. 174-178.

[5] O. Harrison and J. Waldron, “Public key cryptography on

modern graphics hardware,” in Booklet of posters, Eurocrypt

2009, April 20009.

[6] J. GroBschiddl, “The Chinese remainder theorem and its

application in a high-speed RSA crypto chip,” in Computer

Security Applications, 2000. ACSAC *00. 16th Annual Con-

Serence, 2000, pp. 384-393.

[7]1 P. L. Montgomery, “Modular multiplication without trial

division,” Mathematics of Computation, vol. 44, pp. 519-521,

1985.

[8] Cetin Kaya Kog, T. Acar, and B. S. Kaliski, Jr., “Analyzing

and comparing Montgomery multiplication algorithms,” I[EEE

Micro, vol. 16, no. 3, pp. 26-33, 1996.

536

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

C. Mclvor, M. McL.oone, and J. V. McCanny, “FPGA Mont-
gomery multiplier architectures - a comparison,” in Proc. of
Field-Programmable Custom Computing Machines, 2004, pp.
279-282.

T. Blum and C. Paar, “Montgomery modular exponentiation
on reconfigurable hardware,” in Proc. of the 14th IEEE
Symposium on Computer Arithmetic, 1999, pp. 70-77.

, “High-radix Montgomery modular exponentiation on
reconfigurable hardware,” IEEE Trans. on Computers, vol. 50,
no. 7, pp. 759-764, 2001.

A. F. Tenca and C. K. Kog, “A scalable architecture for
Montgomery multiplication,” in Proc. of the First Interna-
tional Workshop on Cryptographic Hardware and Embedded
Systems, 1999, pp. 94-108.

K. Nakano, K. Kawakami, and K. Shigemoto, “RSA encryp-
tion and decryption using the redundant number system on the
FPGA,” in Proc. of the 2009 IEEE International Symposium
on Parallel & Distributed Processing, May 2009, pp. 1-8.

A. Mazzeo, L. Romano, G. P. Saggese, and N. Mazzocca,
“FPGA-based implementation of a serial RSA processor,” in
Proc. of Design, Automation and Test in Europe Conference
and Exhibition, 2003.

D. Suzuki, “How to maximize the potential of FPGA re-
sources for modular exponentiation,” in Proc. of the 9th
international workshop on Cryptographic Hardware and Em-
bedded Systems, 2007, pp. 272-288.

T. Alho, P. Himildinen, M. Hinnikiinen, and T. D.
Hiaméldinen, “Compact modular exponentiation accelerator
for modern FPGA devices,” Computers and Electrical En-
gineering, vol. 33, no. 5-6, pp. 383-391, 2007.

B. Song, K. Kawakami, K. Nakano, and Y. Ito, “An RSA
encryption hardware algorithm using a single DSP block and
a single block RAM on the fpga,” in Proc. of International
Conference on Networking and Computing, Nov 2010, pp.
140-147.

