
An Algorithm to Remove Asynchronous ROMs in
Circuits with Cycles

Md. Nazrul Islam Mondal, Koji Nakano, and Yasuaki Ito
Department of Information Engineering, Hiroshima University

1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan

Abstract—Field Programmable Gate Arrays (FPGAs) are a
dominant implementation medium for digital circuits which are
used to embed a circuit designed by users instantly. FPGAs can
be used for implementing parallel and hardware algorithms.
Most of FPGAs have Configurable Logic Blocks (CLBs) to
implement combinational and sequential circuits and block
RAMs to implement Random Access Memories (RAMs) and
Read Only Memories (ROMs). Circuit design that minimizes
the number of clock cycles is easy if we use asynchronous read
operations. However, most of FPGAs support synchronous read
operations, but do not support asynchronous read operations.
The main contribution of this paper is to provide one of the
potent approaches to resolve this problem. We assume that a
circuit using asynchronous ROMs designed by a non-expert or
quickly designed by an expert is given. Our goal is to convert
the circuit with asynchronous ROMs into an equivalent circuit
with synchronous ones. The resulting circuit with synchronous
ROMs can be embedded into FPGAs.

Index Terms—FPGA, Read only memories, Asynchronous read
operations, Circuit rewriting algorithm.

I. INTRODUCTION

An FPGA is a programmable VLSI (Very Large Scale
Integration) in which a hardware designed by the users can
be embedded quickly. Typical FPGAs consist of an array
of programmable logic blocks (slices), memory blocks, and
programmable interconnects between them. The logic block
contains four-input logic functions implemented by a LUT
and/or several registers. Using four-input logic functions,
registers, and their interconnections, any combinational circuit
and sequential logic can be implemented. The memory block is
a dual-port RAM which can perform read and/or write opera-
tions for a word of data to two distinct or same addresses in the
same time. Usually, the dual-port RAM supports synchronous
read and synchronous write operations. The read and write
operations are performed at the rising clock edges. The dual-
port RAM outputs data of a specified address after the rising
edge. Similarly data is written to a specified address at the
rising edge of clock if write enable is high. Design tools are
available to the users to embed their hardware logic into the
FPGAs. Some circuit implementations are described [1], [2],
[4], [9] to accelerate computation.

In this paper, we focus on the asynchronous and syn-
chronous read operations of memory blocks as follows:

Asynchronous read operation
The memory block outputs the data specified by
the address given to the address port. When the
address value is changed, the output data is updated

immediately within some delay time. In other words,
the output data port always outputs � �� �, which is
the data stored in the input address value d.

Synchronous read operation
Even if the address value is changed, the output data
is not updated. The output data is updated based on
the address value at the rising edge of clock. More
specifically, the output data port outputs � �� �, where
d is the address data at the previous point of rising
clock edge.

Let AROMs and SROMs denote ROMs with asynchronous
and synchronous read operations, respectively. In general,
the circuit design is simpler and easier to the designers, in
particular to the non-expert circuit designers if AROMs are
available. In asynchronous read operation, the value of a
specified address can be obtained immediately. However, in
synchronous read operation, one clock cycle is required to
obtain it. Nevertheless, block RAMs embedded in most of the
current FPGAs do not support asynchronous read operation
for increasing its operating clock frequency.

A circuit implementation with AROMs is better than
SROMs implementation, because of less power consumption,
easy to design etc. But it has some problems like small in
size so that it does not support the designer’s demand, more
expensive, and less speedy [3], [5], [6]. To cut the clock
distribution power, an asynchronous circuit design in FPGAs
is very much suitable, described in [7], [10], [11]. However,
it is not supported by the current FPGAs.

On the other hand, a circuit implementation with SROMs is
dominating the modern digital circuit design industry, because
it supports the modern FPGA architecture although it has
some drawbacks to design like clock distribution, more power
consumption etc [3], [6]. So we should use SROMs when we
need a function of ROMs.

The main contribution of this paper is to present a circuit
rewriting approach that converts an asynchronous circuit con-
sisting

Combinational Circuits (CCs), Registers (Rs), and
ROMs with asynchronous read operations (AROMs)

into an equivalent synchronous circuit consisting

Combinational circuits (CCs), Registers (Rs), and
ROMs with synchronous read operations (SROMs).

Note that, most of the current FPGAs support synchronous
read operation, but do not support asynchronous one. We are

2011 Second International Conference on Networking and Computing

978-0-7695-4569-1/11 $26.00 © 2011 IEEE

DOI 10.1109/ICNC.2011.20

77

thinking the following scenario to use our circuit rewriting
algorithm:

� An asynchronous circuit designed by a non-expert, or
quickly designed by an expert is given.

� Our circuit rewriting algorithm convert it into an equiva-
lent synchronous circuit.

� The resulting synchronous circuit can be implemented in
FPGAs.

In other words, designers can design a circuit for FPGAs
under the assumption of asynchronous read operation, which is
simpler and easier than one with synchronous read operation.

For the reader’s benefit, we will show a simple example
illustrating that the circuit design is simpler if AROMs are
available. Suppose that for an input ��, we need to compute
�� � ���� � ������� for every � � �. We assume that
the function � is computed using a ROM. More specifically,
we use a ROM such that address � is storing a value of ����.
Figure 1 (a) illustrates a circuit with an AROM to compute
��� ��� � � � for input ��. An AROM is used to compute the
value of ����� for a given ��. It should be clear that this
circuit outputs ��� ��� � � � in every clock cycle. Figure 1 (b)
shows a circuit with an SROM. Since one clock cycle is
necessary to read the value of ����� for input ��, we need
to insert a register to synchronize two inputs �� and �����
of the adder as illustrated in the figure. This circuit outputs
��� ��� � � � in every two clock cycles. Hence, the circuit in
Figure 1 (b) needs double clock cycles over the circuit in
Figure 1 (a). Using our algorithm to the circuit in Figure 1
(a), we can obtain the circuit in Figure 1 (c) automatically.
In the circuit with an SROM in Figure 1 (c), ��� ��� � � � is
output in every clock cycle. Thus, the timings of the circuits
in Figure 1 (a) and (c) are identical.

In our previous paper [8], we have presented a circuit
rewriting approach for circuits represented by a directed
acyclic graph (DAG), which has no directed cycle. Figure 2 (1)
illustrates an example of a DAG. This graph has 3 input nodes
and 3 output nodes, each of which corresponds to input ports
and output ports of the circuit, respectively. The other internal
nodes corresponds to circuit elements such as combinational
circuits, registers, and ROMs. The presented circuit rewriting
approach converts a circuit with combinational circuits, reg-
isters and AROMs represented by a DAG into an equivalent
AROM-free circuit with combinational circuits, registers and
SROMs.

However, the circuit rewriting approach presented in [8] has
a strict restriction in terms of input circuits. It works only
for a circuit whose underlying graph is a DAG, illustrated in
Figure 2 (1). Although most of practical circuits have cycles,
it can not handle such circuits.

The main contribution of this paper is to modify the circuit
rewriting algorithm, presented in [8] to process practical cir-
cuits with cycles. More specifically, our new circuit rewriting
algorithm can convert any circuit represented by a directed
reachable graph (DRG), illustrated in Figure 2 (2). A directed
reachable graph is a directed graph such that, for every internal
node, there exists a directed path from an input node to an

� � �

�

�

�

�

�

	

�

�

�

�

� � �

� � �

�

�

�

�

�

	

�

�

�

�

� � �

Input nodes Input nodes

Output nodes Output nodes

(2) Directed Reachable Graph (DRG)(1) Directed Acyclic Graph (DAG)

Fig. 2. A directed acyclic graph(DAG) and a directed reachable graph(DRG)

output node which includes it. Note that, one node and/or one
directed path may appear twice or more in a directed path. For
example, ���	�
� �� �� 	�
������ is a directed path. It
should not have any difficulty to confirm that, every internal
node in Figure 2 (2) is included. Clearly, a class of the DRG
includes that of the DAG. Also, almost all practical circuits
can be represented by a DRG. If there exists a node that is
not in the directed path from an input node to an output node,
the directed graph is not a DRG. However, the corresponding
circuit element to such node makes no sense. Consequently,
we can say that our new circuit rewriting approach can
handle almost all practical circuits with combinational circuits,
registers, and AROMs.

This paper is organized as follows: Section II briefly reviews
the circuits and their equivalency. In Section III, we describe
our rewriting algorithm, circuit graph and also explain the
equivalency for our rewriting rules. For the reader’s benefits,
Section IV shows how our circuit rewriting algorithm works
for circuit graphs. Section V presents the proof of the correct-
ness of our rewriting algorithm. Finally Section VI concludes
this work.

II. CIRCUITS AND THEIR EQUIVALENCE

Let us consider a synchronous sequential circuit that con-
sists of input ports, output ports, combinational circuits (CCs),
registers (Rs), Read Only Memories (ROMs), a global clock
input (clock), and a global reset input (reset).

78

AROM

R

�����

�

(a) A circuit with an AROM (b) A circuit with an SROM
by a non-expert

(c) The converted circuit with an SROM

��

SROM

R

�����

�

��

R SROM
�����

�

��

R

�� �� ��

Fig. 1. An example of circuits using an AROM and an SROM

A combinational circuit (CC) is a network of fundamental
logic gates with no feedback. So, it can compute Boolean
functions represented by Boolean formulas, such as � � � �
� � � � � and � � � � � as illustrated in Figure 3. Once
inputs are given, the outputs are computed in small delay.

� � �

� �

Fig. 3. An example of a combinational circuit (CC).

A register has a clock input and a reset input as illustrated
in Figure 4. It can store fixed bits of data. If reset is 1, then
the �-bit data is initialized by 0. If reset is 0, the stored data is
updated by the value given to the input port � at every rising
clock edge. The data stored in the register is always output
from port �.

A ROM (Read Only Memory) has a (address) input � and a
data output � as illustrated in Figure 4. It is storing �� words
such as � �	�, � ���, � � �, � ��� � ��, where � is the number
of address bits. We deal with two types of ROMs in terms of
read operations as follows:

clock

�

�

�

�

�-bit register (R)

SROM

�

�

AROM

clock

reset

reset

Fig. 4. A register (R), a synchronous ROM (SROM) and an asynchronous
ROM (AROM).

� Synchronous ROM (SROM) An SROM has a clock
input and a reset input. If reset is 1 then the stored value
is initialized by 0. The read operation is performed at
every rising clock edge when reset is 0. The output � is
the value of � ��� at the latest rising clock edge.

� Asynchronous ROM (AROM) An AROM has no clock
input and no reset input. The value of � ��� is continu-

79

ously output from port �.
The Figure 5 shows a timing diagram of reading operations
of the R, SROM, AROM and NR (Negative Register). In the
figure, time 0, 1, 2, � � � correspond to rising edges of the
periodic clock input. Initially global reset is 1 and it drops
to 0 just before time 0. Data ��, ��, ��, � � � are given to the
input port �. The value of output, � of R and SROM is 0 at
time 0. Also, at time 1, 2, � � � the values of output, � of R
and SROM are ��, ��, ��, � � � and � ����, � ����, � ����, � � �,
respectively. For the AROM, the data � ����, � ����, � ����,
� � � are taken from the output port, � immediately at time 0,
1, 2, � � �, respectively.

In current FPGAs, an SROM can be implemented in em-
bedded block RAMs. However, an AROM is implemented in
LUTs, which are very costly. Hence, we should use SROMs
when we need a function of ROMs. On the other hand, AROM
is easy to use, because we can get output data from the AROM
immediately.

� �� �� �� ��

� (SROM)

clock

� ���� � ��� � ���� � �����(AROM)

�(R) �� ��

time 0 1 2 3

� ���� ����

reset

0

0

��

� ����

� (NR) �� ���� ��

Fig. 5. A timing chart of a register (R), an SROM, an AROM and a negative
register (NR).

We will describe a behavior of a circuit element using a
sequence of output at every rising clock edge for the periodic
clock (clock is inverted into a fixed frequency), and initial reset
(initially, reset is 1 and drops to 0 before the first rising clock
edge) as illustrated in Figure 5. The behavior of each circuit
element is described by the output sequences as follows:

� Combinational Circuit (CC) For simplicity, we assume
3-input 2-output combinational circuit which is shown in
Figure 3. There is no difficulty to extend the definition
for general �-input �-output combinational circuit. We
assume that, at time � (� �), ��, ��, and �� are given to
the 3 input ports �, �, and �. Let � and � be the two
functions with three arguments that determine the value
of output ports � and �. The output sequences of � and
� are as follows:

CC(F):������ ��� ���� ����� ��� ���� ����� ��� ���� � � ��
CC(G):������ ��� ���� ����� ��� ���� ����� ��� ���� � � ��

� Register (R) Let �� denote an input value given to an
input port � at time � (� �). The output sequence is
described as follows:

R: �	� ��� ��� ��� � � ��

� Synchronous and Asynchronous ROMs (SROMs and
AROMs) Let � ��� denote the value stored in address �

(� �) of the ROM. The output sequences of SROM
and AROM are as follows:

SROM: �	�� ������ ������ ����� � � ��
AROM: �� ������ ������ ������ ����� � � ��

In this paper, we assume that a fully synchronous circuit has
data inputs, data outputs, a global clock input, a global reset
input, combinational circuits (CCs), registers (Rs), SROMs,
AROMs, and their interconnects. The readers should refer to
Figure 6 for illustrating an example of a fully synchronous
circuit. The global clock and the global reset are directly
connected to the clock input ports and the reset input ports
of all Rs and SROMs. Also, we assume that a circuit has
cycles.

clock

reset

CC

AROM

R

CC

data input

data output

I

CC

AROM

R

O

CC

0

-1

-1

0

0

0

Fig. 6. An example of a fully synchronous circuit with cycle and the
corresponding circuit graph with potentiality.

Let us define equivalence of two fully synchronous circuits
for the periodic clock and initial reset. We say that two circuits
� and � are an equivalent if, for any input sequence, the
output sequences are the same except for first several outputs.
For the reader’s benefit, we will show an example of the
equivalence.

Let us consider a circuit R�AROM, that is, the output
of R is connected to the input of AROM as illustrated in
Figure 7. We also consider a circuit AROM�R, in which
the output of AROM and the input of R are connected. For
the periodic clock with initial reset, the output sequences of
SROM, R�AROM, and AROM�R are as follows:

SROM: �	�� ������ ������ ����� � � ��
R�AROM: �� �	��� ������ ������ ����� � � ��

80

AROM�R: �	�� ������ ������ ����� � � ��

Since these three circuits have the same output in time 1, 2,
� � �, they are equivalent. Note that the outputs in time 0 are
not equal. In this paper, we ignore first several clock cycles
when we determine the equivalency of the circuits.

Suppose that a circuit � with AROMs is given. The main
contribution of this paper is to show

� a necessary condition such that an AROM-free circuit, �
can be generated, which is equivalent to � , and

� an algorithm to derive � if the necessary condition is
satisfied.

We will introduce a negative register (NR), which is a
nonexistent device used only for showing our algorithm to
derive � and related proofs. This is originally introduced in
our previous paper [8]. Recall that, a regular register latches
the input at the rising clock edge. A negative register latches
a future input. The Figure 5 also shows a timing diagram of
a negative register (NR). An NR latches the value of input d
at the rising edge of two clock cycles later as illustrated in
Figure 5. Thus, the NR has the following output sequence for
a periodic clock with an initial reset is as follows:

NR: ���� ��� ��� � � ��.

In our algorithm to derive an AROM-free circuit � , circuits
with NRs will be used as interim results.

III. CIRCUIT GRAPH AND REWRITING RULES

We simply use a directed graph to denote the interconnec-
tions of a fully synchronous circuit. We call such graph as
a circuit graph. A circuit graph consists of a set of nodes
and a set of directed edges for connecting two nodes. Each
node is labeled by either I (Input port), O (Output port), CC
(Combinational Circuit), R (Register), NR (Negative Register),
AROM, or SROM. A node with label I is connected with one
or more outgoing edges. A node with label O is connected with
exactly one incoming edge. A node with label CC has one or
more incoming edges and one or more outgoing edges. A node
with label R, NR, AROM, or SROM has one incoming and one
outgoing edge. We also assume that a circuit graph is a directed
reachable graph (DRG), such that for every internal node, there
exists a directed path from an input node to an output node
which includes it. Figure 2 (2) illustrates an example of a
DRG.

Note that nodes with label I, R, NR, AROM, or SROM
has only one outgoing edge. The readers may think that one
outgoing edge is a too stringent restriction because it does
not allow two or more fan-outs. However, we can implement
multiple fan-outs by attaching a simple Combinational Circuit
(CC) that just duplicates the input. For example, a CC with one
input port � and two output ports � and � such that � � �

and � � � is used to implement fan-out 2 as illustrated in
Figure 8.

For a given circuit � with AROMs, we will show an
algorithm to derive an AROM-free and NR-free circuit, �

by rewriting circuits. We assume that � is given as a circuit
graph. We will define rules to rewrite a circuit graph. The

�

� � � � � �

Fig. 8. A combinational circuit to implement fan-out 2 circuit.

readers should refer to Figure 9 for illustrating the rules, where
P and S denote predecessor and successor nodes respectively.
The nodes between predecessor and successor nodes are
rewritten as follows:

Rule 0 AROM node is rewritten into SROM�NR.
Rule 1 Adjacent R and NR nodes are rewritten into NULL

circuit, that is, they are removed.
Rule 2 R�SROM is rewritten into SROM�R.
Rule 3 If all the incoming edges of a CC node are

connected to an R node, then all the Rs are removed
to all the outgoing edges of the CC node.

Rule 4 NR�SROM is rewritten into SROM�NR.
Rule 5 If one of the incoming edges of a CC node is con-

nected to an NR node, then the NR node is removed,
an R node is added to all the other incoming edges,
and the NR node is moved to all the outgoing edges
of the CC node.

The readers should have no difficulty to confirm that, after
applying one of the rewriting rules, an original circuit and the
resulting circuit are equivalent. Please see [8] for the details
regarding the equivalency.

We are now in position to describe the rewriting algorithm.
Suppose that an input circuit graph has nodes with labels I, O,
R, AROM, SROM, and CC. The following rewriting algorithm
generates a circuit graph equivalent to the original circuit
graph.

Find a minimum � such that Rule � can be applied
to the current circuit graph. Rewrite the circuit
graph using such Rule �. This rewriting procedure
is repeated until no more rewriting is possible.

IV. BEHAVIOR OF OUR CIRCUIT REWRITING ALGORITHM

Let us observe the behavior of our circuit rewriting algo-
rithm.

� First, Rule 0 is applied to all AROM nodes, and they are
rewritten into SROM�NR. After that, Rule 0 is never
applied.

� Rules 1 is applied and adjacent R and NR nodes are
removed whenever possible.

� R nodes are moved toward the output nodes using Rules 2
and 3 whenever possible.

� NR nodes are moved toward the output nodes or are
rotated in cycles using Rules 4 and 5.

81

�

�

�

�

SROM

�

�

�

AROM

�-bit register

�

�

� �

�

�

�

AROM

�-bit register

�

�

clock

reset

clock

reset

clock

reset

Fig. 7. SROM, R�AROM, and AROM�R.

AROM

NR

SROM

Rule 0 Rule 1

NR

R

R

NR

OR

R

SROM R

SROM

Rule2

CC

R R R

CC

NR

CC

R R

NR NR

Rule 5

CC

R R

Rule 3

S

PP

S

P P

S S

P

S

P

S

P

S

P P P

S S

P P P

S S

P P P

S S

P P P

S S

NR

SROM NR

SROM

Rule 4

P

S

P

S

Fig. 9. Rules to rewrite a circuit graph.

Let us see how our circuit rewriting algorithm works using
an example of a circuit in Figure 10, which shows the interim
and resulting circuit graphs. First, Rule 0 is applied to the

AROM, it is converted into SROM�NR. After that, Rule 3
is used to move the R, and two Rs are generated. Rule 5 is
applied to move the NR and it is duplicated. Finally, adjacent

82

I

CC

AROM

R

O

CC

I

CC

SROM

R

O

CC

NR

I

CC

SROM

R

O

CC

NR

R

I

CC

SROM

R

O

CC

NR

R

R

I

CC

SROM

R

O

CC

R

R

NR

NR

I

CC

SROM

O

CC

R

Rule 0 Rule 3 Rule 5 Rule 5 Rule 1
0 0 0 0 0 0

-1 0 0 0 0 0

-1-1

0

0

0 0

0

-1

0

-1

-1

-1

0

0

0 0 0

00

0

-1

-1

0

1

0

0

-1

-1

0

1 0

0

1

0

Fig. 10. Interim and resulting circuit graphs obtained by our rewriting algorithm for a circuit graph.

R and NR are removed by Rule 1.
Our circuit rewriting algorithm may not terminate for a

circuit graph that has no way to convert an equivalent AROM-
free circuit. Figure 11 shows an example of such circuit graph.
It has a cycle with two AROMs and one R. Intuitively, one R
is necessary to convert an AROM into an SROM. Thus, this
circuit graph can not be converted into an equivalent AROM-
free circuit. Let us see how our circuit rewriting algorithm
works for the circuit graph in Figure 11. After applied Rule 0
and Rule 1, the interim circuit graph has an NR in the cycle.
Rule 5 is applied to move the NR, and a new R is generated
between the I node and the CC node. After that, the NR jumps
over the SROM by Rule 4. Rule 5 is applied again, and a new
NR is generated between the CC node and the O node. Again,
the NR jumps over the SROM by Rule 4. The readers should
have no difficulty to confirm that, while the NR is rotated in
the cycle, one new R is generated between the I node and the
CC node and one new NR is generated between the CC node
and the O node. Rule 5 and Rule 4 can be repeated applied in
the same way. In general, after Rule 5 and Rule 4 applied ��
times, new � R’s and � NR’s are generated, and our circuit
rewriting algorithm never terminates.

For the purpose of clarifying the condition such that our
rewriting algorithm can generate AROM-free and NR-free
circuit graph, we define the potentiality of the nodes in a circuit
graph. Suppose that a node � of a circuit graph has � (�)
incoming edges such as ���� ��� ���� ��� � � � � ���� ��. Let us
define the potentiality ���� of a node � as follows:

� If � is I, then ���� � 	.

� If � is O or SROM, then ���� � �����.
� If � is AROM or NR then ���� � ������ �.
� If � is R then ���� � ����� � �.
� If � is CC, then ���� �
��������� ������ � � � � ������.

From the definition, the potentiality of a node can be de-
termined if the potentiality of all predecessor nodes are
determined. Unfortunately, as we will show next, we may
not determine the potentiality of every node by the above
definition, if a circuit graph has a cycle.

Let us discuss the potentiality for a circuit graph with a cycle
using three circuits in Figure 12. Let the potentiality ���� of
the CC node � be �. From the definition of the potentiality,
we can write the equations of potentiality for Figure 12 (1) as
follows:

���� � �, ���� �
�������� �� ��, ���� � ���� � �,
���� � ����, �� � � ���� � �, and ���� � ����.

From these equations, we have, �� � � ������ � ������ and
thus, ���� �
����� ���� � ��. Hence, we can determine the
value of ���� such that ���� � �. Further, we can determine
the potentiality of the other nodes as follows: ���� � ���� �
���� � � � �, and �� � � � � �. Intuitively, the equation
���� �
����� ���� � �� means that the cycle is a positive
cycle because the cycle �� ���� increases the potentiality
by ��.

We can do the same discussion for Figure 12 (2) as follows:
���� � �, ���� �
�������� �� ��, ���� � ���� � �,
���� � ����, �� � � ����� �, and ���� � ����.

From these equations, we have, ���� �
����� �����. Regard-
less the value of ����, this equation is satisfied. If this is the

83

I

CC

AROM

O

CC

Rule 0, Rule 1

AROM

R

I

CC

SROM

O

CC

SROM

NR

I

R

CC

SROM

O

CC

SROMNR

Rule5, Rule 4

I

R

CC

SROM

O

CC

SROM

NR

NR

Rule5, Rule 4 Rule5, Rule 4 are applied
���� �� times

I

CC

SROM

O

CC

SROM

NR

� Rs

� NRs

Fig. 11. Example of a circuit for which our rewriting algorithm does not terminate.

case, we assume that ���� � �. We can then determine the
potentiality of the other nodes as follows: ���� � ���� �
���� � � � �, and �� � � �. Similarly, from the equation
���� �
����� �����, we can think that the cycle is a zero
cycle.

Figure 12 (3) shows an example of a negative cycle. We
have the equations as follows:

���� � �, ���� �
�������� �� ��, ���� � ����� �,
���� � ����, �� � � ����� �, and ���� � ����.

From these equations, we have, ���� �
����� ���� � ��. If
���� �� � then ���� � ���� � �. Hence ���� � � must be
satisfied. If this is the case, ���� �
����� � � �� � � � �,
a contradiction. Therefore, ���� �
����� ���� � �� has no
solution.

From this observation, we define the potentiality of a cycle
as follows: Let ��� ��� � � � � ���� ��� be a cycle such that there
is a directed edge ���� ����� �	 � � � �� ��. We define the
potentiality ������ of node �� �� � � � �� with respect to the
cycle starting �� as follows:

� ������ � 	.
� If ���� is CC or SROM, then �������� � ������ �	 � � �

�� ��.
� If ���� is AROM or NR then �������� � ������� � �	 �

� � �� ��.
� If ���� is R then �������� � ������� � �	 � � � �� ��.

We say that the potentiality of the cycle is ������. For
example, the potentialities of the cycles in Figure 12 (1), (2),
and (3) are 2, 0, and -2, respectively.

We have the following theorem.

CC

CC

CC
a

b

R R

CC

c

d

e

f

CC

CC

CC
a

b

R NR

CC

c

d

e

f

CC

CC

CC
a

b

NR NR

CC

c

d

e

f

(1) positive cycle (2) zero cycle (3) negative cycle

Fig. 12. The potentiality for circuits with a cycle

Theorem 1: Our rewriting algorithm generates an AROM-
free and NR-free circuit graph, equivalent to the original
circuit graph, if all O nodes and all cycles of a circuit graph
have non-negative potentiality.

In other words, we can determine a fully synchronous
circuit that can be converted into an AROM-free circuit by
evaluating the potentiality of all O nodes and all cycles of
the corresponding circuit graph. Also, the potentiality of all O
nodes and all cycles are non-negative, our rewriting algorithm
generates an AROM-free and NR-free circuit graph, and the
corresponding fully synchronous circuit is AROM-free and

84

equivalent to the original fully synchronous circuit.

V. PROOF OF THEOREM 1

The main purpose of this section is to show a proof of
Theorem 1. We will show several lemmas for a proof of
Theorem 1.

First, let us observe how the potentiality of nodes is changed
by our rewriting algorithm. We focus the potentiality of
successor nodes. Let ! and " denote the predecessor and
successor nodes for Rules 0, 1, 2 and 4. Also, let !�, !�,
!�, and "�, "� be the three predecessor and two successor
nodes in Rules 3 and 5. We compute the potentiality of each
successor node both before and after applying the rules as
follows.

Rule 0 ��"� � ��! �� �.
Rule 1 ��"� � ��! �.
Rule 2 ��"� � ��! � � �.
Rule 3 ��"�� � ��"�� �
�����!����� ��!����� ��!���

�� �
�����!��, ��!��, ��!��� � �.
Rule 4 ��"� � ��! �� �.
Rule 5 ��"�� � ��"�� �
�����!�� � �� ��!��� ��!��� �

�����!��� ��!�� � �� ��!�� � ��� �.
Thus, the potentiality of every successor node is never changed
by applying the rules. In every rule, O nodes can only be
successor nodes. Thus, we have,

Lemma 2: The potentiality of every O node of the resulting
circuit graph is the same as that of the corresponding O node
of the original circuit graph.
Similarly, we can prove the following lemma:

Lemma 3: The potentiality of every cycle of the resulting
circuit graph is the same as that of the corresponding cycle of
the original circuit graph.

In a circuit graph, let a segment be a directed path ��, ��,
� � �, �� such that, �� and �� are either I, O, SROM, or CC,
and ��, � � �, ���� are either R or NR. Note that, if � � �
then it represents a null segment with ��, ��.

We have the following lemma:
Lemma 4: Once our circuit rewriting algorithm uses either

Rule 4 or Rule 5 to move an NR node, it never applies Rule 2
and Rule 3 to move an R node.

Proof: If either Rule 4 or Rule 5 is applied an interim
circuit, both Rule 2 and Rule 3 cannot be applied to it. If this
is the case, all Rs are either (1) in the segment of Rs ending at
an O node, or (2) in the segment of Rs ending at an CC node
and another incoming edge of the CC node is not connected
to R (Figure 13). To apply Rule 2 and Rule 3 later, the non-R
node in Figure 13 must be an R node. However, to be an R
node, Rule 2 and Rule 3 must be used. Thus, both Rule 2 and
Rule 3 are never applied.

We will prove that all NRs in a cycle with non-negative
potentiality will be removed by our rewriting algorithm.

Lemma 5: Suppose that all cycles in a circuit graph have
non-negative potentiality, and Rule 0 are repeatedly applied to
remove all AROMs. If a cycle has � NRs, it also has at least
� Rs. If either Rule 2 or Rule 3 is applied, the Rs are moved
and adjacent R and NR may be removed by Rule 1. If either

R

O

R

CC

R

R
R

non-R

(1) (2)

Fig. 13. Illustration for the proof of Lemma 4

Rule 4 and Rule 5 is applied, the NRs are moved. Note that,
from Lemma 4, the Rs are never moved, once either Rule 4
and Rule 5 is applied. In other words, the NRs are moved
along the cycle, while Rs are never moved. Thus, at some
point, all NRs in the cycle will be removed by Rule 1.

Note that, if there exists a cycle with negative potentiality,
our circuit rewriting algorithm does not terminate. As illus-
trated in Figure 11, an NR moves along the cycle and Rs and
NRs are repeatedly generated. It should be clear that, there
exists no way to generate an equivalent AROM-free circuit
for such circuit.

When our rewriting algorithm terminates and the resulting
circuit graph is obtained, we have the following lemma:

Lemma 6: Let � be an NR node and ��� �� be its outgoing
edge in the resulting circuit graph. Node � must be either NR
or O node. Also, all NR nodes must be in segments ending at
O node.

Proof: If � is an R, SROM, or CC node then Rules 1,
4, or 5 can be applied. Since no more rule can be applied to
the resulting circuit graph, � must be either NR or O nodes.
Since the successor of NR nodes must be NR or O nodes, all
NR nodes must be in segments ending at O node.

A simple directed path is a directed path if it has no repeated
nodes. For example, in Figure 2 (2), ���	�
������ is
a simple directed path, but ���	�
� �� �� 	�
������ is
not. We say that nodes are regular if it is on a simple directed
path from an input node to an output node. Note that nodes
on a cycle in a DRG can be a non-regular node. For example,
nodes � and � are non-regular nodes.

From Lemma 6, we will prove that all regular SROM and
CC nodes in the resulting circuit graph have zero potentiality.

Lemma 7: All regular SROM and CC nodes in the resulting
circuit graph have non-negative potentiality.

Proof: Since the resulting graph is AROM-free, nodes
follows NR nodes can have negative potentiality. Since no
segment ending at SROM or CC have NR nodes, their poten-
tiality must be non-negative.

Similarly, we have the following lemma.
Lemma 8: All regular SROM and CC nodes in a simple

directed path from an input node to an output node in the

85

resulting circuit graph have non-positive potentiality.
Proof: We assume that the resulting circuit graph has a

positive potentiality SROM or CC node in a simple directed
path from an input node to an output node, and show a
contradiction. Let � be a first SROM or CC node with negative
potentiality, that is, all SROM and CC nodes in all directed
paths incoming to � have non-positive potentiality and SROM
or CC node � has positive potentiality.

Case 1 � is an SROM node
Let ��� �� denote the incoming edge. If � is either R
or NR, then Rule 2 or Rule 4 can be applied. Since
no more rule can be applied to the resulting circuit
graph, it must be either I, SROM, or CC. If this is the
case, ���� � 	 and thus, ���� � 	, a contradiction.

Case 2 � is a CC node
Let ���� ��� ���� ��� � � � � ���� �� (� � �) denote
the incoming edges. From Lemma 6, none of
��� ��� � � � � �� is an NR node. If all of them are R
nodes, then Rule 3 can be applied. Thus, at least one
of them is not an R node. It follows that at least
one of them is either I, SROM, or CC node. From
the assumption, the potentiality of such node is non-
positive, Hence, the potentiality of � is non-positive,
a contradiction.

We are now in position to show the proof of Theorem 1.
From Lemma 7 and 8, all SROM and CC nodes in a simple
directed path from an input node to an output node of the
resulting circuit graph have zero potentiality. Hence, if the
potentiality of one of the O nodes in the resulting circuit graph
is negative, a segment ending at O node in the resulting graph
should have NR from Lemma 6. Similarly, if the potentiality
of all the O nodes is non-negative, no segment ending at
an output node has NR in the resulting circuit graph. From
Lemma 2, the potentiality of O nodes does not change by our
rewriting algorithm. Thus, from Lemma 5, if all output nodes
and all cycles of a circuit graph have negative potentiality our
rewriting algorithm generates the resulting circuit graph with
NR nodes. This completes the proof of Theorem 1.

As we have discussed, our circuit rewriting algorithm does
not terminate for a circuit graph with a negative cycle. We can
modify our circuit rewriting algorithm that always terminates
as follows: First, we compute the potentiality of every cycles.
If one of them is negative, we do not execute our circuit
rewriting algorithm. Since it is impossible to generate an
equivalent AROM-free circuit if this is the case, it is not
reasonable to execute our circuit rewriting algorithm.

VI. CONCLUSIONS

In this paper, we have presented a rewriting algorithm
and six rewriting rules to obtain the equivalent circuits with
Synchronous ROMs (SROMs) for the circuits with Asyn-
chronous ROMs (AROMs) including cycles. Using our rewrit-
ing algorithm, any sequential circuit with AROMs represented
by a directed reachable graph (DRG) can be converted into
an equivalent fully synchronous sequential circuit with no

AROMs to support the current FPGA architecture. It is not
trivial to convert the sequential circuits (cycles included) with
AROMs into the equivalent fully synchronous circuits with
no AROMs for supporting the modern FPGA. However, our
algorithm can do it automatically.

REFERENCES

[1] J. Bordim, Y. Ito, and K. Nakano. Accelerating the CKY parsing
using FPGAs. IEICE Transactions on Information and Systems, E86-
D(5):803–810, 2003.

[2] J. Bordim, Y. Ito, and K. Nakano. Instance-specific solutions to accel-
erate the CKY parsing for large context-free grammars. International
Journal on Foundations of Computer Science, 15(2):403–416, 2004.

[3] S. S. C. Design of an FPGA logic element for implementing asyn-
chronous NULL convention logic circuits. IEEE Transactions on very
large scale integration (VLSI) system, 15(6):672–683, June 2007.

[4] Y. Ito and K. Nakano. A hardware-software cooperative approach for the
exhaustive verification of the Collatz cojecture. In Proc. of International
Symposium on Parallel and Distributed Processing with Applications,
pages 63–70, 2009.

[5] S. Jens. Asynchronous circuit design, a tutorial.
http://webee.technion.ac.il/courses/048878/book.pdf.

[6] L. Lavagno and A. Sangiovanni-Vincentelli. Algorithms for synthesis
and testing of asynchronous circuits. Kluwer Academic, 1993.

[7] R. Manohar. Reconfigurable asynchronous logic. In Proc. of IEEE
Custom Integated Circuits Conference, pages 13–20, 2006.

[8] M. N. I. Mondal, K. Nakano, and Y. Ito. A rewriting algorithm to
generate arom-free fully synchronous circuits. In Proc. of International
Conference on Networking and Computing, pages 148–157, November
2010.

[9] K. Nakano and Y. Yamagishi. Hardware � choose � counters with
applications to the partial exhaustive search. IEICE Transactions on
Information and Systems, E88-D(7), 2005.

[10] I. Shota, K. Yoshiya, H. Masanori, and K. Michitaka. An asynchronous
field-programmable VLSI using LEDR/4-phase-dual-rail protocol con-
verters. In The International Conference on Engineering of Reconfig-
urable Systems and Algorithms (ERSA), Monte Carlo Resort, Las Vegas,
Nevada, USA, July 2009.

[11] J. Teifel and R. Manohar. An asynchronous dataflow FPGA architecture.
IEEE Transaction on Computers, 53(11):1376–1392, 2004.

86

