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Abstract—This paper presents a parallel FDFM (Few DSP
blocks and Few block RAMs) processor core approach for
implementing a perceptron. In our new approach, a perceptron
is implemented a processor core using few DSPs and few
block RAMs in the FPGA. This approach is promising because
we can obtain high throughput using multiple FDFM cores
that work in parallel. Also, even if the FPGA does not have
enough remaining space for a perceptron, we can implement
it using only few DSP slices and few block RAMs. We have
implemented 150 processor cores for perceptrons in a Xilinx
Virtex-4 family FPGA XC4SX35-10FF668. The implementation
results show that 150 processor cores can be implemented
in the FPGA using 150 DPS48 slices, 190 block RAMs, and
11679 slices. It runs in 161.546MHz clock frequency and a
single evaluation of 96 nodes perceptron can be performed
10.959 × 106 times per second. We have also implemented in
the FPGA board of the Virtex-4 Xtreme DSP development kit
and confirmed that our 150 processor cores work correctly.

Keywords-Perceptron; Neural Networks; FPGA; DSP48 slice;
Block RAM; Pipeline; Parallelize;

I. INTRODUCTION

Artificial Neural Networks (ANN) is a computational
model based on biological neural networks. ANNs have
been widely used in many fields, such as pattern recognition,
signal processing, intelligence control and image processing,
etc. Multilayer perceptron (MLP) is a type of ANNs. It is
a multilayer feed forward network with supervised learning
typically using a so called Back Propagation (BP). MLP
has been applied successfully to many complex real-world
applications.

An FPGA is a programmable logic device designed to
be configured by the customer or designer by hardware
describe language after manufacturing. Since FPGA chip
maintains relative lower price and its programmable features,
it is widely used in those fields which need to update
architecture or functions frequently such as communication
and education areas. The most common FPGA architecture
consists of an array of logic blocks, I/O pads, block RAMs
and routing channels. Furthermore, resent FPGAs have em-
bedded DSP slices that makes a higher performance and a
broader applications.

They are widely used in consumer and industrial prod-
ucts for accelerating processor intensive algorithms. For the
implementation of Neural Network, FPGA is a crucial hard-

ware platform, which offers high performance and possibil-
ity to modify and change algorithms dynamically. Numerous
works on FPGA implementation of Neural Networks have
been proposed in [1], [2].

E. M. Ortigosa et al. [3] presents several hardware im-
plementations of an MLP for speech recognition using both
serial and parallel hardware architecture. In paper [4], the
forms of parallelism that can be exploited for neural network
implementations on FPGA-based reconfigurable computing
environments are described. However, their implementation
mainly use logic blocks in the FPGAs.

The main contribution of this paper is to present a new
approach that we call the FDFM (Few DSP slices and Few
block RAMs) approach. The key idea of the FDFM approach
is to use few DSP slices and Few block RAMs to perform
routine computation. Let us explain the FDFM approach
using a simple example. Figure 1 (1) illustrates a hardware
algorithm to compute the output of FIR (Finite Impulse
Response) yi = a0 · xi + a1 · xi−1 + a2 · xi−2 + a3 · xi−3.
A conventional approach implementing the FIR is to use
four DSP slices as illustrated in Figure 1 (2)[5]. In this
conventional approach the number of DPS blocks must be
the same as that of multiplier in the hardware algorithm. On
the other hand, our FDFM approach uses one or few DSP
slices and one or few block RAMs to implement the FIR.
The coefficients a0, a1, . . . are stored in the block RAM.

Our FDFM approach has several advantages. First, even if
large main circuit occupies the most of hardware resources
in the FPGA, we can implement a necessary hardware algo-
rithm in the FPGA using remaining few hardware resources
as illustrated in Figure 2 (1). Also, if enough hardware
resources are available, we can implement multiple FDFM
processor cores that work in parallel(Figure 2 (2)). The re-
sulting hardware implementation has maximum throughput
by parallel computation. We can use the FPGA effectively
by implementing FDFM cores in all the remaining hardware
resources in the FPGA to obtain maximum performance.
Further, a conventional approach illustrated in Figure 1 (1)
needs more circuit elements. Hence the working clock
frequency may decrease due to the propagation delay and the
clock skew. On the other hand, since the FDFM approach
uses less hardware resources, the circuit may work in higher
clock frequency. Actually, hardware algorithms for RSA
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Figure 1. Our FDFM approach

encryption/decryption have been implemented in the FPGA
using the FDFM approach [6], [7]. Their implementation
results is better than the conventional approach [8].
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Figure 2. Two advantage of our FDFM approach

In this paper, we propose an implementation of a three-
layer perceptron using the FDFM approach. A single core
for a three-layer perceptron uses 1 DSP slice and nine
18k-bit block RAMs. The nine 18k-bit block RAMs are
used as follows: (1) four for storing the weights (W-RAM),

(2) four for a table to compute the sigmoid function (S-
RAM), and (3) one for storing the output value of each
perceptron node (O-RAM). For a perceptron with 32-32-
32 nodes for input-hidden-output layers, our implementation
by the FDFM approach runs in 161.546MHz using one
DSP48 slice and nine 18k-bit block RAMs in a Xilinx
Virtex-4 family FPGA XC4SX35-10FF668. It compute all
the outputs in 2124 clock cycles, that is, in 13.148μ seconds.
For parallel implementation, we use 30 cores as a cluster
of parallel computation. Since 30 cores can share a block
RAM for storing the weights (W-RAM) and a table to
compute the sigmoid function (S-RAM). So, we use 30
DSP48 slices and 38 18k-bit block RAMs (30 O-RAMs,
4 S-RAMs, and 4 W-RAMs) to implement 30 processor
cores. For a perceptron with 32-32-32 nodes for input-
hidden-output layers, 30 FDFM cores run in 161.456 MHz.
Thus, a single evaluation of the perceptron can be performed
2.192×106 times per seconds. For further parallelization, we
have implemented 5 clusters, that is, 150 processor cores.
The 150 processor cores run in 161.456 MHz, using 150
DPS48 slices, 190 18k-bit block RAMs (150 W-RAMs, 20
S-RAMs, and 20 O-RAMs), and 11679 slices.

This paper is organized as follows. Section II introduces a
three-layer perceptron. We show the architecture of a proces-
sor core to evaluate the perceptron by the FDFM approach
in Section III. Section IV presents a cluster architecture that
involves multiple processor cores. Section V evaluate the
performance of the processor core and the cluster. We show
the experimental results in Section VI Finally, Section VII
concludes the paper.

II. THREE-LAYER PERCEPTRON

The main purpose of this section is to review a three-layer
MLP.

As illustrated in Figure 3, it has three layers: input layer,
hidden layer, and output layer. Each layer has a set of
nodes. Let Nx, Nh, and No denote the numbers of nodes
in the input layer, the hidden layer and the output layer,
respectively. There are Nx nodes X0, X1, . . . , XNx−1 in the
input layer, Nh nodes H0, H1, . . . , HNh−1 in the hidden
layer and No nodes O0, O1, . . . , ONo−1 in the output layer
as illustrated in Figure 3.

A real number xi in the range of [0, 1] is given to each
node Xi in the input layer as an input, they are transferred to
all nodes in hidden layers. Some computation is performed
in every node Hj of the hidden layer, and it outputs real
numbers hj in the range of [0, 1]. These values are trans-
ferred to all nodes in the output layers. Similar computation
is performed in every node Ok of the output layer, and it
outputs real numbers ok in the range of [0, 1]. These real
numbers are output of the three-layer MLP. For each pair of
nodes Xi and Hj (0 ≤ i ≤ Ni−1, 0 ≤ j ≤ Nh−1), a fixed
real number vi,j is given as a weight. Also, for each pair of
nodes Hj and Ok (0 ≤ j ≤ Nh − 1, 0 ≤ k ≤ No − 1), a
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Figure 3. Three-layer MLP

fixed real number wj,k is given as a weight. In addition, for
each hidden nodes Hj a fixed real number cj is given as a
threshold value. Similarly, for each output nodes Ok , a fixed
real number dk is given as a threshold value. In a hidden
node Hj , the following weighted sum h′

j is computed by:

h′
j = cj +

Nx−1∑

i=0

vi,jxi. (1)

After that, the sigmoid function f(x) = 1/(1 + e−x)
is applied to obtain the output of each hidden node. More
specifically, output hj of node Hj is computed as follows:

hj = f(h′
j) = f(cj +

Nx−1∑

i=0

vi,jxi). (2)

Similar computation is performed for each output node.
Let ok (0 ≤ k ≤ No−1) denote the output of node Ok. The
value of ok is computed by the following formulas:

o′k = dk +
Nh−1∑

j=0

wj,khj , (3)

ok = f(o′k) = f(dk +
Nh−1∑

j=0

wj,khj). (4)

Thus, for input x0, x1, . . . , xNx−1 in [0, 1] given to
nodes in the input layer, the three-layer MLP outputs
o0, o1, . . . , oNo−1 in [0, 1] from nodes in the output layer.
The resulting output values are controlled by NxNh +
NhNo +Nh+No parameters vi,j , wj,k, cj and dk (0 ≤ i ≤
Nx−1, 0 ≤ j ≤ Nh−1, 0 ≤ k ≤ No−1). These parameters
are determined in the training phase using back propagation.
Intuitively, a pair of inputs and the corresponding correct
outputs is given. These parameters are adjusted such that
the MLP outputs the correct outputs.

In the training phase, parameters are repeatedly adjusted
for a number of pairs of inputs and the corresponding correct
outputs. In our work, the training phase is performed on a
host PC to determine appropriate parameters. These param-
eters are stored in block RAMs of the FPGA connected to
a host PC.

III. THE ARCHITECTURE OF A SINGLE PROCESSOR CORE

This section describes our FDFM approach using a single
DSP48 slice and several block RAMs in Xilinx Virtex-4
FPGA [9]. We use Xilinx Virtex-4 Family FPGA XC4SX35-
10FF668 as the target device. It consists of columns of
slices each of which includes two Configurable Logic Blocks
(CLBs), programmable Input/Output Blocks (IOBs), 18k-bit
dual-port block RAMs, and DSP48 slices.

A. A single processor core architecture using a DSP48 slice
and block RAMs

The DSP48 slice is a configurable block with a multiplier,
an adder, and registers. In our work, we use two types of
configurations illustrated in Figure 4. In Figure 4, Type 1
employs a 18×18 bit two’s complement multiplier multi-
plier, a 48-bit adder, and a 48-bit register. It also has two
18-bit input A and B, and one 48-bit output P . Basically, it
repeatedly computes A×B +P ← P . Type 2 also employs
two additional 18-bit registers. Since ports BIN and BOUT of
adjacent DSP48 are directly connected, one Type 1 DSP48
block and several Type 2 DSP48 blocks can be connected
as illustrated in Figure 4.

We have used three types of block memories for the
FDFM approach.

W-RAM four 18-kbit block RAMs are used to store the
weights vi,j and wj,k.

S-RAM four 18-kbit block RAMs are used to store a
table to compute the sigmoid function (S-RAM).

O-RAM one 18-kbit block RAM is used to store the
output values, xi, hj and ok of all nodes.

The reader should refer to Figure 5 for illustrating the
basic structure of a single processor core for a perceptron.
We use Type 1 DSP48, W-RAM, S-RAM, and O-RAM as
illustrated in the figure.

B. Data Representation

The choice of data precision is guided by the implemen-
tation cost in terms of area, simplicity of design, speed and
power consumption. On the one hand, higher precision will
lead to less quantization error in the final implementation.
On the other hand, lower precision will produce more
compaction and faster designs with less power consumption.
A trade-off choice needs to be made depending on the given
application and available FPGA resources [3].

In our work, in order to minimize chip space and com-
putation time, short fixed-point representations of numbers
are used. According to paper [1], the minimum required
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fixed-point precision for weights is 16bits (1bit sign, 3 bits
integer and 12 bits fraction). Hence the data format (input,
weight, intermediate result and output) is 18-bit fixed point
number in our system, which consists of 1-bit sign, 3-bit
integer, and 14-bit fraction based on two’s complement. The
data format is just like SIII.FFFFFFFFFFFFFF, where S
is sign bit, I is integer bit and F is fraction bit. Thus, the
discrete error is at most ε = 2−14 ≈ 6.1 × 10−5, and
the maximum is 0111.11111111111111 = 8 − ε and the
minimum is 1000.00000000000000 = −8. Consequently,
real numbers in our system are in the rage [−8, 8− ε] with
precision 6.1× 10−5. Also, if interim value h′

j or o′k is out
of this range, it is rounded either to the maximum or the
minimum. For example, if h′

j > 8− ε then h′
j ← 8− ε, and

if h′
j < −8 then h′

j ← −8.

C. Sigmoid Function Implementation

One of the design challenges with perceptrons based on
the FPGA is the activation function. Activation function is a
typically nonlinear, monotonically increasing function. The
sigmoid function is used widely in the activation function
for our perceptron. We use the sigmoid function is f(x) =
1/(1 + e−x) as an activation function. Figure 6 shows a
graph of the sigmoid function. In our implementation, the
values of f(h′

j) and f(o′k) are computed. We take a look-
up-table implementation using a block RAM to compute the
sigmoid function. Recall that, h′

j and o′k take 18-bit fixed
point representation. In the look-up-table, the value of f(x)
is stored in the address of x. If we implement full 18-bit
precision for computing f(x) we need look-up-table of size
18×218. However, the size of a block RAM is 18×210. Thus,
we use four 18kbit block RAMs and the most significant 12
bits of interim values of h′

j and o′k as the address of look-
up-table. More specifically, 12 bits of form SIII.FFFFFFFF
is used in h′

j and o′k. Address x of the block RAM is storing
the value of f(x) = 1/(1 + e−x) in the 18-bit fixed point
format.
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D. The behavior of a single processor core

Let us explain how a single processor core illustrated in
Figure 5 works.

Step 1 The value x0, x1, . . . , xNx−1 of the input nodes are
written into the O-RAM.

Step 2 Each h′
j (0 ≤ j ≤ Nh) is computed, in turn, using

theDSP48 slice. Necessary values xi, vi,j and cj

(0 ≤ i ≤ Nx − 1, 0 ≤ j ≤ Nh) are provided from
the O-RAM and the W-RAM, respectively. As soon
as h′

j is obtained, hj = f(h′
j) is computed by the

S-RAM and the resulting value hj is written in the
O-RAM.

Step 3 Each o′k (0 ≤ k ≤ No) is computed, in turn,
using the multiplier accumulator in the DSP48
slice. Necessary values hj , wj,k and dk (0 ≤ j ≤
Nh − 1, 0 ≤ k ≤ No) are provided from the O-
RAM and the W-RAM, respectively. As soon as
o′k is obtained, ok = f(o′k) is computed by the S-
RAM and the resulting value ok is written in the
O-RAM.

Note that all of the computation is performed by the pipelin-
ing technique. For example, as soon as the DSP48 finish to
compute h′

j , it starts to compute h′
j+1.

IV. A CLUSTER OF MULTIPLE PROCESSOR CORES

We have implemented many processor cores of the FDFM
approach that work in parallel. More specifically, we have
designed a cluster that consists of 30 processor cores.

Before showing the architecture of the cluster of 30 cores,
we will observe the behavior of a single processor core. The
Type 1 DSP48, the W-RAM, and the O-RAM operate in
almost all clock cycles. However, the S-RAM is used only
few clock cycles. For example, the computation of h′

j takes
Nx clock cycles and then, hj = f(h′

j) is computed in one
clock cycle. the S-RAM is used only the one clock cycle and
it is idle for the other clock cycles. So, the multiple processor
cores can share the S-RAM to compute the sigmoid function.
Also, since each of the multiple processor cores evaluate the
same perseptron, we can share the W-RAM that stores the
weights of the perceptron.

From this observation, we design a cluster of 30 cores as
illustrated in Figure 7. The cluster is designed as follows:

• 30 DSP48 slices (1 Type 1 and 29 Type 2 DSP48 slices)
and 30 O-RAMs are used.

• One W-RAM and one S-RAM are shared by the
processor cores.

• The weights and threshold values are provided from the
W-RAM, to the port B of Type 1 DSP48 slices.

• The product sums h′
j and o′k are sent to the registers

outside of the DSP slices. They are transferred to the
S-RAM in the pipeline technique.

• The resulting values hj and ok are stored in the O-
RAM.

W-RAM

Type 1

Type 2

Type 2

Type 2

S-RAM

O-RAM

O-RAM

O-RAM

O-RAM

Figure 7. A cluster of 30 processor cores

We can further improve the throughput by using two
or more clusters. Figure 8 illustrates the 5-cluster system,
which has totally 150 processor cores.

cluster

cluster

cluster

cluster

cluster

Host PC

Figure 8. The 5-cluster system

V. PERFORMANCE EVALUATION

Let us evaluate the performance of the architecture by our
FDFM approach.

Recall thatNx, Nh, and No denote the numbers of input,
hidden, and output nodes of the three-layer perceptron. It
takes Nx+1 clock cycles to evaluate the value h′

j by (1); One
clock cycle is used to load cj in the DSP slice and Nx clock
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cycles to compute the product sum. Similarly, Nh +1 clock
cycles are used to evaluate the value of o′k by (3). Hence it
takes (Nx +1)Nh+(Nh+1)No clock cycles to evaluate the
values of all h′

j’s and o′k’s. Including miscellaneous overhead
such as evaluation of sigmoid function and data routing,
our implementation of a single processor core illustrated in
Figure 5 runs in (Nx+1)Nh+(Nh+1)No+12 clock cycles
to obtain the values of all o′k’s. Since the computation of
the perceptron involves NxNh + NhNo multiplications, our
implementation using a multiplier in one DSP is very close
to optimal.

If we use a cluster with p processor cores, our implemen-
tation uses p DSP48 slices, p O-RAM, 1 W-RAM, and 1
S-RAM. Since a O-RAM, a W-RAM, and a S-RAM use 1,
4, and 4 18k-bit block RAMs, the cluster needs p+8 block
RAMs. It also runs in (Nx + 1)Nh + (Nh + 1)No + 3p + 9
clock cycles. For example, if we have implemented 32-32-
32 input-hidden-output-node perceptron in the cluster with
30 processor cores, it runs (32 + 1)× 32 + (32 + 1)× 32 +
3× 30 + 9 = 2211 clock cycles.

VI. EXPERIMENTAL RESULTS

We have evaluated the actual performance of our FDFM
approach using Xilinx Virtex-4 FPGA XC4SX35-10FF668.
Table I summarize the experimental results using ISE Foun-
dation 13.1. The performance is evaluated for 1 processor
core, 1 cluster (30 cores), and 5 clusters (150 cores). The
numbers of used DSP48 slices and 18-kbit block RAMs,
and the clock cycles are equivalent to the results of the
evaluation presented in Section V. The throughput means
that the number of the evaluation of the 32-32-32 perceptron
can be performed per second. For example the 5 clusters can
perform the computation of the perceptron 10.959 × 106

times per second.
We have also implemented the cluster in the FPGA board

of the Virtex-4 Xtreme DSP kit (Figure 9). The input data
x0, x1, . . . , xNx−1 are given to the processor cores though
the PCI bus. We have confirmed that the clusters of processor
cores work correctly.

VII. CONCLUSION

This paper introduces the FDFM approach for the FPGA
design. We have presented an architecture for a 3-layer
perceptron using the FDFM approach and implemented it in
the Xilinx Virtex-4 family FPGA. The experimental results
show that the performance is close to optimal.
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Table I
PERFORMANCE EVALUATION OF OUR FDFM APPROACH FOR EVALUATING A 32-32-32 INPUT-HIDDEN-OUTPUT LAYER PERCEPTRON IN XILINX

VIRTEX-4 FPGA XC4SX35-10FF668

1 processor core 1 cluster (30 cores) 5 clusters (150 cores)
# DSP48 slices (out of 192) 1 30 150
# 18k-bit block RAMs (out of 192) 9 38 190
# Slices (out of 15360) 132 2370 11679
Clock frequency (MHz) 161.546 161.546 161.546
Clock cycles 2124 2211 2211
Throughput (106/s) 0.0760 2.192 10.959
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