
An Efficient GPU Implementation of Ant Colony
Optimization for the Traveling Salesman Problem

Akihiro Uchida, Yasuaki Ito, Koji Nakano
Department of Information Engineering,

Hiroshima University
1-4-1 Kagamiyama, Higashihiroshima, Hiroshima, 739–8527 Japan

{uchida, yasuaki, nakano}@cs.hiroshima-u.ac.jp

Abstract—Graphics Processing Units (GPUs) are specialized
microprocessors that accelerate graphics operations. Recent
GPUs, which have many processing units connected with an
off-chip global memory, can be used for general purpose par-
allel computation. Ant Colony Optimization (ACO) approaches
have been introduced as nature-inspired heuristics to find good
solutions of the Traveling Salesman Problem (TSP). In ACO
approaches, a number of ants traverse the cities of the TSP
to find better solutions of the TSP. The ants randomly select
next visiting cities based on the probabilities determined by
total amounts of their pheromone spread on routes. The main
contribution of this paper is to present sophisticated and efficient
implementation of one of the ACO approaches on the GPU. In our
implementation, we have considered many programming issues
of the GPU architecture including coalesced access of global
memory, shared memory bank conflicts, etc. In particular, we
present a very efficient method for random selection of next cities
by a number of ants. Our new method uses iterative random trial
which can find next cities in few computational costs with high
probability. The experimental results on NVIDIA GeForce GTX
580 show that our implementation for 1002 cities runs in 8.71
seconds, while a conventional CPU implementation runs in 381.95
seconds. Thus, our GPU implementation attains a speed-up factor
of 43.47.

Index Terms—Ant Colony Optimization, Traveling Salesman
Problem, GPU, CUDA, Parallel Processing

I. INTRODUCTION

Graphics Processing Units (GPUs) are specialized micro-
processors that accelerate graphics operations. Recent GPUs,
which have many processing units connected with an off-chip
global memory, can be used for general purpose parallel com-
putation. CUDA (Compute Unified Device Architecture) [1]
is an architecture for general purpose parallel computation on
GPUs. Using CUDA, we can develop parallel algorithms to
be implemented in GPUs. Therefore, many studies have been
devoted to implement parallel algorithms using CUDA [2],
[3].

Ant colony optimization (ACO) was introduced as a nature-
inspired meta-heuristic for the solution of combinatorial opti-
mization problems [4], [5]. The idea of ACO is based on the
behavior of real ants exploring a path between their colony and
a source of food. More specifically, when searching for food,
ants initially explore the area surrounding their nest at random.
Once an ant finds a food source, it evaluates the quantity and
the quality of the food and carries some of it back to the nest.
During the return trip, the ant deposits a chemical pheromone

trail on the ground. The quantity of pheromone will guide
other ants to the food source. Indirect communication between
the ants via pheromone trails makes them possible to find
shortest paths between their nest and food sources. In ACO,
the characteristic of real ant colonies is exploited in simulated
ant colonies to solve problems. The generic ACO algorithm
consists of the following two steps:

Step 1: Initialization

• Initialize the pheromone trail

Step 2: Iteration

• For each ant repeat until stopping criteria

– Construct a solution using the pheromone trail
– Update the pheromone trail

The first step mainly consists in the initialization of the
pheromone trail. In the iteration step, each ant constructs a
complete solution for the problem according to a probabilistic
state transition rule. The rule depends chiefly on the quantity of
the pheromone. Once all ants construct solutions, the quantity
of the pheromone is update in two phases: an evaporation
phase in which a fraction of the pheromone evaporates, and
a deposit phase in which each ant deposits an amount of
pheromone that is proportional to the fitness of its solution.
This process is repeated until stopping criteria.

Several variants of ACO have been proposed in the past.
The typical ones of them are Ant System (AS), Max-Min Ant
System (MMAS), and Ant Colony System (ACS). AS was the
first ACO algorithm to be proposed [4], [5]. The characteristic
is that pheromone trails is updated when all the ants have
completed the tour shown in the above algorithm. MMAS is an
improved algorithm over the AS [6]. The main different points
are that only the best ant can update the pheromone trails
and the minimum and maximum values of the pheromone are
limited. Another improvement over the original AS is ACS [7].
The pheromone update, called local pheromone update, is
performed during the tour construction process in addition to
the end of the tour construction.

The main contribution of this paper is to implement the AS
to solve the traveling salesman problem (TSP) [8] on the GPU.
In TSP, a salesman visits n cities, and makes a tour visiting
each city exactly once to try to find the shortest possible tour.
We model the problem as a complete graph with n vertices
that represent the cities. Let v0, v1, . . . , vn−1 be vertices that

2012 Third International Conference on Networking and Computing

978-0-7695-4893-7/12 $26.00 © 2012 IEEE

DOI 10.1109/ICNC.2012.22

94

represent n cities, ei,j (0 ≤ i, j ≤ n − 1) denote edges
between cities, and (xi, yi) (0 ≤ i ≤ n − 1) be the location
of vi. Let d(i, j) be the distance between vi and vj . In this
paper, we assume that the distance between two cities is their
Euclidean distance. Namely, each distance between cities i
and j is d(i, j) = d(j, i) =

√
(xi − xj)2 + (yi − yj)2. Given

a tour T , TSP is to find a tour which minimizes the objective
function S:

S =
∑

ei,j∈T

d(i, j).

TSP is well known as an NP-hard problem in combinatorial
optimization and utilized as a benchmark problem for various
meta-heuristics such as ACO, genetic algorithm, tabu search,
etc.

Many algorithms of ACO for the TSP have been pro-
posed in the past. Manfrin et al. have shown a parallel
algorithm of MMAS with 4 network-connected computers
using MPI [9]. Delisle et al. have proposed an efficient
and straightforward OpenMP implementation with the multi-
processor system [10]. Also, GPU implementations have been
proposed. In [11], a GPU implementation of MMAS is shown.
Kobashi et al. have shown a GPU implementation of AS [12].
The implementation introduces nearest neighbor technique to
reduce the computing time of tour construction. Cecilia et al.
have proposed a GPU implementation of AS [13]. To reduce
the computing time of tour construction on the GPU, instead
of the ordinary roulette-wheel selection used when ants select
a next city to visit, they introduced an alternative method,
called I-Roulette. The method is similar to the roulette-wheel
selection, however, it does not exactly compute the roulette-
wheel selection.

In our implementation, we have considered many program-
ming issues of the GPU architecture such as coalesced access
of global memory, shared memory bank conflicts, etc. To
be concrete, arranging various data in the global memory
efficiently, we try to make the bandwidth of the global memory
of the GPU maximized. Also, to avoid the access to the global
memory as much as possible, we utilize the shared memory
that is on chip memory of the GPU.

In addition, we have introduced a stochastic method, called
stochastic trial, instead of the roulette-wheel selection that is
used when ants determine the next city to visit. Using the
stochastic trial, most prefix sum computation that is performed
in the roulette-wheel selection can be omitted. Since the
computing time of the prefix sum computation is dominated
in that of the AS for TSP, we attained further speed-up of it.

Note that our goal in this paper is to accelerate the AS on the
GPU, not to improve the accuracy of the solution. The solution
obtained by our implementation is basically the same as that by
the original AS for the TSP. We have implemented our parallel
algorithm in NVIDIA GeForce GTX 580. The experimental
results show that our implementation can perform the AS
for 1002 cities, that repeats tour construction and pheromone
update 100 times, in 8.71 seconds, while a conventional
CPU implementation runs in 381.95 seconds. Thus, our GPU

implementation attains a speed-up factor of 43.47 over the
conventional CPU implementation.

The rest of this paper is organized as follows; Section II
introduces ant colony optimization for traveling salesman
problem. In Section III, we show the GPU and CUDA ar-
chitectures to understand our new idea. Section IV proposes
our new ideas to implement the ant colony optimization for
traveling salesman problem on the GPU. The experimental
results are shown in Section V. Finally, Section VI offers
concluding remarks.

II. ANT COLONY OPTIMIZATION FOR THE TRAVELING

SALESMAN PROBLEM

In this section, we describe a solution for TSP with ant
colony optimization. Specially, we explain an algorithm solv-
ing this problem by ant system (AS). Recall that in TSP, a
salesman visits n cities. and the salesman makes a tour visiting
each city exactly once to try to find the shortest possible tour.
In AS for TSP, ants are used as agents that perform distributed
search. Each ant visits each city exactly once, ending up back
at the starting city and then offers the tour as its solution. Each
ant has the following characteristic:

• An ant selects which city to visit, using a transition rule
that is a function of the distance to the city and the
quantity of pheromone present along the connecting path.

• Transitions to already visited cities are added to a visited
list and not allowed.

• When a tour is complete, the ant deposits a pheromone
trail along paths visited in the tour.

Using the characteristic of ants, AS performs the following
three steps; (i) initialization, (ii) tour construction and (iii)
pheromone update. First of all, initialization is performed, and
tour construction and pheromone update are repeated until
stopping criteria. Given n cities, the distances between the
cities, and m ants, the details of these three steps are spelled
out as follows.

A. Initialization

In the initialization step, the initial quantities of all the
pheromone trail are determined using the greedy manner [14]
as follows:

τ(i, j) =
n

Cg
∀(i, j) ∈ L, (1)

where L denotes all edges between cities and Cg is the total
length of a tour obtained by the greedy algorithm such that
starting from an arbitrary city as current city, the shortest edge
that connects current city and an unvisited city is selected. The
quantities of pheromone assigned to each edge between two
cities are initially set to a reciprocal of the average of Cg .

B. Tour construction

In tour constriction, m ants independently visit each city
exactly once. Each ant starts at a city decided randomly,
and selects which city to visit probabilistically. A probability

95

pk(i, j) to visit city j from city i for ant k is computed by
Eq. (2).

pk(i, j) =

{
f(i,j)P

l∈Nk(i) f(i,l) if j ∈ Nk(i)

0 otherwise,
(2)

where Nk(i) is a set of unvisited adjacent cities for ant k in
city i, and f(i, j) is a fitness between cities i and j

f(i, j) = [τ(i, j)]α[η(i, j)]β , (3)

where τ(i, j) denotes a quantity of pheromone between cities
i and j, η(i, j) represents heuristic information which is a
reciprocal of the distance between cities i and j, and α and
β control the relative influence of pheromone versus distance.
These equations mean that when the quantity of pheromone
between cities i and j is large and the distance between cities
i and j is short, the probability to visit city j becomes large.
Using this probability, each ant visits each city exactly once,
ending up back at the starting city. The method such that ants
select which city to visit using the above probability is well-
known as roulette-wheel selection [15]. Visiting cities with the
roulette-wheel selection, each ant constructs a tour.

C. Pheromone update

When all the ants complete tour construction, the
pheromone assigned between cities is updated using informa-
tion of each tour. The update consists of pheromone evapora-
tion and pheromone deposit.

Pheromone evaporation is utilized to avoid falling into local
optima. Every quantity of pheromone is reduced with the
following equation;

τ(i, j) ← (1− ρ)τ(i, j) ∀(i, j) ∈ L, (4)

where ρ is an evaporation rate of pheromone.
After the pheromone evaporation, for every pheromone

between cities, pheromone deposit is performed with the
results of the tour construction as follows;

τ(i, j) ← τ(i, j) +
m∑

k=1

Δτk(i, j) ∀(i, j) ∈ L, (5)

where Δτk(i, j) is a quantity of pheromone between cities i
and j which is deposited by ant k. The quantity is computed
by

Δτk(i, j) =
{

1
Ck

if ei,j ∈ Tk

0 otherwise,
(6)

where Ck is the tour length of ant k, and Tk is the tour of ant k.
This equation means that when an edge is included in shorter
tours and is selected by more ants in the tour construction, the
quantity of additional pheromone is larger.

III. COMPUTE UNIFIED DEVICE ARCHITECTURE (CUDA)

CUDA uses two types of memories in the NVIDIA GPUs:
the global memory and the shared memory [16]. The global
memory is implemented as an off-chip DRAM of the GPU,
and has large capacity, say, 1.5-6 Gbytes, but its access latency
is very long. The shared memory is an extremely fast on-chip
memory with lower capacity, say, 16-48 Kbytes. The efficient
usage of the global memory and the shared memory is a key
for CUDA developers to accelerate applications using GPUs.
In particular, we need to consider the coalescing of the global
memory access and the bank conflict of the shared memory
access [17], [18]. To maximize the bandwidth between the
GPU and the DRAM chips, the consecutive addresses of the
global memory must be accessed in the same time. Thus,
threads should perform coalesced access when they access to
the global memory. Figure 1 illustrates the CUDA hardware
architecture.

Streaming

Multiprocessor

����� �����

����� �����

����� �����

����� �����

Shared Memory

Streaming

Multiprocessor

Shared Memory

Streaming

Multiprocessor

Shared Memory

�

Global Memory

����� �����

����� �����

����� �����

����� �����

����� �����

����� �����

����� �����

����� �����

Fig. 1. CUDA hardware architecture

CUDA parallel programming model has a hierarchy of
thread groups called grid, block and thread. A single grid is
organized by multiple blocks, each of which has equal number
of threads. The blocks are allocated to streaming processors
such that all threads in a block are executed by the same
streaming processor in parallel. All threads can access to the
global memory. However, as we can see in Figure 1, threads
in a block can access to the shared memory of the streaming
processor to which the block is allocated. Since blocks are
arranged to multiple streaming processors, threads in different
blocks cannot share data in shared memories.

CUDA C extends C language by allowing the programmer
to define C functions, called kernels. By invoking a kernel,
all blocks in the grid are allocated in streaming processors,
and threads in each block are executed by processor cores
in a single streaming processor. In the execution, threads in
a block are split into groups of thread called warps. Each
of these warps contains the same number of threads and is
execute independently. When a warp is selected for execution,
all threads execute the same instruction. When one warp is
paused or stalled, other warps can be executed to hide latencies
and keep the hardware busy.

As we have mentioned, the coalesced access to the global
memory is a key issue to accelerate the computation. As
illustrated in Figure 2, when threads access to continuous

96

locations in a row of a 2-dimensional array (horizontal access),
the continuous locations in address space of the global memory
are accessed in the same time (coalesced access). However,
if threads access to continuous locations in a column (vertical
access), the distant locations are accessed in the same time
(stride access). From the structure of the global memory, the
coalesced access maximizes the bandwidth of memory access.
On the other hand, the stride access needs a lot of clock cycles.
Thus, we should avoid the stride access (or the vertical access)
and perform the coalesced access (or the horizontal access)
whenever possible.

t0

t7

2-dimensional array

horizontal access

vertical access

coalesced access

stride access

t0 t7 t0 t7

t0 t7

Fig. 2. Coalesced and stride access

Just as the global memory is divided into several partitions,
shared memory is also divided into 16 (or 32) equally-sized
modules of 32-bit width, called banks (Figure 3). In the
shared memory, the successive 32-bit words are assigned to
successive banks. To achieve maximum throughput, concurrent
threads of a thread block should access different banks,
otherwise, bank conflicts will occur. In practice, the shared
memory can be used as a cache to hide the access latency of
the global memory.

������ ������ ������ �����	 �����
 ������ ������ ����� �����	�

�����	� �����		 �����	
 �����	� �����	� �����	 �����	� �����	� ������	

������ ������ ������ �����	 �����
 ������ ������ ����� �����	�

Fig. 3. The structure of the shared memory

IV. GPU IMPLEMENTATION

The main purpose of this section is to show a GPU imple-
mentation of AS for TSP. The ideas of our implementation
to consider programming issues of the GPU system such as
coalesced access of global memory and shared memory bank
conflicts in Section III. Given n coordinates (xi, yi) of city i
(0 ≤ i ≤ n − 1), our implementation computes the shortest
possible route that visits each city once and returns to the
origin city. Our implementation consists of three CUDA parts,
initialization, tour construction, and pheromone update. We
describe the details of them as follows.

A. Initialization

This part is an initialization process for the followings.
Given n coordinates (xi, yi) of city i, each distance d(i, j)
between cities i and j and initial values of pheromone τi,j

in Eq. (1) are computed. Also, initializing random seeds
for CURAND used in the following process is performed.
CURAND is a library that provides a pseudorandom number
generator on the GPU by NVIDIA [19].

B. Tour construction

Recall that in the tour constriction, m ants are initially
positioned on n cities chosen randomly. Each ant makes a tour
with roulette-wheel selection independently. Whenever each
ant visits a city, it determines which city to visit with roulette-
wheel selection. To perform the tour construction on the
GPU, we consider four methods, SelectionWithoutCompres-
sion, SelectionWithCompression, SelectionWithStochasticTrial,
and a hybrid method that is a combination of the above
methods. Let us consider the case when ant k is in city i.
In advance, the fitness values f(i, j) (0 ≤ i, j ≤ n − 1) are
computed by Eq. (3) and stored to the 2-dimensional array
in the global memory. Also, the elements related to city i,
i.e., f(i, 0), . . . , f(i, n−1), are stores in the same row so that
the access to the elements can be performed with coalesced
access. In the tour construction, ant k (0 ≤ k ≤ m−1) makes
a tour index array tk such that element tk(i) stores the index
of the next city from city i shown in Figure 4.

2 → 1 → 5 → 0 → 4 → 3 → 2

5 1 2 3 0

1 2 3 4 5i

tk (i)

Tour
of

ant k

4

0

Fig. 4. Representation of tour list

1) SelectionWithoutCompression: Each ant has an unvisited
list u0, u1, . . . , un−1 such that

uj =
{

0 if city j has been visited
1 otherwise.

(7)

To perform the roulette-wheel selection, when ant k is in city
i. we compute as follows;

Step 1: Calculate the prefix sums qj(0 ≤ j ≤ n− 1) of the
fitness values for adjacent cities and a sentinel q−1

such that

qj =
{ ∑j

s=0 f(i, s) · uj 0 ≤ j ≤ n− 1
0 j = −1.

(8)

Step 2: Generate a random number r in [0, qn−1].
Step 3: Find j such that qj−1 < r ≤ qj (0 ≤ j ≤ n− 1).

City j is selected as the next city.
Figure 5 shows a summary of SelectionWithoutCompression.
In Step 1, values τ(i, j) and η(i, j) (0 ≤ j ≤ n−1) to compute

97

Generate a uniform random
number r in [0, qn−1]

Find j such that qj < r ≤ qj+1

r = 0.3

0.1 0.4 0.8 0.3 0.1 0.5
Fitness values f(i,j) of
adjacent cities of city i

1 0 1 0 1 1 Unvisited list uj

0 1 2 3 4 5City j

0.1 0 0.8 0 0.1 0.5 Products of f(i,j) and ui

0.1 0.1 0.9 0.9 1.0 1.5 Prefix sums qj

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5

0.1 0.1 0.9 0.9 1.0 1.5

3Next city

0.0

Sentinel

qn−1

Step 1

Step 2

Step 3

q0

Fig. 5. Parallel roulette-wheel selection in SelectionWithoutCompression

the fitness function in Eq. (3) are read from the global memory
by threads with coalesced access and stored to the shared
memory. After that, prefix sums in Eq. (8) are computed,
where the fitness values of visited cities are 0 not to be
selected. To avoid the branch instruction whether the candidate
of the next cities has been visited or not, we multiply f(i, j)
and uj with the unvisited list in Eq. (7). In our implementation,
the prefix sum computation is performed using the parallel
prefix sum algorithm proposed by Harris et al. [20], Chapter
39. It is an in-place parallel prefix sum algorithm with the
shared memory on the GPU. Also, it can avoid most bank
conflicts by adding a variable amount of padding to each
shared memory array index. On the other hand, this method
has a fault that the number of elements that it can perform must
be power of two. Therefore, when the number of elements is
a little more than power of two numbers, the efficiency is
decreased. For example, if the number of elements is 4097,
the method must perform for 8192 elements. This fault can be
ignored for small number of elements. However, it cannot be
ignored for large number.

After that, a uniform random number r in [0, qn−1] is
generated with by CURAND. Using the random number by
CURAND, an index j such that qj−1 < r ≤ qj is searched
and city j is the next city to visit. In the search, we use a
parallel search method based on the parallel K-ary search [21].
The idea of the parallel K-ary search is that a search space
in each iteration is divided into K partitions and the search
space is reduced to one of the partitions. In general, Binary
search is a special case (K = 2) of K-ary search. In our
parallel search method, we divide the search space into 32
partitions. Sampling the first elements of each partition, a
partition that includes the objective element to search is found
by 32 threads, i.e., 1 warp. After that the objective element is

searched from the partition by threads whose number is the
number of elements in the partition.

The feature of this method is that the fitness values can be
read from the global memory with coalesced access. Although
the number of unvisited cities is smaller, in every selection to
determine the next city to visit, the roulette-wheel selection has
to be performed for both visited and unvisited cities. Namely,
the data related to both of the visited and unvisited cities
is necessary When the number of unvisited cities is smaller,
computing time is not reduced. In other words, it does not
depend on the number of visited cities.

2) SelectionWithCompression: The idea of this method is
to select only from unvisited cities excluding the visited cities.
Instead of the unvisited list in the above method, we use an
unvisited index array that stores indexes of unvisited cities.
When the number of unvisited cities is n′, The array consists
of elements v0, v1, . . . , vn′−1 and each element stores an index
of one of the unvisited cities. When a city is visited, the
city has to be removed from the index array. The removing
operation takes O(1) time by overwriting the index of the
next city with that of the last element, then removing the
last element (Figure 6). Using the index array of unvisited
cities, it is not necessary to read the data related to the
visited cities to compute the prefix sums in Eq. (8) though
SelectionWithoutCompression requires data related to both
visited and unvisited cities. Therefore, when the number of
unvisited cities is smaller, the computing time becomes shorter.
However, the global memory access necessary to compute the
prefix sums may not be done with coalesced access because
the contents of the index array are out of order using the
above array update. Therefore, when the number of unvisited
cities is large, computing time of SelectionWithCompression
is perhaps slower than that of SelectionWithoutCompression.

0 1 2 3 4 5

Unvisited index array

0 1 2 54

The next city is 3

5

Overwrite the next city
with the last element

0 1 2 5 4

Remove the last element

Fig. 6. Update of the unvisited index array when city 3 is selected as the
next city.

3) SelectionWithStochasticTrial: In the above two methods,
whenever each ant visits a city, the prefix sum calculation has
to be performed. The prefix sum calculation occupies the most
of the computing time of the tour construction. The idea of
this method is to avoid the prefix sum calculation as much
as possible using stochastic trial. The details of the stochastic
trial are shown as follows.

Before ants start visiting cities, the prefix sums for each city

98

are calculated such that

q′(i, j) =
{ ∑j

s=0 f(i, s) 0 ≤ i, j ≤ n− 1
0 j = −1,

(9)

where all the cities have been unvisited, i.e., uj = 1 (0 ≤ j ≤
n− 1) in Eq. (8). The results are stored to the 2-dimensional
array in the global memory such that the prefix sums for city
i to each city, q′(i, 0), . . . , q′(i, n− 1), are stored to the same
row to be read with coalesced access. When an ant is in city i,
to select the next city, the following steps are repeated until the
next city is determined or the number of the iteration exceeds
w.

Step 1: Generate a random number r in [0, q′(i, n− 1)].
Step 2: Find j such that q′(i, j − 1) < r ≤ q′(i, j) (0 ≤

j ≤ n−1). If city j is unvisited, it is selected as the
next city. If not, these steps are performed again.

In Step 2, the unvisited list (Eq. (7)) is used to find whether
the city has been visited or not by the parallel search shown in
the above methods. If the next city is not determined after the
w-time iteration, the next city is selected by SelectionWith-
outCompression. These steps are similar to the roulette-wheel
selection in the above methods. The difference point is that it
is not always to determine the next city since a candidate of
the next city found by the random selection may have been
visited. In followings, the above operation is called stochastic
trial. SelectionWithStochasticTrial repeats the stochastic trial
at most w times. If the next city cannot be determined, it is
selected by SelectionWithoutCompression. When the number
of unvisited city is smaller or some of the fitness values of
visited cities are larger, almost the trial cannot select the
next city. However, the computing time is much shorter than
that of the prefix sum calculation. Therefore, if the next city
can be determined in the above steps within w times, the
total computing time can be reduced by this method. It is
important for this method to determine w. This is because
w has to be determined considering the balance between the
computing time of the iteration of the stochastic trial and that
of SelectionWithoutCompression performed when the next
city cannot be determined. In Section V, we will obtain the
optimal times w by experiments.

4) Hybrid Method: In SelectionWithStochasticTrial, how-
ever, when the number of visited cities is large, the next city
may not be determined by the stochastic trial and has to
be selected by SelectionWithoutCompression. Therefore, we
introduce a hybrid method such that when the number of vis-
ited city is small, SelectionWithStochasticTrial is performed.
Then, SelectionWithStochasticTrial is switched to Selection-
WithoutCompression. After that the next city is determined
by SelectionWithCompression until all the cities are visited.
The reason that SelectionWithCompression is performed after
SelectionWithStochasticTrial is that when the number of un-
visited cities is small, SelectionWithCompression is performed
faster than SelectionWithoutCompression. In the followings,
we call such method hybrid method. An important point of
this hybrid method is to determine the timing when Selection-
WithStochasticTrial is switched such that the computing time

is minimized. In Section V, we will obtain the optimal timing
by experiments.

C. Pheromone update

In the followings, we show a GPU implementation of
pheromone update. Recall that pheromone update consists
of pheromone evaporation and pheromone deposit. In our
implementation, the values of pheromone τ(i, j) (0 ≤ i ≤
j ≤ n − 1) are stored in a 2-dimensional array, which is
a symmetric array, that is, τ(i, j) = τ(j, i), in the global
memory and are updated by the results of the tour construction.
Making the array symmetric, the elements related to city i,
i.e., τ(i, 0), τ(i, 1), . . . , τ(i, n−1), are stores in the same row
so that the access to the elements can be performed with
coalesced access. Our implementation consists of two kernels,
PheromoneUpdateKernel and SymmetrizeKernel.

1) PheromoneUpdateKernel: This kernel assigns n blocks
that consist of multiple threads to each row of the array and
each block performs the followings independently. Figure 7
shows a summary of the pheromone update on the GPU for
a block that perform pheromone update for city 0. Threads in
block i read τ(i, 0), τ(i, 1), . . . , τ(i, n − 1) in the i-th row
with coalesced access, and then store them to the shared
memory. When the values are stored to the shared memory,
each value is halved in advance since they are doubled in the
following kernel, SymmetrizeKernel. After that, pheromone
evaporation is preformed, i.e., each value is reduced by Eq. (4)
by threads in parallel. To perform pheromone deposit, block
i reads the values t0(i), t1(i), . . . , tm−1(i) in the i-th row of
the tour lists. The read operation is performed with coalesced
access by threads. Also, each total tour length of each ant
C0, C1, . . . , Cm−1 stored in the global memory is read. After
that threads add a quantity obtained by Eq. (6) to the cor-
responding values of pheromone in parallel. In the addition,
some threads may add to the same pheromone simultaneously.
To avoid it, we use the atomic add operation supported by
CUDA [16]. After the addition, the values of pheromone
are stored back to the global memory. Note that since the
2-dimensional array that stores the pheromone values are
symmetry, if addition to τ(i, j) is performed, that to τ(j, i) has
to be also performed. However, the above deposit operation
adds to either τ(i, j) or τ(j, i). To obtain the correct results,
SymmetrizeKernel is performed.

2) SymmetrizeKernel: This kernel symmetrizes the array
for the results of PheromoneUpdateKernel. More specifically,
summing corresponding two elements that are symmetric, each
value of symmetric elements is made identical. In this kernel,
to make the access to the global memory coalesced, the 2-
dimensional array that stores pheromone values is divided
into subarrays whose size is 32 × 32. We assign one block
to two subarrays that are symmetric or one subarray that
includes symmetric element. Blocks symmetrize the whole
array subarray by subarray. To symmetrize the subarrays, one
array has to be transposed. For the transposing, we utilize an
efficient method proposed in [22]. The method transposes a 2-
dimensional data stored in the global memory via the shared

99

0

Pheromone array τ (i,j)
(Global memory)

2

3

4

1

0 2 3 41
Copy to the shared
memory and halve

4

1

0

2

3

i

2

4

3

1

0

2

4

3

0

1

2

3

1

0

4
Tour data

(Global memory)

0

0 2 3 41

0

2

1

3

4

t0

0

2

3

4

1

Pheromone
deposit

i

j j

t1 t2 t3 t4

Temporary array
(Shared memory)

Write back
after deposit

Coalesced access

Fig. 7. A summary of PheromoneUpdateKernel

memory with coalesced access and avoidance of bank conflict
on the GPU. Note that when the symmetrization is performed,
each value is doubled since the original values are added twice.
Therefore they are halved in advance in the previous kernel,
PheromoneUpdateKernel.

V. PERFORMANCE EVALUATION

We have implemented our AS for the TSP using CUDA C.
We have used NVIDIA GeForce GTX580 with 512 processing
cores (16 Streaming Multiprocessors which have 32 processing
cores each) running in 1.544GHz and 3GB memory. For the
purpose of estimating the speed up of our GPU implemen-
tation, we have also implemented a conventional software
approach of AS for the TSP using GNU C. We have used
Intel Core i7 860 running in 2.8GHz and 3GB memory to run
the sequential algorithm for the AS. We have evaluated our
implementation using a set of benchmark instances from the
TSPLIB library [23]. In the following evaluation, we utilize
8 instances: d198, a280, lin318, pcb442, rat783, pr1002, and
pr2392 from TSBLIB. Each name consists of the name of the
instance and the number of cities. For example, pr1002 means
that the name of the instance is pr and the number of cities
is 1002. The parameters of ACO, α, β, and ρ in Eq. (3) and
Eq. (4), are set to 1.0, 2.0, and 0.5, respectively. Also, the
number of used ants m is set to the number of cities. Those
parameters are recommended in [24]. In CUDA, it is important
to determine the number of blocks and the number of threads
in each block. It greatly influences the performance of the
implementation on the GPU. In the followings, we select the
optimal numbers obtained by experiments. We first explain the
performance of tour construction and pheromone update, and
then the results of overall performance are shown.

A. Evaluation of tour construction

Before performance of tour construction is evaluated, we de-
termine the optimal parameters. One is an upper limit of times
of iteration how many times the stochastic trial is repeated
if the next city is not determined in SelectionWithStochastic-
Trial. The other is timing when SelectionWithStochasticTrial is
switched to SelectionWithCompression in the hybrid method.

To obtain an optimal upper limit of iteration of the stochastic
trial if the next city is not determined in SelectionWithStochas-
ticTrial, we evaluated the number of times necessary to deter-
mine the next city in a tour construction for the pheromone
values obtained after the tour construction and pheromone
update were repeated 100 times for pr1002. Figure 8 is a graph
that shows a histogram of the number of city and its cumulative
histogram of the percentage of cities to the number of times
of iteration how many times the stochastic trial is repeated.
For example, when the number of times of iteration is 5, the
number of cities is about 25 and the percentage of cities is
about 84%. This means that in about 500 cities, the next city
was determined by the stochastic trial 5 times and in 84%
cities, it was determined by the stochastic trial within 5 times.
From the figure, in approximately half of cities, the next city
can be determined by the stochastic trial one time. Also, in
about 90% cities, the next city can be selected within about
32 times. In several cities, the next city cannot be determined
when the stochastic trial has to be repeated more than 2000
times. Considering the balance of computing time between the
stochastic trial and SelectionWithoutCompression when the
next city cannot be determined, in the following experiments,
we set 8 times to the upper limit of times of iteration.

��������	�
���� ��������������
��������	�
����

��

���

���

���

���

���

���

	��

��

���

����

�

���

���

���

���

���

���

� � � 	 � �� �� �� �	 �� �� �� �� �	 �� ��

���������������

�����������������������������

��������	�
������	��
��
���

Fig. 8. A histogram of the number of city and its cumulative histogram of
the percentage of cities to the number of times of iteration of the stochastic
trial

To obtain the timing when SelectionWithStochasticTrial is
switched to SelectionWithCompression in the hybrid method,
we measured the computing time of tour construction for
various percentages when SelectionWithStochasticTrial is
switched to SelectionWithCompression. Figure 9 shows the
computing time of tour construction for various instances.
According to the figure, the percentage of the visited cities
is larger, the computing time is shorter and if it is closed to
100%, it becomes larger. According to Figure 9, computing
time is minimized by switching the method when about 85%
cities are visited. Therefore, we switch from SelectionWith-
StochasticTrial to SelectionWithCompression when 85% cities

100

are visited.

�

��

���

����

�����

�� ��� ��� ��� ��� ��� ��� 	��
�� ���

�����

�����

��	
�

������

�����

��
�

���

Computing time of
tour construction [ms]

Percentage of visited cities when SelectWithStochasticTrial is switched

Fig. 9. Computing time of tour construction for the various percentages when
SelectionWithStochasticTrial is switched to SelectionWithoutCompression for
pr1002 with various w

To compare the performance among our proposed tour
construction methods, we have evaluated the computing time
of them. Table I shows the computing time of tour con-
struction with various methods for pr1002. The computing
time of SelectWithCompression is a little shorter than that
of SelectWithoutCompression. Since the computing time of
SelectWithCompression becomes shorter when the number of
unvisited cities is small, the total computing time becomes
shorter. Compared to the methods without the stochastic trial,
the computing time of the methods with the stochastic trial
is approximately halved. In addition, the computing time of
the hybrid method is approximately 10% shorter than that of
SelectWithStochasticTrial.

TABLE I
COMPUTING TIME OF TOUR CONSTRUCTION FOR PR1002

Tour construction method Time[ms]
SelectWithoutCompression 235.43
SelectWithCompression 217.94
SelectWithStochasticTrial 96.37
Hybrid method 86.43

Table II shows the computing time of tour construction for
various instances. From 198 to 1002 cities, when the number
of cities is larger, the speed-up factor is larger. However, The
speed-up factor for 2392 cities is smaller than that for 1002
cities. This is because in the parallel prefix sum computation
shown in Section IV can be performed only for power of two
numbers. Therefore, for the instance of which number of cities
is 2392, the parallel prefix sum computation for 4096 elements
must be performed. Therefore, approximate half of elements

are redundant. Since in CPU implementation, the redundant
elements are not necessary to compute the prefix sum, the
computing time of GPU implementation becomes longer, that
is, the speed-up factor becomes smaller.

TABLE II
COMPUTING TIME OF TOUR CONSTRUCTION FOR VARIOUS INSTANCES

Instance (# cities) CPU[ms] GPU[ms] Speed-up
d198 (198) 19.84 2.58 7.69
a280 (280) 47.05 4.95 9.50

lin318 (318) 95.15 8.86 10.74
pcb442 (442) 180.61 11.35 15.92
rat783 (783) 1215.31 56.38 21.56

pr1002 (1002) 3784.43 86.43 43.79
pr2392 (2392) 58452.20 2078.98 28.12

B. Evaluation of pheromone update

Table III shows the computing time of pheromone update
for various instances. The computing time of both the CPU and
GPU implementation is Our GPU implementation can achieve
speed-up factors of 22 to 67. Compared to the computing time
of tour construction, the computing time of pheromone update
is much shorter.

TABLE III
COMPUTING TIME OF PHEROMONE UPDATE

Instance (# cities) CPU[ms] GPU[ms] Speed-up
d198 (198) 0.963 0.036 26.64
a280 (280) 1.384 0.060 22.92

lin318 (318) 2.797 0.070 39.88
pcb442 (442) 4.692 0.113 41.43
rat783 (783) 16.770 0.320 52.37

pr1002 (1002) 34.877 0.520 67.08
pr2392 (2392) 222.762 5.411 41.17

C. Evaluation of overall performance

Table IV shows overall performance that is the total comput-
ing time of AS for various instances. Each execution includes
the initialization and 100 times iteration of tour construction
and pheromone update. Since the computing time of tour
construction is much larger than other process, each speed-
up factor is similar to that of tour construction. Our GPU
implementation can achieve speed-up factors of 7.52 to 43.47
over the CPU implementation.

In the related works of ACO for TSP shown in Section I,
several GPU implementations have been proposed. Since those
implemented methods, used instance, and utilized GPUs differ,
we cannot directly compare our implementation with them.
However, three implementations proposed in papers [11],
[12], [13] achieved the maximum speed-up factor of 23.9,
23.5, and 20.0 over their CPU implementations, respectively.
Since the speed-up factor we achieved is 43.47, our GPU
implementation is more effective than them.

101

TABLE IV
TOTAL COMPUTING TIME OF OUR IMPLEMENTATION WHEN TOUR

CONSTRICTION AND PHEROMONE UPDATE ARE REPEATED 100 TIMES

Instance (# cities) CPU[ms] GPU[ms] Speed-up
d198 (198) 2080.72 263.91 7.52
a280 (280) 4844.59 505.51 9.31

lin318 (318) 9797.03 897.29 10.61
pcb442 (442) 18534.37 1153.95 15.66
rat783 (783) 123220.58 5673.15 21.43

pr1002 (1002) 381949.72 8706.32 43.47
pr2392 (2392) 5867605.87 208478.18 28.04

VI. CONCLUSIONS

In this paper, we have proposed an implementation of the ant
colony optimization algorithm, especially AS, for the traveling
salesman problem on the GPU. In our implementation, we
have considered many programming issues of the GPU archi-
tecture such as coalesced access of global memory and shared
memory bank conflicts. In addition, we have introduced a
method with the stochastic trial in the roulette-wheel selection.
We have implemented our parallel algorithm in NVIDIA
GeForce GTX 580. The experimental results show that our
implementation can perform the AS for 1002 cities, that
repeats tour construction and pheromone update 100 times, in
8.71 seconds, while a conventional CPU implementation runs
in 381.95 seconds. Thus, our GPU implementation attains a
speed-up factor of 43.47.

Future works include GPU implementations for various
algorithms of ant colony optimization such as MMAS, ACS,
and AS with the idea of nearest neighbor to obtain further
acceleration and accuracy. In addition to TSP, other combina-
torial optimization problems such as the quadratic assignment
problem, etc. are applied by our method.

REFERENCES

[1] NVIDIA Corp., “CUDA ZONE.”
[2] D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano, “Implementa-

tions of parallel computation of Euclidean distance map in multicore
processors and GPUs,” in Proceedings of International Conference on
Networking and Computing, 2010, pp. 120–127.

[3] K. Ogawa, Y. Ito, and K. Nakano, “Efficient Canny edge detection
using a GPU,” in Proceedings of International Workshop on Advances
in Networking and Computing, 2010, pp. 279–280.

[4] M. Dorigo, “Optimization, learning and natural algorithms,” Ph.D.
dissertation, Dipartimento di Elettronica, Politecnico di Milano, 1992.

[5] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system: Optimization
by a colony of cooperating agents,” IEEE Transactions on Systems, Man,
and Cybernetics–Part B, vol. 26, no. 1, pp. 29–41, 1996.

[6] T. Stützle and H. H. Hoos, “MAX–MIN ant system,” Future Generation
Computer Systems, vol. 16, no. 8, pp. 889–914, 2000.

[7] M. Dorigo and L. M. Gambardella, “Ant colony system: A cooperative
learning approach to the traveling salesman problem,” IEEE Transac-
tions on Evolutionary Computation, vol. 1, no. 1, pp. 53–66, April 1997.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. The MIT Press, 2001.

[9] M. Manfrin, M. Birattari, T. Stützle, and M. Dorigo, “Parallel ant
colony optimization for the traveling salesman problem,” in Proc. of
5th International Workshop on Ant Colony Optimization and Swarm
Intelligence, vol. LNCS 4150. Springer-Verlag, 2006, pp. 224–234.

[10] P. Delisle, M. Krahecki, M. Gravel, and C. Gagné, “Parrallel imple-
mentation of an ant colony optimization metaheuristic with openmp,” in
Proc. of the 3rd European Workshop on OpenMP, 2001.

[11] A. Delévacq, P. Delisle, M. Gravel, and M. Krahecki, “Parallel ant
colony optimization on graphics processing units,” in Proc. of the
International Conference on Parallel Distributed Processing Techniques
and Applications, 2010, pp. 196–202.

[12] K. Kobashi, A. Fujii, T. Tanaka, and K. Miyoshi, “Acceleration of ant
colony optimization for the traveling salesman problem on a gpu,” in
Proc. of the IASTED International Conference Parallel and Distribited
Computing and Systems, December 2011, pp. 108–115.

[13] J. M. Cecilia, J. M. Garcı́a, A. Nisbet, M. Amos, and M. Ujaldón,
“Enhancing data parallelism for ant colony optimization on gpus,”
Journal of Parallel and Distributed Computing, 2012.

[14] G. Gutin, A. Yeo, and A. Zverovich, “Traveling salesman shoud not
be greedy: domination analysis of greedy-type heuristics for the tsp,”
Discrete Applied Mathematics, vol. 117, pp. 81–86, 2002.

[15] A. Lipowski and D. Lipowska, “Roulette-wheel selection via stochastic
acceptance,” Physica A: Statistical Machanics and its Applications, vol.
391, no. 6, pp. 2193–2196, March 2011.

[16] NVIDIA Corp., NVIDIA CUDA Programming Guide Version 4.1, 2011.
[17] ——, CUDA C Best Practice Guide Version 4.1, 2012.
[18] D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano, “Implementations

of a parallel algorithm for computing Euclidean distance map in mul-
ticore processors and GPUs,” International Journal of Networking and
Computing, vol. 1, no. 2, pp. 260–276, 2011.

[19] NVIDIA Corp., CUDA Toolkit 4.1 CURAND Guide, 2011.
[20] H. Nguyen, GPU Gems 3. Addison-Wesley Professional, 2007.
[21] B. Schlegel, R. Gemulla, and W. Lehner, “k-ary search on modern

processors,” in Proc. of the Fifth International Workshop on Data
Management on New Hardware, 2009, pp. 52–60.

[22] D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano, “Implementations
of parallel computation of Euclidean distance map in multicore proces-
sors and GPUs,” in Proc. of International Conference on Networking
and Computing, 2010, pp. 120–127.

[23] G. Reinelt, “Tsplib–a traveling salesman problem library,” ORSA Journal
on Computing, vol. 3, pp. 376–384, 1991.

[24] M. Dorigo and T. Stützle, Ant Colony Optimization. A Bradford Book,
2004.

102

