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Recent Graphics Processing Units (GPUs) can be used for general purpose parallel compu-
tation. Ant Colony Optimization (ACO) approaches have been introduced as nature-inspired
heuristics to find good solutions of the Traveling Salesman Problem (TSP). In ACO ap-
proaches, a number of ants traverse the cities of the TSP to find better solutions of the TSP.
The ants randomly select next visiting cities based on the probabilities determined by to-
tal amounts of their pheromone spread on routes. The main contribution of this paper is to
present sophisticated and efficient implementation of one of the ACO approaches on the GPU.
In our implementation, we have considered many programming issues of the GPU architecture
including coalesced access of global memory, shared memory bank conflicts, etc. In particular,
we present a very efficient method for random selection of next cities by a number of ants.
Our new method uses iterative random trial which can find next cities in few computational
costs with high probability. This idea can be applied not only GPU implementation, but also
CPU implementation. The experimental results on NVIDIA GeForce GTX 580 show that our
implementation for 1002 cities runs in 8.71 seconds, while the CPU implementation runs in
190.05 seconds. Thus, our GPU implementation attains a speed-up factor of 22.11.

Keywords: ant colony optimization; traveling salesman problem; GPU; CUDA; parallel
processing

1. Introduction

Graphics Processing Units (GPUs) are specialized microprocessors that accelerate
graphics operations. Recent GPUs, which have many processing units connected
with an off-chip global memory, can be used for general purpose parallel compu-
tation. CUDA (Compute Unified Device Architecture) [1] is an architecture for
general purpose parallel computation on GPUs. Using CUDA, we can develop par-
allel algorithms to be implemented in GPUs. Therefore, many studies have been
devoted to implement parallel algorithms using CUDA [2–6].

The Traveling Salesman Problem (TSP) is one of the most well-known NP-hard
problems [7, 8]. Since it is quite simple and has many applications, many researchers
have been devoted to find good approximation algorithm. Ant colony optimization
(ACO) is known as a potent method introduced as a nature-inspired meta-heuristic
for the solution of combinatorial optimization problems [9, 10]. The idea of ACO
is based on the behavior of real ants exploring a path between their colony and
a source of food. More specifically, when searching for food, ants initially explore
the area surrounding their nest at random. Once an ant finds a food source, it
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evaluates the quantity and the quality of the food and carries some of it back to
the nest. During the return trip, the ant deposits a chemical pheromone trail on
the ground. The quantity of pheromone will guide other ants to the food source.
The indirect communication between the ants via pheromone trails makes them
possible to find shortest paths between their nest and food sources. In the ACO,
the behavior of real ant colonies is exploited in simulated ant colonies to solve the
TSP. Approximation solutions of the TSP can be obtained using the ACO in two
steps:

Step 1: Initialization
• Initialize the pheromone trail appropriately,

Step 2: Iteration
• For each ant repeat the following operations until some termination con-

dition is satisfied
• Construct a solution using the pheromone trail
• Update the pheromone trail

The first step mainly consists in the initialization of the pheromone trail. In the
iteration step, each ant constructs a complete solution for the problem according
to a probabilistic state transition rule. The rule depends chiefly on the quantity of
the pheromone. Once all ants construct solutions, the quantity of the pheromone is
updated in two phases: an evaporation phase in which a fraction of the pheromone
evaporates, and a deposit phase in which each ant deposits an amount of pheromone
that is proportional to the fitness of its solution. This process is repeated until some
termination condition is satisfied.

Several variants of ACO have been proposed in the past. The typical ones of them
are Ant System (AS), Max-Min Ant System (MMAS), and Ant Colony System
(ACS). AS was the first ACO algorithm to be proposed [9, 10]. The characteristic
is that pheromone trails is updated when all the ants have completed the tour shown
in the above algorithm. MMAS is an improved algorithm over the AS [11]. The
main different points are that only the best ant can update the pheromone trails
and the minimum and maximum values of the pheromone are limited. Another
improvement over the original AS is ACS [12]. The pheromone update, called local
pheromone update, is performed during the tour construction process in addition
to the end of the tour construction.

The main contribution of this paper is to implement the AS to solve the TSP
on the GPU. The TSP is modeled as a complexly connected, undirected weight
graph, such that cities are the vertices, paths are the edges, and costs equated
to distances between the cities are associated with the weights of each edge. The
TSP is finding the cheapest round-trip route, we call tour, which visits each vertex
exactly once. In the TSP, a salesman visits n cities, and makes a tour visiting every
city exactly once. The goal of the TSP is to find the shortest possible tour. We
model the problem as a complete graph with n vertices that represent the cities.
Let v0, v1, . . . , vn−1 be vertices that represent n cities, ei,j (0 ≤ i, j ≤ n−1) denote
edges between cities, and (xi, yi) (0 ≤ i ≤ n−1) be the location of vi. Let di,j be the
distance between vi and vj . Like many other works, we assume that the distance
between two cities is their Euclidean distance. Namely, each distance between cities
i and j is di,j = dj,i =

√
(xi − xj)2 + (yi − yj)2. Given distances between two cities

di,j(0 ≤ i, j ≤ n − 1), the TSP is to find a tour T which minimizes the objective
function S:

S =
∑

ei,j∈T

di,j .
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TSP is well known as an NP-hard problem in combinatorial optimization and
utilized as a benchmark problem for various meta-heuristics such as ACO, genetic
algorithm, tabu search, etc.

Many algorithms of ACO for the TSP have been proposed in the past. Man-
frin et al. have shown a parallel algorithm of MMAS with 4 network-connected
computers using MPI [13]. Delisle et al. have proposed an efficient and straightfor-
ward OpenMP implementation with the multi-processor system [14]. Also, GPU
implementations have been proposed. In [15], a GPU implementation of MMAS is
shown. Kobashi et al. have shown a GPU implementation of AS [16]. The imple-
mentation introduces nearest neighbor technique to reduce the computing time of
tour construction. Cecilia et al. have proposed a GPU implementation of AS [17].
To reduce the computing time of tour construction on the GPU, instead of the
ordinary roulette-wheel selection used when ants select a next visiting city, they
introduced an alternative method, called I-Roulette. This method is similar to the
roulette-wheel selection, however, it does not exactly compute the roulette-wheel
selection.

In our implementation, we have considered many programming issues of the GPU
architecture such as coalesced access of global memory, shared memory bank con-
flicts, etc. To be concrete, arranging various data in the global memory efficiently,
we try to make the bandwidth of the global memory of the GPU maximized. Also,
to avoid the access to the global memory as much as possible, we utilize the shared
memory that is an on-chip memory of the GPU.

In addition, we have introduced a stochastic method, called stochastic trial, in-
stead of the roulette-wheel selection that is used when ants determine a next visit-
ing city. Using the stochastic trial, most prefix-sums computation performed in the
roulette-wheel selection can be omitted. Since the computing time of the prefix-
sums computation is dominated in that of the AS for TSP, we attained further
speed-up of it.

Note that our goal in this paper is to accelerate the AS on the GPU, not to
improve the accuracy of the solution. Namely, in this research, we have imple-
mented the original AS on the GPU as it is (Figure 1). Therefore the solution
accuracy of our GPU implementation is equal to the original AS. However, the
GPU implementation is faster than the CPU implementation.

We have implemented our parallel algorithm in NVIDIA GeForce GTX 580.
The experimental results show that our implementation can perform the AS for
1002 cities in 8.71 seconds when the tour construction and pheromone update
are repeated 100 times., while the CPU implementation runs in 190.05 seconds.
Thus, our GPU implementation attains a speed-up factor of 22.11 over the CPU
implementation.

The rest of this paper is organized as follows; Section 2 introduces ant colony
optimization for traveling salesman problem. In Section 3, we show the GPU and
CUDA architectures to understand our new idea. Section 4 proposes our new ideas
to implement the ant colony optimization for traveling salesman problem on the
GPU. The experimental results are shown in Section 5. Finally, Section 6 offers
concluding remarks.

2. Ant Colony Optimization for the Traveling Salesman Problem

In this section, we review how the TSP can be solved by the ant system (AS). Recall
that in the TSP, a salesman visits n cities v0, v1, . . . , vn−1 in a 2-dimensional space
such that every city is visited exactly once. The goal of the TSP is to find the
shortest possible tour. In the AS for the TSP, ants work as agents performing the
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Figure 1. Summary of our research

distributed search. Every edge ei,j connecting a pair of cities vi and vj (0 ≤ i, j ≤ n)
has pheromone value τi,j . Note that every edge is undirected, that is, ei,j and ej,i

represent the same edge and τi,j and τj,i take the same value. Each pheromone
value τi,j is repeatedly updated according to the behavior of ants in the AS. Thus,
we can consider that τi,j is a variable, and τi,j and τj,i represent the same variable.

First, a number of ants are placed at cities independently at random. Recom-
mended in [18], the number of ants is equal to the number n of the cities. Each ant
repeatedly selects a next visiting city at random among the unvisited cities. In the
selection of a next visiting city, an edge with larger pheromone value is selected
with higher probability. After each ant visits all cities, it goes back to the starting
city. Clearly, the visiting order of an ant is a solution of the TSP. Thus, after all n
ants visit all cities, we have n solutions of the TSP. Based on the n solutions, every
pheromone value τi,j is updated. This procedure is repeated until some termination
condition is satisfied.

We are now in a position to explain the details of the AS. It has three steps the
initialization, the tour construction, and the pheromone update. In the initialization
step, the pheromone value of every τi,j is initialized by the same value. For the
reader’s benefit, we explain the initialization step after explaining the other steps.

2.1 Tour construction

Each ant selects a starting city independently and uniformly at random. In other
words, we generate n independent random integer values in [0, n − 1] and place
n ants at the corresponding cities. After that, every ant traverses all cities inde-
pendently. The selection of a next visiting city by a well-known method called
the roulette-wheel selection [19]. We focus on a particular ant and explain how it
traverses all cities using the roulette-wheel selection.

Suppose that the ant is currently visiting the city vi. Let U denote a set of cities
that the ant has not visited. We will show how we select a next visiting city from
U . We define the fitness fi,j of an edge vi and vj with respect to the ant by the
following formula:

fi,j =
τα
i,j

dβ
i,j

(1)

where τi,j and di,j denote the pheromone value of an edge between vi and vj and
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the Euclidean distance of vi and vj . Also, α > 0 and β > 0 are fixed values
to control the influence of the pheromone and distance values. These values are
usually determined by experiments. Clearly, fi,j takes large value if the pheromone
value τi,j is larger and the distance di,j is smaller. Hence we can think that the
value of fi,j represents the fitness of an edge from vi to vj .

We select a next visiting city in U with probability proportional to fi,j . In other
words, the probability pi,j to select city vj as a next visiting city is

pi,j =
fi,j

F
if vj ∈ U (2)

= 0 otherwise. (3)

where F =
∑

vj∈U fi,j . Clearly,
∑n−1

i=0 pi,j = 1 and vj is selected as a next visiting
city with higher probability if the fitness fi,j is larger.

The reader should no difficulty to confirm that, starting from a randomly selected
city, the ant traverses all cities by repeating this procedure to select a next city.
We consider that the ant goes back to the stating city after visiting all cities to
complete the tour. The tour thus obtained by the ant is an approximation solution
of the TSP.

2.2 Pheromone update

After all of the n ants complete the tour construction, every pheromone value
τi,j is updated. The pheromone update is performed by two steps: the pheromone
evaporation and the pheromone deposit.

Intuitively, the pheromone evaporation is performed to avoid falling into local
optima of the TSP. Every pheromone value is decreased by multiplying a fixed
constant factor (1 − ρ). More specifically, τi,j (0 ≤ i, j ≤ n − 1) is updated as
follows:

τi,j ← (1− ρ)τi,j (4)

where ρ is a fixed evaporation rate of the pheromone determined by the experi-
ments.

After the pheromone evaporation the pheromone deposit is performed using the
tours obtained by the n ants. Let Tk (0 ≤ i ≤ n− 1) denote a set of n edges in the
tour obtained by the k-th ant. Also, let L(Tk) is the total distance of Tk, that is,

L(Tk) =
∑

(vi,vj)∈Tk

di,j .

Clearly, Tk is a good approximation solution of the TSP if L(Tk) is small. The
pheromone value τi,j is updated using L(Tk) as follows:

τi,j ← τi,j +
∑

0≤k≤n−1

∑
(vi,vj)∈Tk

1
L(Tk)

. (5)

In other words, for every (vi, vj) ∈ Tk, we accumulate 1
L(Tk) to τi,j . Thus, the τi,j of

edge (vi, vj) is large if the edge is included in many tours with small total distance.
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2.3 Initialization

We will show an appropriate method to determine the initial value of τi,j .
A simple greedy method [20] can find an approximation solution of the TSP. In

this method, an arbitrary city is selected as a starting city. The nearest unvisited
city is always selected as a next visiting city. This selection is repeated until all
cities are visited. Let TG be a tour obtained by the greedy method. Suppose that
Tk = TG for all k, that is every ant finds tour Tk as an initial tour. If this is the
case, the pheromone update is performed as follows:

τi,j ← τi,j +
∑

0≤k≤n−1

∑
(vi,vj)∈Tk

1
L(Tk)

=
∑

(vi,vj)∈TG

n

L(TG)
.

The total value accumulated to τi,j is

∑
0≤i,j≤n−1

∑
(vi,vj)∈TG

n

L(TG)
=

n3

L(TG)
.

Thus, it is reasonable to equally deposit this value to all τi,j . In other words, the
value τi,j is initialized as follows:

τi,j ←
n

L(TG)
. (6)

3. Compute Unified Device Architecture (CUDA)

CUDA uses two types of memories in the NVIDIA GPUs: the global memory and
the shared memory [21]. The global memory is implemented as an off-chip DRAM
of the GPU, and has large capacity, say, 1.5-6 Gbytes, but its access latency is very
long. The shared memory is an extremely fast on-chip memory with lower capacity,
say, 16-48 Kbytes. The efficient usage of the global memory and the shared memory
is a key for CUDA developers to accelerate applications using GPUs. In particular,
we need to consider the coalescing of the global memory access and the bank conflict
of the shared memory access [22, 23]. To maximize the bandwidth between the
GPU and the DRAM chips, the consecutive addresses of the global memory must
be accessed at the same time. Thus, threads should perform the coalesced access
when they access to the global memory. Figure 2 illustrates the CUDA hardware
architecture.

CUDA parallel programming model has a hierarchy of thread groups called grid,
block and thread. A single grid is organized by multiple blocks, each of which has
equal number of threads. The blocks are allocated to streaming processors such that
all threads in a block are executed by the same streaming processor in parallel. All
threads can access to the global memory. However, as we can see in Figure 2,
threads in a block can access to the shared memory of the streaming processor
to which the block is allocated. Since blocks are arranged to multiple streaming
processors, threads in different blocks cannot share data in shared memories.

CUDA C extends C language by allowing the programmer to define C functions,
called kernels. By invoking a kernel, all blocks in the grid are allocated in streaming
processors, and threads in each block are executed by processor cores in a single
streaming processor. In the execution, threads in a block are split into groups of
thread called warps. Each of these warps contains the same number of threads
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Figure 2. CUDA hardware architecture

and is execute independently. When a warp is selected for execution, all threads
execute the same instruction. When one warp is paused or stalled, other warps can
be executed to hide latencies and keep the hardware busy.

There is a metric, called occupancy, related to the number of active warps on
a streaming processor. The occupancy is the ratio of the number of active warps
per streaming processor to the maximum number of possible active warps. It is
important in determining how effectively the hardware is kept busy. The occupancy
depends on the number of registers, the numbers of threads and blocks, and the
size of shard memory used in a block. Namely, utilizing too many resources per
thread or block may limit the occupancy. To obtain good performance with the
GPUs, the occupancy should be considered.

As we have mentioned, the coalesced access to the global memory is a key issue
to accelerate the computation. As illustrated in Figure 3, when threads access
to continuous locations in a row of a 2-dimensional array (horizontal access), the
continuous locations in address space of the global memory are accessed at the
same time (coalesced access). However, if threads access to continuous locations in a
column (vertical access), the distant locations are accessed at the same time (stride
access). From the structure of the global memory, the coalesced access maximizes
the bandwidth of memory access. On the other hand, the stride access needs a lot
of clock cycles. Thus, we should avoid the stride access (or the vertical access) and
perform the coalesced access (or the horizontal access) whenever possible.

t0

t7

2-dimensional array

horizontal access

vertical access

coalesced access

stride access

t0 t7 t0 t7

t0 t7

Figure 3. Coalesced and stride access

Just as the global memory is divided into several partitions, the shared memory
is also divided into 16 (or 32) equally-sized modules of 32-bit width, called banks



September 6, 2013 10:25 The International Journal of Parallel, Emergent and Distributed Systems
ACO˙IJPEDS

8 Akihiro Uchida, Yasuaki Ito, and Koji Nakano

(Figure 4). In the shared memory, the successive 32-bit words are assigned to
successive banks. To achieve maximum throughput, concurrent threads of a block
should access different banks, otherwise, bank conflicts will occur. In practice, the
shared memory can be used as a cache to hide the access latency of the global
memory. ����� ����� ����� ����� ����� ����	 ����
 ����� �����������������������������	�����
�����������������
 ����
������ ����� ����� ����� ����� ����	 ����
 ����� ������

Figure 4. The structure of the shared memory

4. GPU Implementation

The main purpose of this section is to show a GPU implementation of AS for TSP.
In the implementation of AS for TSP, much more memory operations are performed
than arithmetic operations. Therefore, the performance greatly depends on the
memory bandwidth. Since the memory bandwidth of the GPU is much greater than
that of the CPU [21], we can accelerate the computation if we sufficiently enjoy the
high bandwidth of the GPU. Thus the idea of our implementation is to consider
programming issues of the GPU system such as coalesced access of global memory
and shared memory bank conflicts in Section 3. To be concrete, arranging various
data in the global memory efficiently, we try to make the bandwidth of the global
memory of the GPU maximized. Also, to avoid the access to the global memory as
much as possible, we utilize the shared memory. Given n coordinates (xi, yi) of city
vi (0 ≤ i ≤ n − 1), our implementation computes the shortest possible route that
visits each city once and returns to the origin city. Our implementation consists
of three CUDA parts, initialization, tour construction, and pheromone update. We
use CURAND [24], a standard pseudorandom number generator of CUDA, when
we need to generate a random number. The details of our GPU implementation
are spelled out as follows.

4.1 Initialization

Given n coordinates (xi, yi) of city vi, each distance di,j between cities vi and vj

and a single thread is used to find TG by the greedy algorithm and computes n
L(TG) ,

which is the initial value for all τi,j .

4.2 Tour construction

Recall that in the tour constriction, n ants are initially positioned on n cities chosen
randomly. Each ant makes a tour with the roulette-wheel selection independently.
Whenever each ant visits a city, it determines a next visiting city with the roulette-
wheel selection. To perform the tour construction on the GPU, we consider four
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methods, SelectWithoutCompression, SelectWithCompression, SelectWithStochas-
ticTrial, and a hybrid method that is a combination of the above methods. Let
us consider the case when ant k is in city vi. In advance, the fitness values fi,j

(0 ≤ i, j ≤ n− 1) are computed by Eq. (1) and stored to the 2-dimensional array
in the global memory. Also, the elements related to city vi, i.e., fi,0, . . . , fi,n−1, are
stored in the same row so that the access to the elements can be performed with
the coalesced access. In the tour construction, ant k (0 ≤ k ≤ n− 1) makes a tour
index array tk such that element tk(i) stores the index of the next city from city
vi shown in Figure 5.

2  �  1  �  5 � 0 �  4  �  3 �  2 

5 1 2 3 0

1 2 3 4 5i

tk (i)

Tour
of 

ant k

4

0

Figure 5. Representation of tour list

4.2.1 SelectWithoutCompression

Each ant has an unvisited list u0, u1, . . . , un−1 such that

uj =
{

0 if city vj has been visited
1 otherwise. (7)

To perform the roulette-wheel selection, when ant k is in city vi, we compute as
follows:

Step 1: Compute the prefix sums qj (0 ≤ j ≤ n− 1) such that

qj = fi,0 · u0 + fi,1 · u1 + · · ·+ fi,j · uj . (8)

Step 2: Generate a random number r in [0, qn−1).
Step 3: For simplicity, let q−1 = 0. Find j such that qj−1 ≤ r < qj (0 ≤ j ≤ n−1).

City vj is selected as the next visiting city.

Clearly r is in [qj−1, qj) with probability qj−qj−1

qn−1
= fi,j ·uj

qn−1
. Thus, if vj is unvisited,

that is, uj = 1, then the next visiting city is vj with probability fi,j

qn−1
. Hence the

next visiting city is selected with probability Eq. (2) correctly. Figure 6 shows a
summary of SelectWithoutCompression. In Step 1, the values τi,j is computed by
Eq. (1) are read from the global memory by threads with coalesced access and
stored to the shared memory. After that, the prefix-sums in Eq. (8) are computed,
where the fitness values of visited cities are 0 not to be selected. To avoid the
branch instruction whether the candidate of the next cities has been visited or not,
we multiply fi,j and uj with the unvisited list in Eq. (7). In our implementation,
the prefix-sums computation is performed using the parallel prefix-sums algorithm
proposed by Harris et al. [25], Chapter 39. It is an in-place parallel prefix-sums
algorithm with the shared memory on the GPU. Also, it can avoid most bank
conflicts by adding a variable amount of padding to each shared memory array
index. On the other hand, this method has a fault that the number of elements
that it can perform must be power of two. Therefore, when the number of elements
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Generate a random 
number r in [0, qn−1)

Find j such that qj−1 ≤ r < qj

r = 0.3

0.1 0.4 0.8 0.3 0.1 0.5
Fitness values fi,j of 
adjacent cities of city i

1 0 1 0 1 1 Unvisited list uj

0 1 2 3 4 5City j

0.1 0 0.8 0 0.1 0.5 Products of fi,j and ui

0.1 0.1 0.9 0.9 1.0 1.5 Prefix-sums qj

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5

0.1 0.1 0.9 0.9 1.0 1.5

j=2 (The next city is city 2)

0.0

qn−1

Step 1

Step 2

Step 3

q0

0.0
q−1

Figure 6. Parallel roulette-wheel selection in SelectWithoutCompression

is a little more than power of two numbers, the efficiency is decreased. For example,
if the number of elements is 4097, the method must perform for 8192 elements. This
fault can be ignored for small number of elements. However, it cannot be ignored
for large number.

After that, a number r in [0, qn−1) is generated uniformly at random using CU-
RAND. Using the random number, an index j such that qj−1 ≤ r < qj is searched
and city vj is the next visiting city. In this search operation, we use a parallel
search method based on the parallel K-ary search [26]. The idea of the parallel
K-ary search is that a search space in each repetition is divided into K partitions
and the search space is reduced to one of the partitions. In general, Binary search
is a special case (K = 2) of K-ary search. In our parallel search method, we divide
the search space into 32 partitions. Sampling the first elements of each partition, a
partition that includes the objective element to search is found by 32 threads, i.e.,
1 warp. After that the objective element is searched from the partition by threads
whose number is the number of elements in the partition.

The feature of this method is that the fitness values can be read from the global
memory with the coalesced access. Although the number of unvisited cities is
smaller, in every selection to determine the next city, the roulette-wheel selec-
tion has to be performed for both visited and unvisited cities. Namely, the data
related to both of the visited and unvisited cities is necessary Although the number
of unvisited cities is smaller, computing time cannot be reduced. In other words,
it does not depend on the number of visited cities.

4.2.2 SelectWithCompression

The idea of this method is to select only from unvisited cities excluding the vis-
ited cities. Instead of the unvisited list in the above method, we use an unvisited
index array that stores indexes of unvisited cities. When the number of unvisited
cities is n′, the array consists of elements v0, v1, . . . , vn′−1 and each element stores
an index of one of the unvisited cities. When a city is visited, the city has to be
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removed from the index array. The removing operation takes O(1) time by over-
writing the index of the next city with that of the last element, then removing
the last element (Figure 7). Using the unvisited index array, it is not necessary to
read the data related to the visited cities to compute the prefix-sums in Eq. (8)
though SelectWithoutCompression requires data related to both visited and unvis-
ited cities. Therefore, when the number of unvisited cities is smaller, the computing
time becomes smaller. However, the global memory access necessary to compute
the prefix-sums may not be done with the coalesced access because the contents
of the index array are out of order using the above array update. Therefore, when
the number of unvisited cities is large, computing time of SelectWithCompression
is perhaps slower than that of SelectWithoutCompression.

0 1 2 3 4 5

Unvisited index array

0 1 2 54

The next city is 3

5

Overwrite the next city 
with the last element

0 1 2 5 4

Remove the last element

Figure 7. Update of the unvisited index array when city 3 is selected as the next city.

4.2.3 SelectWithStochasticTrial

In the above two methods, whenever each ant visits a city, the prefix-sums com-
putation has to be performed. The prefix-sums computation occupies the most of
the computing time of the tour construction. The idea of this method is to avoid
the prefix-sums computation as much as possible using stochastic trial. The details
of the stochastic trial are shown as follows.

Before ants start visiting cities, the prefix-sums q′i,0, q′i,1, . . ., q′i,n−1 for every city
vi are computed such that

q′i,j = fi,0 + fi,1 + · · ·+ fi,j . (9)

As before, let q′i,−1 = 0 for simplicity. Note that the values of qi used in SelectWith-
outCompression depends on the list of unvisited cities, while the values of q′i,j are
independent of it. Hence, once all q′i,j are computed, we do not have to update
them. We assume that the values of q′i,j are stored in a 2-dimensional array in the
global memory such that q′i,−1, . . . , q

′
i,n−1 are stored in the i-th row. When an ant

is visiting city vi, the next visiting city is selected as follows:

Step 1: Generate a random number r in [0, q′i,n−1).
Step 2: Find j such that q′i,j−1 ≤ r < q′i,j (0 ≤ j ≤ n−1). If city vj is unvisited, it

is selected as the next city. Otherwise, these steps are performed until an
unvisited city is selected.

In Step 2, the unvisited list (Eq. (7)) is used to find whether the city has been
visited or not by the parallel search shown in the above methods.
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When almost all of the cities are visited, Step 2 succeeds in select an unvisited
city with very small probability. If this is the case, the number of iteration can
be very large. Hence, if the next city is not determined in the w-time iteration
for some constant w determined by the experiments, we select the next city by
SelectWithoutCompression. These steps are similar to the roulette-wheel selection
in the above methods. The difference point is not always to determine the next city
since a candidate of the next city found by the random selection may have been
visited. In followings, the above operation is called stochastic trial. SelectWith-
StochasticTrial repeats the stochastic trial at most w times. If the next city cannot
be determined, it is selected by SelectWithoutCompression. When the number of
unvisited city is smaller or some of the fitness values of visited cities are larger,
almost the trial cannot select the next city. However, the computing time is much
shorter than that of the prefix-sums calculation. Therefore, if the next city can be
determined in the above steps within w times, the total computing time can be
reduced by this method. It is important for this method to determine the value of
w. This is because w has to be determined considering the balance between the
computing time of the iteration of the stochastic trial and that of SelectWithout-
Compression performed when the next city cannot be determined. In Section 5, we
will obtain the optimal times w by experiments.

4.2.4 Hybrid Method

In SelectWithStochasticTrial, however, when the number of visited cities is large,
a next visiting city may not be determined by the stochastic trial and has to be
selected by SelectWithoutCompression. Therefore, we introduce a hybrid method
such that when the number of visited city is small, SelectWithStochasticTrial is
performed. Then, SelectWithStochasticTrial is switched to SelectWithoutCompres-
sion. After that next visiting cities are determined by SelectWithCompression until
all the cities are visited. The reason that SelectWithCompression is performed af-
ter SelectWithStochasticTrial is that when the number of unvisited cities is small,
SelectWithCompression is performed faster than SelectWithoutCompression. In
the followings, we call such method hybrid method. An important point of this hy-
brid method is to determine the timing when SelectWithStochasticTrial is switched
such that the computing time is minimized. In Section 5, we will obtain the optimal
timing by experiments.

4.3 Pheromone update

In the followings, we show a GPU implementation of pheromone update. The idea
of the implementation is efficient memory access by coalesced access, the shared
memory and avoiding bank conflict. Recall that the pheromone update consists of
the pheromone evaporation and the pheromone deposit. In our implementation,
the values of pheromone τi,j (0 ≤ i ≤ j ≤ n − 1) are stored in a 2-dimensional
array, which is a symmetric array, that is, τi,j = τj,i, in the global memory and
are updated by the results of the tour construction. Making the array symmetric,
the elements related to city vi, i.e., τi,0, τi,1, . . . , τi,n−1, are stored in the same row
so that the access to the elements can be performed with the coalesced access.
Our implementation consists of two kernels, PheromoneUpdateKernel and Sym-
metrizeKernel.

4.3.1 PheromoneUpdateKernel

This kernel assigns n blocks that consist of multiple threads to each row of
the array and each block performs the followings independently. Figure 8 shows
a summary of the pheromone update on the GPU for a block that performs
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the pheromone update for city 0. Threads in block i read τi,0, τi,1, . . . , τi,n−1 in
the i-th row with coalesced access, and then store them to the shared memory.
When the values are stored to the shared memory, each value is halved in advance
since they are doubled in the following kernel, SymmetrizeKernel. After that, the
pheromone evaporation is preformed, i.e., each value is reduced by Eq. (4) by
threads in parallel. To perform the pheromone deposit, block i reads the values
t0(i), t1(i), . . . , tm−1(i) in the i-th row of the tour lists. The read operation is per-
formed with coalesced access by threads. Also, each total tour length of each ant
C0, C1, . . . , Cm−1 stored in the global memory is read. After that threads add a
quantity obtained by Eq. (5) to the corresponding values of pheromone in parallel.
In the addition, some threads may add to the same pheromone simultaneously.
To avoid it, we use the atomic add operation supported by CUDA [21]. After the
addition, the values of pheromone are stored back to the global memory. Note
that since the 2-dimensional array storing the pheromone values are symmetry, if
addition to τi,j is performed, that to τj,i has to be also performed. However, the
above deposit operation adds to either τi,j or τj,i. To obtain the correct results,
SymmetrizeKernel is performed.

0
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Figure 8. A summary of pheromone update

4.3.2 SymmetrizeKernel

This kernel symmetries the 2-dimensional array storing the pheromone values af-
ter performing PheromoneUpdateKernel. More specifically, summing correspond-
ing two elements that are symmetric, each value of symmetric elements is made
identical. In this kernel, to make the access to the global memory coalesced, the
2-dimensional array that stores the pheromone values is divided into subarrays of
size 32×32. We assign one block to two subarrays that are symmetric or one subar-
ray that includes symmetric elements. Blocks symmetrize the whole array subarray
by subarray. To symmetrize the subarrays, one array has to be transposed.

For the transposing, we utilize an efficient method proposed in [27]. The idea of
the method is to transpose a 2-dimensional data stored in the global memory via
the shared memory with the coalesced access and avoidance of the bank conflict
shown in Section 3, as follows. The 2-dimensional array is divided into subarrays
whose size is 32× 32. One block is assigned to each subarray and each block works
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independently. As shown in Figure 9, in each block, values in the corresponding
subarray are read in column wise using coalesced access with 32 threads. The
read operation is executed row by row. The read values are stored into the shared
memory in column wise. After reading 32× 32 values from the global memory, the
stored values in the shared memory are added to the corresponding transposed
position in the global memory in column wise with coalesced access. Using the
above transposing via the shared memory, all the access from/to the global memory
can be coalesced. However, the use of the shared memory causes another problem,
bank conflicts. As given above, the shared memory is used as a 2-dimensional array
whose size of 32× 32. It means that one column of the subarray mapped into the
same bank of the shared memory shown in Section 3. In the above operation, when
threads store the values to the shared memory, they access to the same column
of the 2-dimensional array, that is, bank conflict occurs (Figure 10(a)). To avoid
the bank conflicts, a dummy column to the 2-dimensional array (Figure 10(b)).
Adding the dummy column, values of each column are mapped into distinct banks
and all the access in the transporting is free from the bank conflicts. Note that
when the symmetrization is performed, each value is doubled since the original
values are added twice. Therefore they are halved in advance in the previous kernel,
PheromoneUpdateKernel.

t0            t31

Shared 
memory

Read data from the global memory Write data to the global memory

t0

t31

t0            t31

t0          t31

Global memory Global memory

Shared 
memory

������������� ���������	�
��
Figure 9. Coalesced transpose with the shared memory

5. Performance Evaluation

We have implemented our AS for the TSP using CUDA C. We have used an
NVIDIA GeForce GTX580 with 512 processing cores (16 Streaming Multiproces-
sors which have 32 processing cores each) running in 1.544GHz and 3GB memory.
For the purpose of estimating the speed up of our GPU implementation, we have
also implemented a software approach of AS for the TSP using GNU C. In the
software implementation, we can apply the idea of the tour construction in the
GPU implementation such as the stochastic trial. Each of them will be compared
in the followings. We have used Intel Core i7 860 running in 2.8GHz and 3GB
memory to run the sequential algorithm for the AS. We have evaluated our im-
plementation using a set of benchmark instances from the TSPLIB library [28]. In
the following evaluation, we utilize 8 instances: d198, a280, lin318, pcb442, rat783,
pr1002, pr2392 and pcb3038 from TSBLIB. Each name consists of the name of the
instance and the number of cities. For example, pr1002 means that the name of
the instance is pr and the number of cities is 1002. The parameters of ACO, α, β,



September 6, 2013 10:25 The International Journal of Parallel, Emergent and Distributed Systems
ACO˙IJPEDS

Accelerating Ant Colony Optimization for the Traveling Salesman Problem on the GPU 15

(0,0)

NULL

(1,31)

(2,30)

(3,29)

…

(0,1)

(1,0)

NULL

(2,31)

(3,30)

…

(0,2)

(1,1)

(2,0)

NULL

(3,31)

…

(0,3)

(1,2)

(2,1)

(3,0)

NULL

…

(0,4)

(1,3)

(2,2)

(3,1)

(4,0)

…

(0,5)

(1,4)

(2,3)

(3,2)

(4,1)

…

…

(0,31)

(1,30)

(2,29)

(3,28)

(4,27)

…

0 1 2 3 4 5 … 31

(0,0)

(1,0)

(2,0)

…

(0,1)

(1,1)

(2,1)

…

(0,2)

(1,2)

(2,2)

…

(0,31)

(1,31)

(2,31)

…

…

…

…

…

NULL

NULL

NULL

NULL

(31,0) (31,1) (31,2) (31,31)… NULL

(0,0)

(1,0)

(2,0)

(3,0)

(4,0)

…

(0,1)

(1,1)

(2,1)

(3,1)

(4,1)

…

(0,2)

(1,2)

(2,2)

(3,2)

(4,2)

…

(0,3)

(1,3)

(2,3)

(3,3)

(4,3)

…

(0,4)

(1,4)

(2,4)

(3,4)

(4,4)

…

(0,5)

(1,5)

(2,5)

(3,5)

(4,5)

…

…

(0,31)

(1,31)

(2,31)

(3,31)

(4,31)

…

0 1 2 3 4 5 … 31

(0,0)

(1,0)

(2,0)

…

(0,1)

(1,1)

(2,1)

…

(0,2)

(1,2)

(2,2)

…

(0,31)

(1,31)

(2,31)

…

…

…

…

…

(31,0) (31,1) (31,2) (31,31)…

2-dimensional array Assignment to the shared memory

2-dimensional array (bank conflict free) Assignment to the shared memory

Dummy column

Bank

Bank

(a) Bank conflict assignment

(b) Bank conflict free assignment

Figure 10. Bank conflict free assignment on the shared memory

and ρ in Eq. (1) and Eq. (4), are set to 1.0, 2.0, and 0.5, respectively. In CUDA, it
is important to determine the number of blocks and the number of threads in each
block. It greatly influences the performance of the implementation on the GPU. In
the followings, we select the optimal numbers obtained by experiments. We first
explain the performance of the tour construction and the pheromone update, and
then the results of overall performance are shown.

5.1 Evaluation of the tour construction

Before the performance of the tour construction is evaluated, we determine the op-
timal parameters. One is an upper limit of times of iteration how many times the
stochastic trial is repeated if a next visiting city is not determined in SelectWith-
StochasticTrial. The other is timing when SelectWithStochasticTrial is switched to
SelectWithCompression in the hybrid method.

To obtain an optimal upper limit of the iteration of the stochastic trial if a
next visiting city is not determined in SelectWithStochasticTrial, we evaluated the
number of times necessary to determine next cities in a tour construction for the
pheromone values obtained after the tour construction and the pheromone update
were repeated 100 times for pr1002. Figure 11 is a graph that shows a histogram of
the number of cities and its cumulative histogram of the percentage of cities to the
number of times of iteration how many times the stochastic trial is repeated. For
example, when the number of times of iteration is 5, the number of cities is 30 and
the percentage of cities is about 80%. This means that in 30 cities, the next city was
determined by the stochastic trial 5 times and in 80% cities, it was determined by
the stochastic trial within 5 times. From the figure, in approximately half of cities,
the next city can be determined by the stochastic trial one time. Also, in about
90% cities, the next city can be selected within about 32 times. In several cities,
the next city could not be determined when the stochastic trial was repeated more
than 2000 times. Considering the balance of computing time between the stochastic
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trial and SelectWithoutCompression when the next city cannot be determined, in
the following experiments, we set 8 times to the upper limit of times of iteration.
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Figure 11. A histogram of the number of cities and its cumulative histogram of the percentage of cities
to the number of times of iteration of the stochastic trial

To obtain the timing when SelectWithStochasticTrial is switched to SelectWith-
Compression in the hybrid method, we have measured the computing time of
the tour construction for various percentages when SelectWithStochasticTrial is
switched to SelectWithCompression. Figure 12 shows the computing time of tour
construction for various instances. According to the figure, the percentage of the
visited cities is larger, the computing time is shorter and if it is closed to 100%, it
becomes larger. On the other hand, readers can find that the curve for pcb3038 is
not smooth around 20%. The reason is that the computing time becomes shorter
since the occupancy, described in Section 3, increases. When the number of visited
cities is larger, the size of used shared memory storing unvisited cities becomes
smaller. In that case, the efficiency of the processors is improved because the oc-
cupancy is increased. According to Figure 12, the computing time is minimized by
switching the method when about 85% cities are visited. Therefore, we switch from
SelectWithStochasticTrial to SelectWithCompression when 85% cities are visited.

To compare the performance among our proposed tour construction methods,
we have evaluated the computing time of them. Table 1 shows the computing time
of tour construction with various methods for various instances. In both of CPU
and GPU implementations, the hybrid method is the fastest. In the CPU imple-
mentation, the computing time of SelectWithoutCompression is shorter than that
of SelectWithCompression since the computing time of SelectWithCompression is
shorter when the number of unvisited cities is small. However, in the GPU im-
plementation, it is a little longer. This is because the global memory access in
SelectWithCompression cannot be performed with the coalesced access as shown
in Section 4. Compared to the methods without the stochastic trial, for most of the
cases, the computing time of the methods with the stochastic trial is shorter than
that without it. Additionally, in the CPU and GPU implementation, the comput-
ing time of the hybrid method is approximately 40% and 10% shorter than that of
SelectWithStochasticTrial, respectively.
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Figure 12. The computing time of tour construction for the various percentages when SelectWithStochas-
ticTrial is switched to SelectWithoutCompression

Table 1. Computing time of tour construction for various instances

SelectWithoutCompression SelectWithCompression
Instance (# cities) CPU[ms] GPU[ms] Speed-up CPU[ms] GPU[ms] Speed-up

d198 (198) 25.01 4.10 6.11 19.84 5.08 3.90
a280 (280) 60.88 10.00 6.09 47.05 15.05 3.13
lin318 (318) 118.37 14.64 8.08 95.15 17.65 5.39
pcb442 (442) 252.72 23.90 10.57 180.61 33.25 5.43
rat783 (783) 1555.49 108.83 14.29 1215.31 153.82 7.90

pr1002 (1002) 4598.04 238.67 19.27 3784.43 253.44 14.93
pr2392 (2392) 68212.89 3823.41 17.84 58452.20 4146.78 14.10
pcb3038(3038) 124208.59 9938.31 12.50 104410.41 10655.35 9.80

SelectWithStochasticTrial Hybrid method
Instance (# cities) CPU[ms] GPU[ms] Speed-up CPU[ms] GPU[ms] Speed-up

d198 (198) 19.19 2.92 6.58 10.88 2.58 4.24
a280 (280) 32.77 5.86 5.60 17.44 4.95 3.98
lin318 (318) 111.57 11.02 10.12 43.79 8.86 8.11
pcb442 (442) 104.81 13.14 7.98 56.33 11.35 6.18
rat783 (783) 955.46 63.87 14.96 346.14 56.38 8.94

pr1002 (1002) 2737.96 96.43 28.39 815.05 86.43 21.87
pr2392 (2392) 34827.20 2302.12 15.13 16511.67 2078.98 12.21
pcb3038(3038) 53987.53 3460.61 15.60 36532.30 3096.72 11.80

5.2 Evaluation of the pheromone update

Table 2 shows the computing time of the pheromone update for various instances.
Our GPU implementation can achieve speed-up factors of 22 to 67. Compared to
the computing time of the tour construction, the computing time of the pheromone
update is much shorter. In other words, the computing time of the tour construction
is dominant in the total execution time.
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Table 2. Computing time of the pheromone update

Instance (# cities) CPU[ms] GPU[ms] Speed-up
d198 (198) 0.963 0.042 22.65
a280 (280) 1.384 0.068 20.43
lin318 (318) 2.797 0.076 36.74
pcb442 (442) 4.692 0.127 36.84
rat783 (783) 16.770 0.327 51.24
pr1002 (1002) 34.877 0.530 65.83
pr2392 (2392) 222.762 5.840 38.14
pcb3038(3038) 349.807 8.945 39.11

5.3 Evaluation of overall performance

Table 3 shows overall performance that is the total computing time of AS for various
instances. In the tour construction, we used the hybrid method that was the fastest
method. Each execution includes the initialization and 100 times iteration of the
tour construction and the pheromone update. Since the computing time of the
tour construction is much larger than other process, each speed-up factor is similar
to that of the tour construction. Our GPU implementation can achieve speed-up
factors of 4.51 to 22.11 over the CPU implementation. To attain the same speed-
up factor of 22.11 on the CPU implementation with multi-core processors and/or
multi-processors, at least 23 processors are necessary. This number of processors
is lower bound and it is not easy and not inexpensive to provide this execution
environment now. On the other hand, this speed-up factor can be obtained using
the proposed method on the commonly used PC with a GPU board that costs
several hundred dollars.

Table 3. Total computing time of our implementation when tour constriction and pheromone update are repeated

100 times

Instance (# cities) CPU[ms] GPU[ms] Speed-up
d198 (198) 1185.52 263.91 4.51
a280 (280) 2102.95 505.51 4.18
lin318 (318) 7400.08 897.29 8.32
pcb442 (442) 7467.31 1153.95 6.50
rat783 (783) 51219.02 5673.15 9.18

pr1002 (1002) 190050.13 8706.32 22.11
pr2392 (2392) 2538336.73 208478.18 12.28
pcb3038(3038) 3688402.99 310613.66 11.87

Table 4 shows a quality comparison for the solutions for the CPU and GPU im-
plementation when the tour construction and the pheromone update are repeated
100 times. From the table, we can find that the difference of the solutions between
the CPU and GPU is very small compared with the optimal solutions. This is
because we have implemented the sequential algorithm on the GPU as it is. Note
that our goal in this paper is to accelerate the AS on the GPU, not to improve the
accuracy of the solution.

In the related works of ACO for TSP shown in Section 1, several GPU imple-
mentations have been proposed. Table 5 shows the comparison of speed-up factors
with the existing approaches. Since those implemented methods, used instance, and
utilized GPUs differ, we cannot directly compare our implementation with them.
Since the speed-up factor we achieved is 22.11 over our CPU implementation, some
readers think that our GPU implementation is as effective as them. However, in-
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Table 4. The solution when tour construction and pheromone update are repeated 100 times and the ratio with

respect to the optimal solution

Instance (# cities) CPU GPU Optimal
d198 (198) 16796/1.064 16943/1.074 15780
a280 (280) 3174/1.231 3101/1.203 2579
lin318 (318) 48538/1.155 47736/1.136 42029
pcb442 (442) 63312/1.247 62176/1.224 50778
rat783 (783) 11135/1.264 11061/1.256 8806
pr1002 (1002) 335748/1.296 332608/1.284 259045
pr2392 (2392) 514530/1.361 508109/1.344 378032
pr3038 (3038) 186972/1.358 185570/1.348 137694

troducing the hybrid method with the stochastic trial to the conventional CPU
implementation, the computing time of our CPU implementation shown in Ta-
ble 1 is approximately halved. Therefore, our GPU implementation is much more
effective.
Table 5. Comparison of speed-up factors with the existing approaches

Delévacq [15] Kobashi [16] Cecilia [17] This work
GPU Tesla C2050 ×2 Tesla C2050 Tesla C2050 GeForce GTX580

Speed-up 23.6 23.5 20.0 22.1

6. Conclusions

In this paper, we have proposed an implementation of the ant colony optimization
algorithm, especially AS, for the traveling salesman problem on the GPU. In our
implementation, we have considered many programming issues of the GPU archi-
tecture such as the coalesced access of the global memory and the shared memory
bank conflicts. In addition, we have introduced a method with the stochastic trial
in the roulette-wheel selection. We have implemented our parallel algorithm in
NVIDIA GeForce GTX 580. The experimental results show that our implementa-
tion can perform the AS for 1002 cities in 8.71 seconds when the tour construction
and pheromone update are repeated 100 times, while the CPU implementation
runs in 190.05 seconds. Thus, our GPU implementation attains a speed-up factor
of 22.11.
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