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SUMMARY

There is no doubt that data compression is very important in computer engineering. However, most lossless
data compression and decompression algorithms are very hard to parallelize, because they use dictionaries
updated sequentially. The main contribution of this paper is to present a new lossless data compression
method that we call Adaptive Loss-Less (ALL) data compression. It is designed so that the data compression
ratio is moderate but decompression can be performed very efficiently on the GPU. This makes sense for
applications such as training of deep learning, in which compressed archived data are decompressed many
times. To show the potentiality of ALL data compression method, we have evaluated the running time
using five images and five text data and compared ALL with previously published lossless data compression
methods implemented in the GPU, Gompresso, CULZSS, and LZW. The data compression ratio of ALL data
compression is better than the others for eight data out of these 10 data. Also, our GPU implementation on
GeForce GTX 1080 GPU for ALL decompression runs 84.0-231 times faster than the CPU implementation
on Core i7-4790 CPU. Further, it runs 1.22-23.5 times faster than Gompresso, CULZSS, and LZW running
on the same GPU. Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Background

A GPU (Graphics Processing Unit) is a specialized circuit designed to accelerate computation for
building and manipulating images [1]. Latest GPUs are designed for general purpose computing
and can perform computation in applications traditionally handled by the CPU. Hence, GPUs
have recently attracted the attention of many application developers. NVIDIA provides a parallel
computing architecture called CUDA (Compute Unified Device Architecture) [2], the computing
engine for NVIDIA GPUs. CUDA gives developers access to the virtual instruction set and memory
of the parallel computational elements in NVIDIA GPUs. In many cases, GPUs are more efficient
than multicore processors [3], since they have thousands of processor cores and very high memory
bandwidth.

CUDA uses two types of memories in the NVIDIA GPUs: the shared memory and the global
memory [4]. The shared memory is an extremely fast on-chip memory with lower capacity, say, 16-
96 Kbytes. The global memory is implemented as an off-chip DRAM, and thus, it has large capacity,
say, 1.5-12 Gbytes, but its access latency is very large. When we develop CUDA programs, we need
to consider the coalescing of the global memory access [3, 5]. To maximize the bandwidth between
the GPU and the off-chip DRAM, the consecutive addresses of the global memory must be accessed
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at the same time. Thus, CUDA threads should perform coalesced access when they access the global
memory.

There is no doubt that data compression is one of the most important tasks in the area of
computer engineering. In particular, almost all image data are stored in files as compressed data
formats. There are basically two types of image compression methods: lossy and lossless [6]. Lossy
compression can generate smaller files, but some information in original files are discarded. Hence,
decompression of lossy compressed data does not generate files identical to the original data. On
the other hand, lossless compression creates compressed data, from which we can obtain the exactly
same original data by decompression.

The main purpose of this paper is to present a novel lossless data compression method optimized
for efficient decompression using the GPU. Usually, data in a large archive are stored in a
compressed format to reduce the space. If each of compressed data is accessed many times, it makes
sense to use a data compression method that maximizes performance in terms of decompression time
and compression ratio. In particular, if archived data stored in a data center are accessed by users,
and they are processed on the GPU for display, such data compression method optimized for GPU
decompression should be used. Also, in training phase of deep learning, each of data stored in an
archive is repeatedly accessed. If such data are processed on the GPU, a data compression method
optimized for GPU decompression should be used. Thus, our goal is to present a novel lossless data
compression method with better compression ratio and high GPU decompression speed.

1.2. Lossless data compression and related work

As usual, we assume that an input data to be compressed is a string of 8-bit characters taking value
in range [0,255]. The task of data compression is to convert it into a string of codes and that of
data decompression is inverse-conversion. One of the simplest lossless compression methods is run-
length encoding, in which each run of the same character is replaced by a code (character,count).
For example, AAAABBBCC is encoded to (A,4)(B,3)(C,2) by run-length encoding. This encoding
is very useful if an input sequence has a lot of long runs such as line drawings. However, it does
not achieve good compression ratio for images with few runs such as natural images and plain text.
LZSS (Lempel-Ziv-Storer-Szymanski) [7] is a well-known dictionary-based lossless compression
method, which replaces a substring appearing before by code (offset, length). LZSS decompression
is performed using a buffer storing recently decoded string as a dictionary. Each code (offset,length)
is decoded by retrieving the corresponding substring in the dictionary. For example, if the dictionary
stores ABCDEFGH, then code (2,5) is decoded to CDEFG. LZ77 (Lempel-Ziv) [8] is a compression
method very similar to LZSS. It uses code (offset, length, next unmatched character). LZW (Lempel-
Ziv-Welch) [9] is a patented lossless compression method used in Unix file compression utility
“compress” and in GIF image format. In LZW compression/decompression, a newly appeared
substring is added to the dictionary. Codes of LZW are the indices of dictionary, each of which
corresponds to an added substring.

Recent lossless data compression uses several other techniques including arithmetic encoding,
Burrows-Wheeler transform(BWT)[10] and move-to-front transform(MTF). Table I summarizes
lossless compression methods used these days.

Table I. Lossless data compression methods and tools

lossless compression encoding method
LZSS, LZ77, LZW dictionary-based encoding

gzip[11], LZH, LZMA dictionary-based encoding, Huffman or arithmetic encoding
bzip2[12], ZZIP BWT, MTF, Huffman-coding, run-length encoding

It is very hard to parallelize LZSS compression, because a newly decoded string is appended to the
dictionary every time after a code is decoded and output. To parallelize LZSS compression, the input
string is partitioned into equal-sized strips, each of which is compressed sequentially. Parallel LZSS
decompression can be done for all strips in parallel, but codes in each strip are decoded sequentially
one by one. Such strip-wise parallel LZSS decompression called CULZSS have been implemented
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in a GPU [13], but it achieves very small acceleration ratio over the sequential implementation on
the CPU due to low parallelism.

LZ77-based [8] data compression called Gompresso and the GPU implementation have been
shown in [14]. The structure of compressed data of Gompresso is a sequence of codes (unmatched
characters of length at most 15, offset, length). The compression ratio and the running time on the
GPU are better than CULZSS. The GPU implementation is code-wise parallel in the sense that a
thread is arranged in each code of a compressed string. Hence, it has very high parallelism and
a lot of threads work in parallel. Since memory access latency of the GPU is quite large, higher
parallelism can hide large memory access latency and can attain better performance. However,
decoding of codes is performed sequentially in the worst case due to the code dependency.

Parallel algorithms for LZW compression and decompression have been presented [15, 16].
However, threads perform compression and decompression with strip-wise low parallelism.
Quite recently, we have presented GPU implementation of LZW decompression with code-wise
parallel [17]. The idea is to create a dictionary by parallel pointer traversing. Since pointer
traversing is code-wise parallel, LZW decompression on the GPU is much faster than CULZSS
decompression.

Encoding methods such as Huffman encoding and BWT are useful to obtain better compression
ratio, but they are hard to parallelize on a GPU. In [18], a bzip2-like lossless data compression
scheme and the GPU implementation have been presented, but the GPU implementation runs slower
than the CPU implementation.

1.3. Our contribution

In this paper, we will present a new lossless data compression method called ALL (Adaptive
Loss-Less) data compression, which is an extension of LLL (Light Loss-Less) data compression
presented in the conference version [19] of this paper. LLL data compression uses run-length
coding and Huffman-based byte-wise coding. In addition, ALL data compression uses segment-
wise coding and adaptive dictionary coding to improve the data compression ratio and the running
time for decompression. Since new techniques are applied only if they improve the performance, the
performance of ALL is always better than that of LLL. ALL data compression has five types of codes
of length 1, 2, or 3 bytes as follows: single character code (SC, 1 byte), short run-length code (SRL,
2 bytes), short interval code (SI, 2 bytes), long run-length code (LRL, 3 bytes), and long interval
code (LI, 3 bytes). An SC code simply represents a 1-byte uncompressed character. SRL and LRL
codes encode a run of the same character with length in ranges [2, 16] and [18, 3408], respectively.
Also, SI and LI codes encode a substring in the dictionary of length in ranges [2, 16] and [18, 3408],
respectively. Since longer run and substring, which tend to appear less frequently, use more bytes,
we can think this encoding is Huffman-based byte-wise coding. To accelerate decompression using
the GPU, we use segment-wise coding in which multiple codes use the same dictionary and they
can be decoded in parallel using multiple threads in the GPU. However, segment-wise coding may
deteriorate the data compression ratio. To compensate this deterioration, we use adaptive dictionary
coding, in which the prefix of the dictionary is replaced by a magic string. A magic string is used
to encode substrings appear frequently. It can also be used to encode random substrings which
can not be compressed into a smaller sequence of codes. To clarify the performance of ALL data
compression method, we have evaluated the data compression ratio and the running time using five
images and five text data and compared ALL with the other lossless data compression methods
implemented in the GPU, Gompresso, CULZSS, and LZW. The data compression ratio of ALL
data compression is better than the others for eight data out of these 10 data. Also, our GPU
implementation on GeForce GTX 1080 GPU for ALL decompression runs 84.0-231 times faster
than the CPU implementation on Core i7-4790 CPU. Further, it runs 1.22-23.5 times faster than
Gompresso, CULZSS, and LZW.

This paper is organized as follows. Section 2 introduces ALL encoding and shows sequential
algorithms for ALL compression and decompression. We then go on to show a GPU implementation
of ALL decompression in Section 3. Section 4 offers various experimental results including data
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compression ratio, running time on the CPU and the GPU, and the SSD-GPU loading time. Section 5
concludes our work.

2. ALL: ADAPTIVE LOSS-LESS DATA COMPRESSION

The main purpose of this section is to present ALL (Adaptive Loss-Less) data compression. We first
introduce outline of ALL coding, and then show the details. After that, we briefly show sequential
ALL compression and decompression.

2.1. Outline of ALL coding

ALL coding includes several data compression techniques: run-length coding, segment-wise coding,
adaptive dictionary coding, and Huffman-based byte-wise coding.

In run-length coding, a substring with the same character is encoded in a run-length code
with a pair (character, length). For example, run-length codes (A,4)(B,3)(C,2) are decoded to
AAAABBBCC. ALL codes include run-length codes. The run-length coding achieves good
compression ratio if the input character has many long runs.

The sliding window compression technique is used in LZSS compression. It uses a dictionary
buffer of a fixed size and an interval code with a pair (offset,length). For example, suppose that a
dictionary buffer of size 8 is used. A compressed codes ABCDEFGHI(1,4)(3,3)B(0,3) is decoded to
ABCDEFGHICDEFICDBCDE. The decoding operations for interval codes (1,4), (3,3), and (0,3)
are performed as follows. First, when (1,4) is decoded, the dictionary buffer stores the latest decoded
8 characters BCDEFGHI. Thus, (1,4) is decoded to a substring of length 4 starting from offset 1 of
the dictionary buffer, that is, CDEF. After that, the dictionary buffer has 8 characters FGHICDEF
and interval code (3,3) is decoded to ICD. Similarly, interval code (0,3) is decoded to CDE, because
the dictionary buffer is CDEFICDB. The sliding window compression works efficiently if the same
substring appears two or more times in close positions. However, it is very hard to parallelize
decompression by the sliding window. Since the decoded string of an interval code can be obtained
after the dictionary buffer is determined, decoding operations must be performed one by one.

To parallelize decompression for interval codes, we use segment-wise coding. In this coding,
multiple interval codes use the same dictionary. We show how ABCDEFGHI(1,4)I(1,2)B(1,3) is
decoded to ABCDEFGHICDEFICDBCDE. We assume that three interval codes (1,4), (1,2), and
(1,3) are in the same segment and use the same dictionary buffer BCDEFGHI. They are decoded to
CDEF, CD, and CDE in parallel. In ALL data compression, a group of 16-32 codes called a segment
uses the same dictionary, which includes the latest 4096 uncompressed characters of the first code
in the segment.

In the sliding window compression technique, each code is decoded using the latest decoded
substring as a dictionary. On the other hand, in segment-wise coding, multiple codes are decoded
using the same dictionary. Thus, the last code in a segment uses a distant substring as a dictionary
and the data compression ratio may be deteriorated, because it is likely that the same substring
appears again with higher probability in a closer position. To compensate this deterioration,
we use adaptive dictionary coding. We replace the prefix of the dictionary buffer by a magic
string, which is defined for each segment of codes. For example, for a compressed string
ABCDEFGH(0,4)(4,3)(0,3)(1,3), a magic string IJKL is preserved for a segment of interval codes
(0,4)(4,3)(0,3) and (1,3). When they are decoded, the latest 8 characters ABCDEFGH stored in
a dictionary are overwritten by the magic string IJKL from the left. We use the resulting string
IJKLEFGH as a dictionary. Interval codes (0,4), (4,3), (0,3), and (1,3) are decoded to IJKL, EFG,
IJK, and JKL, and we obtain a decompressed string ABCDEFGHIJKLEFGIJKJKL. A magic string
should include frequently appeared substrings to achieve better compression ratio.

A magic string can also be used to encode a random string with high entropy, which there is no
way to compress in smaller size. Usually, the total size of codes for a random string may be larger
than the input uncompressed data due to the overhead of coding. Magic strings can minimize the
overhead. An interval code in ALL coding supports length up to 3408. So, a random string of length
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3408 can be encoded using a magic string of length 3408 and only one interval code (0,3408). Thus,
the overhead of the random string of length 3408 is only one additional interval code.

In many compression methods, Huffman coding is used to minimize the average code length.
More specifically, fewer bits are assigned to frequently used codes. Since the number of bits in each
code of Huffman coding varies and each code is identified by reading bits in a code one by one,
decoding operation is very hard to parallelize. Hence, it is not possible to identify the boundary of
every code in parallel. Thus, we simply use Huffman-based byte-wise coding which enables us to
identify every code in parallel. ALL coding uses 1-byte and 2-byte words as atomic elements of
coding which constitutes one of the three codes: 1-byte code (1-byte word), 2-byte code (2-byte
word), and 3-byte code (2-byte word plus 1-byte word). Basically, a 1-byte code simply encodes a
1-byte character. A 2-byte code is used to represent length from 2 to 16. A 3-byte code represents
length from 18 to 3408. Intuitively, longer codes are appeared less frequently and longer strings are
encoded in them, byte-wise Huffman coding makes sense.

2.2. ALL codes

In this subsection, we define ALL codes in detail. ALL compresses a string of 1-byte characters into
ALL codes, each of which consists of one or two words. It uses two types of words: 1-byte word and
2-byte word. A 1-byte word simply represents 8-bit parameter c, which can be a 1-byte character
or 8-bit length. A 2-byte (16-bit) word stores 12-bit parameter t and 4-bit parameter l. One or two
consecutive words constitute an ALL code, in which a sequence of one or more 1-byte characters
are encoded. More specifically, an ALL code is a 1-byte word, a 2-byte word, or a 1-byte word plus
a 2-byte word as follows:

1-byte code a 1-byte word
If the previous word is not a 2-byte word of a 3-byte code defined below, a 1-byte word is a
1-byte code with length L = 1.

2-byte code a 2-byte word
If 4-bit parameter l of the 2-byte word is not 15 (= 1111 in binary) then it is a 2-byte code
with length L = l + 2. Clearly, 0 ≤ l ≤ 14 and so 2 ≤ L ≤ 16.

3-byte code a 2-byte word plus a 1-byte word
If parameter l of the 2-byte word is 15 then it is a 3-byte code with length L such that
L = c+ 18 if c+ 18 ≤ 64, that is, c ≤ 46, where c is the parameter of the 1-byte word. If
c ≥ 47 then, L = 16 · (c− 47) + 80, that is, L = 16c− 672. Since 0 ≤ c ≤ 255, length L can
be 18, 19, 20, . . . , 64 and 80, 96, 112, . . . , 3408.

Note that both 2-byte codes and 3-byte codes do not support length 17, because a 2-byte code and a
1-byte code combined can encode a string of length 17.

ALL data compression uses 3 types of codes as follows:

Single Character Code (1-byte code): A 1-byte code simply represents a 1-byte character.

Run-Length Code (2-byte/3-byte code): If parameter t of the 2-byte word in the code is 4095
(= 111111111111 in binary), then it is a Run-Length Code representing a run of length L
with the previous character.

Interval Code (2-byte/3-byte codes): If t of the 2-byte word is not 4095, then it is an Interval Code
representing interval [t, t+ L− 1] of length L in the dictionary.

The reader should refer Table II that summarizes five types of ALL codes.

2.3. Adaptive Dictionary

A sequence of ALL codes is partitioned into segments of 32 words each. Since each code has 1
or 2 words, each segment involves 16-32 codes. The same dictionary is used for all codes of a
segment. A dictionary consists of a previous string and a magic string. The previous string is a
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Table II. ALL codes: p is the previous character and d0d1 · · · d4095 are 4096 characters in the dictionary

Codes

SC
Single Character c

SRL
Short Run-Length

c+ 18 if c ≤ 46
16c − 672 if c ≥ 47

1

LI
Long Interval

111111111111 l

words length L

l + 2

t 1111 c

111111111111 1111LRL
Long Run-Length c

SI
Short Interval t l

string to be deocded

c

pp · · · p

pp · · · p

dtdt+1 · · · dt+L−1

dtdt+1 · · · dt+L−1

string of uncompressed 4096 characters obtained by decoding codes in previous segments. If it has
less than 4096 characters, then it is right justified and 0’s are filled to obtain a string of length
4096. In particular, the previous string of the first segment is a run of 4096 0’s, because the first
segment has no “previous string.” Let p0p1 · · · p4095 be the previous string of 4096 characters,
and let w0w1 · · ·wv−1 be the magic string of v characters. The dictionary can be obtained by
overwriting the magic string from the beginning of the previous string, that is, the dictionary is
w0w1 · · ·wv−1pvpv+1 · · · p4095. A magic string is a sequence of 8-bit characters determined in the
process of compression to attain better compression ratio. Usually, it includes substrings appearing
frequently in an uncompressed input.

Figure 1 shows an example of ALL codes and the decoded string. In the figure, we assume that
the length of a previous string is 32 and a magic string of length 4 is used. Thus, the first 4 characters
of the dictionary is the magic string. The remaining characters of the dictionary are 28 characters of
the previous string. Five ALL codes in the figure are decoded as follows.

1. SI code with offset 1 and length 2 + 1 is decoded to “wxy.”
2. SC code with character “z” is decoded to “z.”
3. SI code with offset 0 and length 2 + 1 is decoded to “vwx.”
4. LI code with offset 7 and length 0 + 18 is decoded to “HIJKLMNOPQRSTUVWXY.”
5. SRL code with length 2 + 2 is decoded to “YYYY.”

Thus, we can confirm that these codes are decoded into the uncompressed string as shown in the
figure.

2.4. Data block: encoded data for a strip

An input uncompressed string to be compressed is partitioned into strips of 65536 bytes each.
Each strip is compressed using ALL codes independently. A data block contains ALL codes with
additional parameters necessary to decode a strip. We will show the data structure of a data block.

Let a0a1 · · · am−1 denote the words for ALL codes in a strip, where m is the number of words in
this strip. We use an array of word identifiers b0b1 · · · bm−1 such that bi = 0 (0 ≤ i ≤ m− 1) if ai
is a 1-byte word and bi = 1 if ai is a 2-byte word. Clearly, the strip has k = �m32� segments. Magic
strings for the k segments are concatenated and stored as a single magic string. To identify each
magic string, we use magic identifiers q0q1 · · · qk−1 such that qi = 0 (0 ≤ i ≤ k − 1) if the length of
the magic string of the i-th segment is 0 and qi = 1 if it is not 0. An array of 12-bit integers is used
to specify the length of each non-zero length magic string. If the value stored in a 12-bit integer for
i-th magic string is li, then this magic string has li + 1 characters. Since the length of each magic
string is in range [1,4096], a 12-bit integer field is sufficient to store the length of a magic string.

Figure 2 illustrates a format of data block. The format has word counts (16 bits; the total number
of words minus 1), word byte counts (16 bits; the total size of words in bytes minus 1), magic string
counts (11 bits; the number of magic strings) and predictor option flag (1 bit). Since the total number
of words and the total size of words are in the range [1,65536], their values minus 1 are stored in 16
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4095

1

0

A

4 8 12 16 20 24 28

B C D E F G H I J K L M N O P Q R S T U V W X Y Z Z Z Z Z Z Z

z 0 11

0

v w x y

previous string

magic string

dictionary

R S T U V W X Y Y Y Y Yw x y z v w x H I J K L M N O P Q

0 4 8 12 16 20 24 28

SI SI LI

7 0

15

2

SC SRL

SI SI LISC SRL

ALL codes

uncompressed string

Figure 1. An example of ALL codes and the decoded string

bits each. Also, the number k of strips is less than 65536
32 = 2048, and the number of magic strings

is stored in 11 bits. Let x0x1 · · ·x65535 denote the 65536 characters of an uncompressed strip. If the
predictor option flag is set, then y0y1 · · · y65535 such that y0 = x0 and yi = (xi − xi−1) mod 256
(1 ≤ i ≤ 65535) are used for ALL data compression. Note that xi = (y0 + y1 + · · ·+ yi) mod 256
for all i. Thus, after y0y1 · · · y65535 is obtained by ALL decompression, an original sequence
x0x1 · · ·x65535 can be computed by the prefix-sums for y0y1 · · · y65535. Usually, the compression
ratio may be better for image data if the predictor is used. On the other hand, the predictor should
not be used for most text data.

0 01 1 1 0 1 0 0 1 · · ·

· · ·

magic idetntifiers (1 bit)

magic string lengths (12 bits)

1 0 0 0 1 0 10 1 · · ·

· · ·

word identifiers (1 bit)

words (1-2 bytes)

· · ·magic strings (1 byte)

l0 l3 l4 l6 l9

l0 + 1 l3 + 1 l4 + 1

word counts (16 bits)

word byte counts (16 bits)

magic string counts (11 bits)

predictor option flag (1bit)

Figure 2. A data block for a strip of 65536 bytes

2.5. ALL file format

ALL file format begins with the header followed by the body. The body simply contains all data
blocks. The header has strip count field storing strip count minus 1. It also has an array of strip
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bytes each of which stores the size of the data block for each strip in bytes minus 1. Since a strip
has 65536 bytes, it makes no sense that the data block has more than 65536 bytes. Thus, if the value
of a strip byte is 65535, then the data block stores uncompressed 65536 characters of a strip as they
are without using ALL codes.

Figure 3 illustrates data stored in the header. We assume that the strip count filed has 32 bits and
thus the maximum number of strips is 232. Since each strip encodes 65536 = 216 bytes, a single
ALL file can encode up to 248 =256T-byte input data in theory.

strip bytes (16 bits)

strip count (32 bits)

· · ·

Figure 3. ALL file header

2.6. Compression and decompression algorithms

We briefly show sequential algorithms for ALL data compression and decompression. Due to
the stringent page limitation, we omit the details, because our main purpose is to show ALL
decompression using a GPU.

For sequential ALL compression, we will show how codes of a segment in a strip are generated.
We first generate codes for a current uncompressed string in a strip using a previous string of length
4096 as a dictionary. Note that this dictionary has no magic string. This can be done in the same way
as LZSS compression [7]. More specifically, we find the longest match and the longest run of the
prefix of a current uncompressed string. We select the longest of the two. This procedure is repeated
until codes of 32 words are generated. We compute the current compression ratio,

the current total size of generated words and magic strings
the current total size of encoded uncompressed characters

for later reference. After that, we find a magic string as follows. We pick following codes from
generated codes:

• the length of codes is less than 3, and
• two or more such codes are consecutive.

We replace such consecutive codes by one interval code using a magic string. For this purpose, we
compute a common superstring that contains all consecutive codes as a substring. For example, for
strings of consecutive codes BAA , AAB , BBA , ABA , and ABB, a string ABAABBA is a common
superstring, because it contains every string as a substring. To achieve better compression ratio, we
should use the shortest common superstring as a magic string. However, the problem of finding the
shortest common superstring is NP-complete [20] and it is not realistic to solve this problem for
compression. Hence, we use a greedy approximation algorithm for the shortest common superstring
problem shown in [21]. We use an approximation solution for the shortest common superstring as
a magic string and start over generation of codes with 32 words again. In other words, we use the
obtained magic string and generate codes with 32 words as before. After that, we evaluate the current
compression ratio again. If this current compression ratio of codes is not better than the previous
one, we do not use this magic string and use the previous codes computed before. Otherwise, we
continue finding a better magic string by repeating the same procedure until no more improvement
of the data compression ratio is possible.

Sequential ALL decompression can be done very easily in linear time. We show how codes of
32 words for a segment are decoded and the resulting string is written in the corresponding output
buffer. We assume that previous string of the segment has been already written in the output buffer.
We first need to compute the dictionary for a segment. Recall that the dictionary can be obtained by
replacing the prefix of the previous string of 4096 characters by the magic string. The reader may
think that copy operation with a large overhead is necessary for this replacement. However, we do
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not have to copy the magic string. We can think that the address space of the dictionary is separated
such that addresses [0, v − 1] are arranged in the magic string and those of [v, 4095] are the previous
string, where v is the length of the magic string. Thus, dictionary accesses to address [0, v − 1] and
[v, 4095] are redirect to the magic string and the previous string, respectively. Hence, each character
in the dictionary can be accessed efficiently in O(1) time and the decoded string of every code can
be written in the output buffer in time linear to the length.

3. GPU IMPLEMENTATION FOR ALL DECOMPRESSION

We assume that the ALL compressed file is stored in the global memory of the GPU and show how
they are decompressed. Our GPU implementation performs decompression and stores the resulting
decompressed string of characters in the global memory of the GPU.

3.1. Parallel prefix scan on the GPU

Before showing a GPU implementation for ALL decompression, we briefly explain a well-known
technique called the parallel prefix scan [19, 22] on the GPU, which computes the prefix-sums of
integers. The parallel prefix scan is used to identify the data block of a strip, to identify words of a
segment, and to compute the writing offset of each code.

Let a0, a1, . . . , a31 be 32 integers of 32 bits each. We assume that 32-bit register A[i] of each
thread i stores ai (0 ≤ i ≤ 31) . The prefix sums âi = a0 + a1 + · · ·+ ai for all i (0 ≤ i ≤ 31) can
be computed in 5 iterations as follows:

[Parallel prefix scan]
for k ← 0 to 4 do

for i← 0 to 31 do in parallel
thread i performs A[i]← A[i] +A[i− 2k] if i ≥ 2k;

Figure 4 illustrates addition performed in the parallel prefix scan. The reader should have no
difficulty to confirm that each A[i] stores the prefix sum âi when this algorithm terminates.

0 4 8 12 16 20 24 28

Figure 4. Parallel prefix scan

The parallel prefix scan can be implemented very efficiently using warp shuffle function [2],
which exchanges the values stored in 32-bit registers of different threads in the same warp. Using
warp shuffle function shfl up(), the value stored in A[i− 2k] can be transferred to thread i with very
small overhead.
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Next, we will show that the prefix-sums of 128 8-bit integers a0, a1, . . . , a127 under modulo 256
very efficiently using the parallel prefix scan. It should be clear that they can be computed by
executing the parallel prefix scan four times in 20 iterations. We show that the number of iterations
can be reduced to 6 if we use SIMD addition vadd4(), which computes the addition of four 8-bit
integers in a 32-bit word under modulo 256. We partition each 32-bit register A[i] (0 ≤ i ≤ 31)
used in the parallel prefix scan into the four 8-bit integers such that each A[i] stores ai, a32+i, a64+i

and a96+i. Suppose that the parallel prefix scan is executed for A[0], A[1], . . . , A[31], with addition
being done by SIMD addition vadd4(). Let a[j, k] denote the interval sum aj + aj+1 + · · ·+ ak.
Each A[i] (0 ≤ i ≤ 31) stores local prefix-sums a[0, i], a[32, 32+ i], a[64, 64 + i], and a[96, 96 + i].
In particular, A[31] stores the local sums a[0, 31], a[32, 63], a[64, 95], and a[96, 127]. By simple
additions, we can obtain 32-bit word with four 8-bit integers being 0, a[0, 31], a[0, 63], and a[0, 95].
By adding this word to every A[i], it stores the prefix-sums a[0, i], a[0, 32 + i], a[0, 64 + i], and
a[0, 96 + i] under modulo 256. For later reference, we call this algorithm parallel 8-bit prefix scan.

3.2. CUDA kernel for ALL decompression

We show how CUDA kernel for ALL decompression invokes CUDA blocks. A CUDA kernel with
CUDA blocks with 64 threads, that is, two warps of 32 threads each, are invoked for decompression.
A warp of 32 threads is assigned to a data block, which contains ALL codes for a strip with 4096
characters. Two warps in a CUDA block work independently. Since the compute capability of
GeForce GTX 1080 is 6.1, each streaming multiprocessor can have up to 2048 resident threads
and 32 resident CUDA blocks [2]. Thus, each CUDA block must have 64 or more blocks to achieve
100% occupancy. A warp of 32 threads assigned to a data block decodes the codes and writes
decompressed string in the output buffer in the global memory of the GPU.

We will show how each warp is assigned to a data block. Let k be the number of strips (or
data blocks). An integer variable c in the global memory is used as a counter to arrange a warp
to a data block. After the CUDA kernel is invoked, the first thread of every warp calls function
atomicAdd(&c,1), which increments c as an atomic operation and returns the value of c before
addition [2]. If the return value i of atomicAdd satisfies i < k, then the warp is assigned to
the i-th data block and works for decompressing the block. If i ≥ k then the warp terminates.
Since each function call atomicAdd(&c,1) returns 0, 1, 2, . . . in turn, every data block can be
assigned a warp and is decompressed by it. Let s0, s1, . . . , sk−1 be the strip bytes stored in the
header and ŝ0, ŝ1, . . . be the prefix sums such that ŝi = (s0 + 1) + (s1 + 1) · · ·+ (si + 1) for all
i (0 ≤ i ≤ k − 1). Since each i-th data block has si + 1 bytes, it is allocated from offset ŝi−1 of
the body. Thus, a warp can identify the assigned data block in the global memory if the value of
ŝi−1 is computed. We will show how ŝi−1 is computed by the warp. A warp of 32 threads finds
minimum j such that ŝi−j has been already computed. This can be done by checking 32 values
of p’s in turn and merging the results by ballot function call of CUDA [2]. For such j, the sum
ŝi−j + (si−j+1 + 1) + (si−j+2 + 1) + · · ·+ (si−1 + 1), which is equal to ŝi−1, is computed by the
parallel prefix scan (Figure 4). After that, decompression for i-th data block stored in offset ŝi−1 is
performed. When decompression is completed, the first thread in the warp calls atomicAdd(&c,1)
and performs decompression of strip i′ again if the return value i′ is smaller than k. Otherwise, the
warp terminates. When all warps terminate, decompression of all data blocks is completed.

3.3. A CUDA block decompressing a data block

We will show how each data block is decompressed by 32 threads in a warp. Recall that ALL codes
are segment-wise and segments are encoded in 32 words each. Thus, 32 threads decode codes for
every segment one by one. We show how codes of 32 words for each segment are decoded using
32 threads in a warp and decoded string is written in the corresponding output buffer in the global
memory. This decoding procedure has four stages as follows:

Stage 1 Identify all codes of 32 words for the segment.

Stage 2 Determine the code type and the reading offset t, length L, and the writing offset.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



ADAPTIVE LOSS-LESS DATA COMPRESSION METHOD OPTIMIZED FOR GPU DECOMPRESSION 11

Stage 3 Write the decoded strings in the output buffer.

Stage 4 If the predictor option flag is 1, then the prefix-sums of the decoded strings are computed

As we have mentioned in sequential ALL decompression, copy operation for magic and previous
strings is not necessary. We can think that the address space of the dictionary is separated into the
magic string and the previous string.

In Stage 1, 32 threads read 32 word identifiers of a segment. Let b0, b1, . . . , b31 be these 32
word identifiers. They compute the prefix sums b̂i = (b0 + 1) + (b1 + 1) + · · ·+ (bi + 1) for all
i (0 ≤ i ≤ 31) by the parallel prefix scan (Figure 4). Basically, each i-th thread (0 ≤ i ≤ 31) is
assigned to the i-th word stored in offset b̂i−1, and works for decoding the code corresponding to
the word.

In Stage 2, each thread identifies the code type (SC, SRL, SI, LRL, or LI) and the reading offset
t and length L of the assigned code. Since the offset of each code has been identified, this can be
done in an obvious way using Table II. After that, the writing offset of each code is determined as
follows. Since each code is decoded to a string of length L, the prefix-sums of lengths correspond
to the writing offset. More specifically, let L0, L1, . . . , L31 be the lengths of codes corresponding
to 32 words. If a code is a 3-byte code with two words, let the length of the second word be 0 for
convenience. The 32 threads in a warp compute the prefix sums L̂i = L0 + L1 + · · ·+ Li for all i
(0 ≤ i ≤ 31) by the parallel prefix scan (Figure 4). Clearly, the writing offset of each i-th code is
L̂i−1.

In Stage 3, the decoded string of each code is written in the output buffer. This decoding operation
is performed for five types of codes in turn as follows:

Step 1: Single Character Codes A thread assigned to a single character code simply copies the
parameter c of it to the output buffer.

Step 2: Short Interval Codes An assigned thread simply copies the string of length L (≤ 16) in
the dictionary to the output buffer.

Step 3: Long Interval Codes We use all 32 threads to copy the string of length L (≥ 18) in the
dictionary to the output buffer.

Step 4: Short Run-length Codes An assigned thread repeats writing previous character p in the
output buffer L (≤ 16) times.

Step 5: Long Run-length Codes We use all 32 threads to write a run of previous character p with
length L (≥ 18) in the output buffer.

In Steps 3 and 5, at least 18 bytes are written in the output buffer. Hence, 32 threads are used for
this writing operation and such codes are decoded in turn if a segment has multiple long codes with
long length. On the other hand, Steps 2 and 4 perform writing operation for at most 16 bytes. Thus,
we use a single thread for each code and perform writing operation for all such codes in parallel.

Finally, in Stage 4 if predictor option flag is 1, we compute the prefix-sums of the resulting
string. For efficient prefix-sum computation, we use the parallel 8-bit prefix scan which computes
the prefix-sums of 128 8-bit short integers under modulo 256.

3.4. Performance issues of the GPU implementation for ALL decompression

We will discuss several performance issues of our GPU implementation for ALL decompression.
First, we discuss memory access to the global memory, which is the bottleneck in many GPU

implementations due to large latency. In our GPU implementation, 32 words in the global memory
are read by 32 threads in a warp at the same time. Since these words are consecutive, memory
access is coalesced. Also, the resulting string of each LRL code is written in the global memory by
32 threads. For decoding each LI code, the dictionary (or the previous string and the magic string)
stored in the global memory are copied to the output buffer in the global memory by 32 threads.
Clearly, these memory access operations are coalesced. Decoding SC, SI, and SRL codes involves
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few memory accesses. Thus, these codes are decoded using one thread each. Although memory
access for these codes are not coalesced, the performance is not so degraded.

To maximize the performance of a GPU implementation, we should invoke as many threads
and CUDA blocks as possible. For this purpose, the occupancy must be 100%. In our GPU
implementation, a CUDA block with 64 threads uses no shared memory. Each thread uses 31 32-
bit registers. Each streaming multiprocessor of GeForce GTX 1080 (compute capability 6.1)
has 2048 resident threads, 32 resident CUDA blocks and 64K 32-bit registers [2]. Hence, a
CUDA kernel can dispatch 32 CUDA blocks in each streaming multiprocessor, because they use
32× 64 = 2048 resident threads and 2048× 31 = 62K 32-bit resisters. Thus, the occupancy of our
implementation is 100%. Also, since GeForce GTX 1080 has 20 streaming multiprocessors, our
GPU implementation can dispatch 32× 20 = 640 CUDA blocks with 2048× 20 = 40K threads at
the same time. Since each strip is decoded using a warp of 32 threads, 1280 strips can be decoded in
parallel. Thus, resident threads of GeForce GTX 1080 are fully utilized if the size of uncompressed
data is 1280× 65536 = 80M bytes or larger.

4. EXPERIMENTAL RESULTS

We have implemented the following four compression methods in the GPU and evaluated the
performance.

ALL Our Adaptive Loss-Less compression presented in this paper

Gompresso LZ77-based [8] compression implemented in the GPU shown in [14]

CULZSS GPU implementation of LZSS [7] implemented in the GPU [13]

LZW GPU implementation of LZW [9, 23] shown in [17]

For evaluating the performance including the data compression ratio and the running time for
decompression, we have used a data set in Table III. We have used five images and five text data.
Figure 5 shows three JIS standard images, Crafts, Flowers, and Graph. The pixel value of every
pixel of Random image is selected independently at random from [0, 255]. Hence, it is not possible
to generate a smaller compressed data than this uncompressed Random image. Every pixel of Black
image is 0 and so the compression ratio is the minimum. Thus, Random and Black images are
extreme for data compression.

Table III. Data set used for evaluating the performance

Data Size (Mbytes) Data contents
Crafts 37.6

Flowers 37.6 Standard RGB images (JIS X 9204-2004) of size 4096× 3072
Graph 37.6

Random 37.6 Random image of size 4096× 3072
Black 37.6 Black image of size 4096× 3072
wiki 1000 XML dump of a 1G-byte subset of English Wikipedia

matrix 808 Hollywood-2009 sparse matrix in CVS format
linux-2.4.5.tar 114 Source codes of Linux kernel

rectail96 121 Reuters news in XML
w3c2 109 XML documents for w3c

Table IV shows the data compression ratio, the ratio between the uncompressed size and
compressed size. The best compression ratios among the four data compression methods are
underlined. The data compression ratio of ALL is better than the others for almost all data. For
two data, wiki and w3c2, Gompresso is better than ALL, but the difference is quite small. Since
Random image cannot be compressed to smaller data, the compression ratio is larger than 1. The
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Crafts Flowers Graphs

Figure 5. Three standard images used for experiments

overhead of compression of ALL is very small for such data. Also, for data with low entropy such
as Crafts and Black images, ALL is much better than the others, because run-length encoding works
efficiently for long runs in these images.

Table IV. Data compression ratio by four compression methods

Data Size (Mbytes) ALL Gompresso CULZSS LZW
Crafts 37.6 0.644 0.781 0.863 0.808

Flowers 37.6 0.434 0.682 0.768 0.657
Graph 37.6 0.0168 0.0480 0.0710 0.0375

Random 37.6 1.0002 1.11 1.20 1.368
Black 37.6 0.00110 0.0370 0.0421 0.00602
wiki 1000 0.534 0.532 0.555 0.540

matrix 808 0.428 0.431 0.454 0.455
linux-2.4.5.tar 114 0.446 0.485 0.573 0.464

rectail96 121 0.396 0.395 0.437 0.489
w3c2 109 0.292 0.326 0.296 0.463

Table V shows the running time of decompression. The running time on GeForce GTX 1080
is evaluated for four data compression methods. We also evaluated the running time of ALL
decompression on Intel i7-4790 (3.67GHz) CPU to see the acceleration ratio over the GPU. Note
that, we have implemented a sequential algorithm for ALL using a single core of Intel i7-4790 CPU
and we do not use multicores and hyperthread of the CPU. Since the comparison of computation
powers of GPU and CPU is out of scope of this paper, we did not implement multithreaded algorithm
in the CPU. However, we can say that the CPU implementation cannot be accelerated more than 8
times by multithreaded implementation using 8 hyperthreads of Intel i7-4790 CPU. The table shows
the running time of ALL using the CPU and the GPU. It also shows the acceleration ratio of GPU
over CPU. From the table, it achieves high acceleration ratio of 84.0-231. The high acceleration
ratio implies that our implementation of ALL decompression on GPU is highly parallelized and
runs very efficiently. It also shows the ratios of running time between GPU implementation of ALL
and those of the others. Since all ratios are larger than 1, ALL GPU implementation always runs
faster than the others.

We have evaluated the SSD-GPU loading time for three possible scenarios (Figure 6) as follows:

Scenario A: Uncompressed data in the SSD is transferred to the global memory of the GPU
through the CPU.

Scenario B ALL-compressed data is transferred to the CPU, it is decompressed using the CPU,
and then the resulting decompressed data is copied to the global memory of the GPU.

Scenario C ALL-compressed data is transferred to the GPU, and decompression is performed by
the GPU.

Table VI shows the SSD-GPU loading time which is the time necessary to load uncompressed data
in the global memory of the GPU from the SSD. The best total time of the three scenarios for each
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Table V. The running time in milliseconds for decompression

Data ALL Gompresso CULZSS LZW
CPU GPU CPU

GPU GPU Gomp
ALL GPU CULZSS

ALL GPU LZW
ALL

Crafts 116.2 1.167 99.5 1.418 1.22 4.113 3.52 2.477 2.12
Flowers 92.73 0.8447 110 2.068 2.45 4.096 4.85 1.255 1.49
Graph 56.21 0.4862 116 4.213 8.67 2.343 4.82 1.531 3.15

Random 87.78 0.3792 231 3.872 10.2 8.918 23.5 3.921 10.3
Black 45.96 0.4605 99.8 5.761 12.5 3.231 7.02 3.729 8.10
wiki 2962 28.05 106 50.41 1.80 218.8 7.80 56.92 2.03

matrix 1932 19.57 98.8 27.12 1.39 87.60 4.48 25.79 1.32
linux-2.4.5.tar 273.6 2.344 117 3.387 1.44 11.29 4.82 3.030 1.29

rectail96 252.1 2.244 112 3.354 1.49 11.43 5.09 3.248 1.45
w3c2 165.8 1.974 84.0 2.803 1.42 10.92 5.53 2.536 1.28

data is underlined. Since all images have the same size, the SSD-GPU loading times for Scenario A
is proportional to the uncompressed data size. In Scenario B, the time for CPU decompression
dominates data transfer time. Hence, it makes no sense to use CPU decompression to load data in
the GPU. The total time of Scenario C is smaller than that of Scenario A except Random image,
in which the compressed data is larger than the uncompressed data. However, the difference of the
total time is very small, because such data can be decompressed on the GPU very efficiently. Hence,
we can say that Scenario C should be selected for loading data in the GPU regardless of data. In
particular, we should use GPU decompression to load data stored in the SSD, even if the storage
capacity is so large that all uncompressed data can be stored.

SSD host

Scenario A

Scenario B

Scenario C

GPU

CPU decompression

GPU decompression

Figure 6. Three scenarios for evaluating the SSD-GPU loading time

5. CONCLUSION

In this paper, we have presented a new data compression method called ALL (Adaptive Loss-Less)
compression. Although the compression ratio is comparable, the ALL decompression on the GPU
is much faster than previously published Gompresso, CULZSS and LZW decompression. We also
provided the SSD-GPU loading time using ALL decompression. The experimental results show that
the scenario, which transfers ALL-compressed data stored in the SSD to the GPU through a host
and decompresses it in the GPU, is enough fast for practical use.
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Table VI. The SSD-GPU loading time in milliseconds using ALL decompression for three scenarios

Crafts FlowersGraph Rand. Black wiki matrix linux rectrail w3c2
Size (MB) 37.6 37.6 37.6 37.6 37.6 1000 808 114 121 109
Scenario A
SSD→CPU 19.15 19.15 19.13 19.15 19.16 432.0 411.2 57.95 61.09 55.25
CPU→GPU 11.51 11.52 11.52 11.53 11.52 259.8 247.4 34.91 36.28 33.28

Total 30.66 30.67 30.65 30.68 30.68 691.8 658.6 92.86 97.38 88.53
Scenario B
SSD→CPU 12.33 8.296 0.3210 19.14 0.02082 230.4 175.9 25.84 24.20 16.14

CPU decomp. 116.2 92.73 56.21 87.78 45.96 2962 1932 273.6 252.1 165.8
CPU→GPU 11.52 11.52 11.51 11.52 11.51 259.6 247.6 34.92 36.79 33.27

Total 140.1 112.5 68.04 118.4 57.49 3452 2356 334.3 313.1 215.2
Scenario C
SSD→CPU 12.32 8.305 0.3230 19.16 0.02080 230.7 176.2 25.86 24.23 16.16
CPU→GPU 7.402 5.001 0.1940 11.52 0.01320 138.7 106.0 15.57 14.58 9.712

GPU decomp. 1.168 0.8447 0.4862 0.3792 0.4605 28.05 19.57 2.344 2.243 1.974
Total 20.88 14.15 1.003 31.06 0.4945 397.5 301.6 43.77 41.05 27.85
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