
Bulk GCD Computation Using a GPU to Break
Weak RSA Keys

Toru Fujita, Koji Nakano and Yasuaki Ito
Department of Information Engineering

Hiroshima University

Kagamiyama 1-4-1, Higashi Hiroshima, 739-8527 Japan

Abstract—RSA is one the most well-known public-key cryp-
tosystems widely used for secure data transfer. An RSA encryp-
tion key includes a modulus n which is the product of two large
prime numbers p and q. If an RSA modulus n can be decomposed
into p and q, the corresponding decryption key can be computed
easily from them and the original message can be obtained using
it. RSA cryptosystem relies on the hardness of factorization of
RSA modulus. Suppose that we have a lot of encryption keys
collected from the Web. If some of them are inappropriately
generated so that they share the same prime number, then
they can be decomposed by computing their GCD (Greatest
Common Divisor). Actually, a previously published investigation
showed that a certain ratio of RSA moduli in encryption keys
in the Web are sharing prime numbers. We may find such weak
RSA moduli n by computing the GCD of many pairs of RSA
moduli. The main contribution of this paper is to present a
new Euclidean algorithm for computing the GCD of all pairs
of encryption moduli. The idea of our new Euclidean algorithm
that we call Approximate Euclidean algorithm is to compute an
approximation of quotient by just one 64-bit division and to
use it for reducing the number of iterations of the Euclidean
algorithm. We also present an implementation of Approximate
Euclidean algorithm optimized for CUDA-enabled GPUs. The
experimental results show that our implementation for 1024-bit
GCD on GeForce GTX 780Ti runs more than 80 times faster
than the Intel Xeon CPU implementation. Further, our GPU
implementation is more than 9 times faster than the best known
published GCD computation using the same generation GPU.

I. INTRODUCTION

The GPU (Graphics Processing Unit) is a specialized
circuit designed to accelerate computation for building and
manipulating images [1]–[3]. Latest GPUs are designed for
general purpose computing and can perform computation in
applications traditionally handled by the CPU. Hence, GPUs
have recently attracted the attention of many application de-
velopers [1], [4]–[7]. NVIDIA provides a parallel computing
architecture called CUDA (Compute Unified Device Archi-
tecture) [8], [9], the computing engine for NVIDIA GPUs.
CUDA gives developers access to the virtual instruction set
and memory of the parallel computational elements in NVIDIA
GPUs. In many cases, GPUs are more efficient than multicore
processors [10], since they have thousands of processor cores
and very high memory bandwidth.

CUDA uses two types of memories in the NVIDIA GPUs:
the shared memory and the global memory [8]. The shared
memory is an extremely fast on-chip memory with lower ca-
pacity, say, 16-48 Kbytes. The global memory is implemented
as an off-chip DRAM, and thus, it has large capacity, say, 1.5-
6 Gbytes, but its access latency is very long. The efficient

usage of the shared memory and the global memory is a
key for CUDA developers to accelerate applications using
GPUs. In particular, we need to consider bank conflicts of the
shared memory access and coalescing of the global memory
access [5], [6], [9]–[11]. The address space of the shared
memory is mapped into several physical memory banks. If
two or more threads access the same memory banks at the
same time, the access requests are processed in turn. Hence, to
maximize the shared memory access performance, threads of
CUDA should access distinct memory banks to avoid the bank
conflicts of the memory accesses. To maximize the throughput
between the GPU and the DRAM chips, the consecutive
addresses of the global memory must be accessed at the same
time. Thus, CUDA threads should perform coalesced access
when they access the global memory. Also, the latency of the
global memory access is several hundred clock cycles, while
that of the shared memory access is quite small [8]. Hence,
we should minimize the memory access to the global memory
to maximize the performance.

RSA [12] is the most well-known public-key cryptosystem
widely used for secure data transfer. RSA cryptosystem uses an
encryption key open to the public and a secret decryption key.
An encryption key is a pair (n, e) of modulus n and exponent
e such that n = pq for two distinct large prime numbers p and
q and e (< (p − 1)(q − 1)) and (p − 1)(q − 1) are coprime.
For example, for 1024-bit RSA cryptosystem, modulus n with
1024 bit obtained by 512-bit prime numbers p and q. The
decryption key for this encryption key is a pair (n, d) such that
de = 1 (mod (p− 1)(q− 1)), that is, d is the multiplicative
inverse of e (mod (p − 1)(q − 1)). For a public encryption
key (n, e), a message M (0 ≤ M ≤ n − 1) is converted to
the cipher message C = Me mod n. Since M = M ed mod
n always holds for all message M , the cipher message C
can be converted to the original message M by computing
Cd mod n. If the values of p and q are available, d = e−1

(mod (p−1)(q−1)) can be computed very easily by extended
Euclidean algorithm [13]. However, to obtain p and q from an
encryption key (n, e), we need to decompose n into p and q.
Since the computation of factorization is very costly, it is not
possible to decompose n into p and q in a practical computing
time. RSA cryptosystem relies on the hardness of factorization
of a large number.

Suppose that we have a set of many RSA encryption keys
collected in the Web. If some of moduli in encryption keys
are generated by inappropriate implementation of a random
prime number generator, they may share or reuse the same
prime number. We call RSA keys share a prime number weak

2015 IEEE International Parallel and Distributed Processing Symposium Workshops

/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPSW.2015.54

385

RSA keys. Actually, several public keys collected from the
Web includes weak RSA keys [14]. If two moduli share a
prime number, they can be decomposed by computing the
GCD (Greatest Common Divisor). More specifically, if two
distinct moduli n1 and n2 share a moduli p then the GCD
of n1 and n2 is equal to p. It is well known that the GCD
can be computed very easily by Euclidean algorithms [15].
Once we have the GCD p, we can decompose n1 into p and
n1

p and n2 into p and n2

p . Hence, we may break weak RSA
keys by computing the GCDs of all pairs of two moduli in the
Web. The main goal of this paper is to develop an efficient
algorithm for computing the GCD to break weak RSA keys
using the GPU.

It is well known that Euclidean algorithm [15] can compute
the GCD of two numbers very efficiently. Original Euclidean
algorithm repeats modulo computation of two numbers until
one of them reaches zero and the other one stores the GCD.
However, modulo computation of large numbers takes a lot of
time. Hence, Binary Euclidean algorithm [16], which does not
use modulo computation, is often used to compute the GCD.
Basically, Binary Euclidean algorithm repeats subtraction of
two numbers and arithmetic shifts until one of them reaches
zero. Binary Euclidean algorithm needs more iterations than
original Euclidean algorithm, but the computation of each
iteration of Binary Euclidean algorithm takes less time than
that of original Euclidean algorithm. Totally, Binary Euclidean
algorithm runs faster than original Euclidean algorithm, and it
is commonly used to compute the GCD.

The main contribution of this paper is to present a new
Euclidean algorithm for computing the GCD. The idea of our
new Euclidean algorithm that we call Approximate Euclidean
algorithm is to compute a good approximation of quotient by
simple 64-bit division and to use it for reducing the number of
iterations of the Euclidean algorithm. It runs much faster than
original Euclidean algorithm and Binary Euclidean algorithm.
We also present an implementation of Approximate Euclidean
algorithm optimized for CUDA-enabled GPUs.

In our previous papers [17], [18], we have shown that
the bulk execution of an oblivious sequential algorithm can
be implemented in CUDA-enabled GPUs very efficiently. A
sequential algorithm is oblivious if an address accessed at each
time unit is independent of the input. The bulk execution of a
sequential algorithm is to execute it for many different inputs
in turn or at the same time. Suppose that each input of the
bulk execution is assigned to a CUDA thread and each CUDA
thread executes the sequential algorithm for an assigned input.
Since each thread access the same address at each time unit,
memory access to the global memory is coalesced if the input
and the work space is arranged in the CUDA global memory
in column-wise. Hence, this implementation runs very fast.

We will show that our Approximate Euclidean algorithm is
semi-oblivious in the sense that an address accessed at each of
almost all time units. In other words, semi-oblivious algorithm
may access different addresses in few time units. If each of the
CUDA threads executes a semi-oblivious sequential algorithm
for the bulk execution, then they may perform non-coalesced
access to the global memory. However, if the ratio of non-
coalesced access is small enough, the bulk execution of a semi-
oblivious sequential algorithm still runs efficiently on the GPU.

We will show that Approximation Euclidean algorithm is semi-
oblivions, and their implementations on CUDA-enabled GPUs
run fast.

We have also implemented Euclidean algorithms on Xeon
X7460 (2.66GHz) CPU and GeForce GTX 780 Ti GPU. The
experimental results show that, for computing the GCD of
two RSA moduli, Approximate Euclidean algorithm runs faster
than the other Euclidean algorithms both on the Intel CPU and
the GPU. More specifically, Approximate Euclidean algorithm
for computing 1024-bit GCD runs 1.68 times and 8.46 times
faster than Binary Euclidean algorithm on the CPU and on
GPU, respectively. Also, Approximation Euclidean algorithm
for 1024-bit GCD on the GPU achieves a speedup of factor
81.7 over the CPU implementation.

Several previously published papers have presented GPU
implementations of Binary Euclidean algorithm in CUDA-
enabled GPU. Fujimoto [19] has implemented Binary Eu-
clidean algorithm using CUDA and evaluated the performance
on GeForce GTX285 GPU. The experimental results show
that the GCDs for 131072 pairs of 1024-bit numbers can be
computed in 1.431932 seconds. Hence, his implementation
runs 10.9 microseconds per one 1024-bit GCD computation.
Scharfglass et al. [20] have presented a GPU implementation of
Binary Euclidean algorithm. It performs the GCD computation
of all 199990000 pairs of 20000 RSA moduli with 1024 bits
in 2005.09 seconds using GeForce GTX 480 GPU. Thus, their
implementation performs each 1024-bit GCD computation in
10.02 microseconds. Quite recently, White [21] has showed
that the same computation can be performed in 63.0 seconds
on Tesla K20Xm. It follows that it computes each 1024-bit
GCD in 3.15 microseconds. Our implementation of Approx-
imate Euclidean algorithm can perform each 1024-bit GCD
computation in 0.346 microseconds on GeForce GTX 780Ti.
Hence, it runs 9 times faster than the previously published best
known implementation using the same generation GPU.

This paper is organized as follows. We first review sev-
eral Euclidean algorithms in Section II. We then go on to
present our Approximate Euclidean algorithm that computes
an approximation of quotient of two numbers in Section III. In
Section IV, we show an efficient implementation of Euclidean
algorithms for large numbers. Since large numbers must be
stored in multiple words in the memory, we must be careful
to reduce the number of memory access. We show that each
iteration of Euclidean algorithm can be done by reading two
numbers and writing one number. Section V shows Euclidean
algorithms for computing the GCD for RSA moduli. Since
RSA moduli are the product of two prime numbers, we can
modify Euclidean algorithms for any number to handle only
RSA moduli. We also evaluate the number of iterations of
Euclidean algorithms and show that Approximate Euclidean
algorithm performs fewer iterations. In Section VI, we show
how we implement Euclidean algorithms in CUDA-enabled
GPUs for breaking weak RSA keys. Finally, we show experi-
mental results of the performance of Euclidean algorithms both
on the CPU and on the GPU in Section VII. They show that
Approximate Euclidean algorithm run faster than the others.
Section VIII concludes our work.

386

II. EUCLIDEAN ALGORITHMS FOR GCD

The main purpose of this section is to review classical
Euclidean algorithm for computing the GCD of two numbers
X and Y . For simplicity, we assume that both inputs X and
Y are odd and X ≥ Y holds. Hence, the GCD of X and
Y is always odd. If one of them is odd and the other is
even, say X is odd and Y is even, then gcd(X,Y)=gcd(X, Y

2)
holds. Thus, we can convert Y into odd numbers by removing
consecutive 0 bits from the least significant bit of Y . Also,
from gcd(X,Y)=2· gcd(X2 ,

Y
2), we can obtain a factor of 2

in the GCD of X and Y if both X and Y are even. Thus, it
should have no difficulty to modify all GCD algorithms shown
in this paper to handle even input numbers. For later reference,
let s denote the number of inputs bits of X and Y .

Let swap(X ,Y) denote a function to exchange the values
of X and Y . We can write a standard Euclidean algorithm for
computing the GCD of X and Y as follows:

[Original Euclidean algorithm]
gcd(X ,Y){

do {
X ← X mod Y ; // X < Y always holds
swap(X ,Y); // X > Y always holds

} while(Y �= 0)
return(X);

}

We will show that Original Euclidean algorithm runs no more
than 2s iterations of the do-loop. If X < 2Y , then X will store
X−Y , which is less than X

2 . Otherwise, X will store the value

less than Y , which is no more than X
2 . Hence, the value of

X is halved or smaller and thus the number of bits in X is
decreased by one or more. Since the number of bits of one
of the two numbers is decreased by one, Original Euclidean
algorithm performs no more than 2s iterations.

Since modulo computation is costly, Binary Euclidean
algorithm, which does not execute it, is often used to compute
the GCD efficiently:

[Binary Euclidean algorithm]
gcd(X ,Y){

do{
if(X is even) X ← X

2 ;

else if(Y is even) Y ← Y
2 ;

else X ← X−Y
2 // X − Y is always even

if(X < Y) swap(X,Y);
} while (Y �= 0)
return(X);

}

If X (or Y) is even, then the number of bits in X (or in Y)
is decreased by one. If both X and Y are odd, the number of
bits in X is decreased by one or more. Hence, the number of
iterations of the do-loop of Binary Euclidean algorithm is also
no more than 2s.

For the reader’s benefits, we use both the decimal system
and the binary system to represent numbers. For example,
numbers 223 in the decimal system or 11011111 in the binary

system is denoted by “223”, “1101,1111”, or “1101,1111
(223).” Note that Binary Euclidean algorithm removes 0 in the
least significant bit. We can reduce the number of iterations
of the do-loop by removing consecutive 0 bits. Let rshift(X)
be a function returning the number obtained by removing
consecutive 0 bits from the least significant bit of X . For
example, if rshift(1101, 0100)= 0011, 0101. Note that X is
always odd after executing rshift(X) if it is non-zero. Using the
rshift function, we can accelerate Binary Euclidean algorithm
as follows:

[Fast Binary Euclidean algorithm]
gcd(X ,Y){

do {
X ←rshift(X − Y);
if(X < Y) swap(X,Y)

} while (Y �= 0)
return(X);

}

In each iteration of Fast Binary Euclidean algorithm, the
number of bits in X or in Y can be decreased by one or
more. Hence, for any input numbers, the number of iterations
of the do-while loop of Fast Binary Euclidean algorithm is no
larger than that of Binary Euclidean algorithm.

Table I shows an example of computation performed by
Binary Euclidean algorithm and Fast Binary Euclidean algo-
rithm for X = 1111, 1110, 1101, 1100, 1011(1043915) and
Y = 1011, 1011, 1011, 1011, 1011(768955). We can confirm
that the output 0101(5), which is equal to the GCD of X and
Y . Euclidean algorithm computes the GCD in 24 iterations,
while Fast Euclidean Algorithm runs only 16 iterations.

Using the idea of removing consecutive 0 bits used in
Fast Binary Euclidean Algorithm, we can accelerate Original
Euclidean algorithm. Let “ div ” denote quotient operator such
that X div Y = �X

Y �, that is, the rounded-down integer of X
Y .

Clearly, we have X mod Y = X − Y · (X div Y). Thus, we
can rewrite the original Euclidean algorithm as follows:

[Original Euclidean algorithm using div]
gcd(X ,Y){

do {
Q← X div Y ;
X ← X − Y ·Q;
swap(X ,Y);

} while(Y �= 0);
return(X);

}

If X is even, then we can reduce the number of bits in X by
rshift(X). Since X and Y are odd, X − Y · Q is even when
Q is odd. However, if Q is even then X − Y · Q is odd and
rshift does not remove 0 bits. Hence, we should decrease Q
by one if Q is even. Using this idea, we can further accelerate
Original Enclidean algorithm as follows:

[Fast Euclidean algorithm]
gcd(X ,Y){

do {
Q← X div Y ;

387

TABLE I. AN EXAMPLE OF COMPUTATION PERFORMED BY BINARY

EUCLIDEAN ALGORITHM AND FAST BINARY EUCLIDEAN ALGORITHM

Binary Euclidean algorithm Fast Binary Euclidean algo.

1 X 1111,1110,1101,1100,1011 1111,1110,1101,1100,1011
Y 1011,1011,1011,1011,1011 1011,1011,1011,1011,1011

2 X 1011,1011,1011,1011,1011 1011,1011,1011,1011,1011
Y 0010,0001,1001,0000,1000 0100,0011,0010,0001

3 X 1011,1011,1011,1011,1011 0101,1011,1100,0100,1101
Y 0001,0000,1100,1000,0100 0100,0011,0010,0001

.

.

.
13 X 0001,0010,1001,1101 0101,0101

Y 1100,0010,0001 0001,1001

14 X 1100,0010,0001 0001,1001
Y 0011,0011,1110 1111

15 X 1100,0010,0001 1111
Y 0001,1001,1111 0101

16 X 0101,0100,0001 0101
Y 0001,1001,1111 0101

17 X 0001,1101,0001
Y 0001,1001,1111

18 X 0001,1001,1111
Y 0001,1001

19 X 1100,0011
Y 0001,1001

20 X 0101,0101
Y 0001,1001

21 X 0001,1110
Y 0001,1001

22 X 0001,1001
Y 1111

23 X 1111
Y 0101

24 X 0101
Y 0101

X 0101
Y 0000

if(Q is even) Q← Q− 1
X ←rshift(X − Y ·Q);
if(X < Y) swap(X ,Y);

} while(Y �= 0);
return(X);

}

Note that, X may be larger than Y after executing X ← X −
Y ·Q. For example, if X = 15 and Y = 7, then X div Y = 2.
Hence, X = 15− 7 · (2− 1) = 8 and X > Y holds. Thus, we
need to compare X and Y and exchange them if X > Y , to
guarantee that X ≥ Y holds for the next iteration.

Table II shows an example of computation performed by
Original Euclidean algorithm and Fast Euclidean algorithm for
the same input numbers X and Y as Table I. We can see that
they perform fewer iterations than Binary Euclidean algorithm
and Fast Binary Euclidean algorithm. Also, Fast Euclidean
algorithm performs fewer iterations than Original Euclidean
algorithm. However, for some input numbers, Fast Euclidean
algorithm performs more iterations than Original Euclidean
algorithm. For example, if X = 39 and Y = 9, then the GCD
is computed as follows. Original Euclidean algorithm runs 2
iterations: (39, 9)→ (9, 3)→ (3, 0). Fast Euclidean algorithm
runs 3 iterations: (39, 9) → (12, 9) → (9, 3) → (3, 0).
Although such examples exist, Fast Euclidean algorithm takes
fewer iterations than Original Euclidean algorithm for most
input numbers.

TABLE II. AN EXAMPLE OF COMPUTATION PERFORMED BY ORIGINAL

EUCLIDEAN ALGORITHM AND FAST EUCLIDEAN ALGORITHM

Original Euclidean algorithm Fast Euclidean Algorithm
X&Y Q X&Y Q

1 X 1111,1110,1101,1100,1011 1 1111,1110,1101,1100,1011 1
Y 1011,1011,1011,1011,1011 1011,1011,1011,1011,1011

2 X 1011,1011,1011,1011,1011 2 1011,1011,1011,1011,1011 43
Y 0100,0011,0010,0001,0000 0100,0011,0010,0001

3 X 0100,0011,0010,0001,0000 1 0100,0011,0010,0001 9
Y 0011,0101,0111,1001,1011 0111,0101,0011

4 X 0011,0101,0111,1001,1011 3 0111,0101,0011 11
Y 1101,1010,0111,0101 1001,1011

5 X 1101,1010,0111,0101 1 1001,1011 1
Y 1100,1000,0011,1100 0101,0101

6 X 1100,1000,0011,1100 10 0101,0101 1
Y 0001,0010,0011,1001 0010,0011

7 X 0001,0010,0011,1001 1 0010,0011 1
Y 0001,0010,0000,0010 0001,1001

8 X 0001,0010,0000,0010 83 0001,1001 5
Y 0011,0111 0101

9 X 0011,0111 1 0101
Y 0010,1101 0000

10 X 0010,1101 4
Y 1010

11 X 1010 2
Y 0101

X 0101
Y 0000

III. APPROXIMATE EUCLIDEAN ALGORITHM FOR GCD

The main purpose of this section is to show our new
Euclidean algorithm called Approximate Euclidean algorithm.

Approximate Euclidean algorithm is based on Fast Eu-
clidean algorithm presented in the previous section. The com-
putation of quotient for large numbers performed by Fast
Euclidean algorithm is costly. Our new idea is to find a
good approximation of quotient by small computing costs. We
assume that X and Y are stored in multiple d-bit words, and
let D = 2d. Approximate Euclidean Algorithm is described as
follows:

[Approximate Euclidean Algorithm]
gcd(X,Y){

do {
(α, β)← approx(X,Y);
if(β = 0){

if(α is even) α = α− 1; //α is odd
X ← rshift(X − Y · α); //Y · α is odd

} else X ← rshift(X − Y · α ·Dβ + Y); //α ·Dβ is even
if(X < Y) swap(X,Y);

} while (Y �= 0);
return(X);

}

In this algorithm, approx(X , Y) is a function to compute a
pair (α, β) such that α · Dβ (≤ Q) is a good approximation
of Q = X div Y , and the computing cost of approx(X,Y) is
much smaller than that of X div Y . Also, to guarantee that X
is even, X − Y · (α ·Dβ − 1) is computed if α ·Dβ is even.
Note that if α · Dβ is always 1, that is, (α, β) = (1, 0) then
Approximate Euclidean algorithm is the same as Fast Binary
Euclidean algorithm. Since the value of α · Dβ can be more
than 1, the number of iterations in Approximate Euclidean
Algorithm may be smaller than Binary Euclidean algorithms.

388

We first show the idea of implementation of approx(X ,
Y). Suppose that X and Y are represented by lX d-bit words
x1x2 · · ·xlX and lY d-bit words y1y2 · · · ylY . In other words,

X = x1D
lX−1 + x2D

lX−2 + · · ·+ xlXD0

and
Y = y1D

lX−1 + y2D
lX−2 + · · ·+ ylY D

0

hold. It should be clear that lX ≥ lY always holds from
X ≥ Y . Let 〈x1x2〉(= x1 · D + x2) and 〈y1y2〉(= y1 ·
D + y2) be integers represented most significant two d-
bit words of X and Y . Basically, approx(X,Y) returns a
pair (〈x1x2〉 div (〈y1y2〉 + 1), lX − lY). Hence, α · Dβ =
(〈x1x2〉 div (〈y1y2〉+1))·DlX−lY is used as an approximation
of Q = X div Y . Also, it is guaranteed that α·Dβ ≤ Q. Thus,
X − Y · α ·Dβ is always non-negative.

We show an example using 4-bit words, that is, d =
4. Let X = 1101, 1001, 0000, 0011(55555), and Y =
0100, 1101, 0010(1234). If this is the case, lX = 4, lY = 3,
〈x1x2〉 = 1101, 1001(217) and 〈y1y2〉 = 0100, 1101(77).
Hence we have, 〈x1x2〉 div (〈y1y2〉+1) = 217 div (77+1) =
2 and lX− lY = 1. Thus, approx(X,Y) returns (α, β) = (2, 1)
and we have α · Dβ = 2 · 161 = 32, which approximates
X div Y = 45.

Using this idea, the following function approx computes a
pair (α, β):

approx(X,Y){
if(lX ≤ 2)

return (X div Y, 0); // Case 1
if(lY = 1) {

if(x1 ≥ y1)
return (x1 div y1, lX − 1); // Case 2-A

else
return (〈x1x2〉 div y1, lX − 2); // Case 2-B

}
if(lY = 2) {

if(〈x1x2〉 ≥ 〈y1y2〉)
return (〈x1x2〉 div 〈y1y2〉, lX − 2);// Case 3-A

else
return (〈x1x2〉 div (y1 + 1), lX − 3); // Case 3-B

}
if(〈x1x2〉 > 〈y1y2〉)

return (〈x1x2〉 div (〈y1y2〉+ 1), lX − lY); // Case 4-A
if(lX > lY)

return (〈x1x2〉 div (y1 + 1)), lX − lY − 1); // Case 4-B
return (1, 0); // Case 4-C

}

The reader should have no difficulty to confirm that operands
of “ div ” have at most 2 words, that is, 2d bits. Also, the
resulting value of “ div ” has at most d bits.

Let us see how approx(X,Y) computes (α, β). It has four
cases determined by the values of lX and lY . We will show
that function approx outputs a good approximation α ·Dβ of
X div Y for each cases
Case 1: X has 1 or 2 words

Clearly, Y also has 1 or 2 words from X ≥ Y . Hence,
approx outputs (X div Y, 0) and we have α ·Dβ = X div Y .

Example: If X = 1101, 1111(223) and Y = 0010, 1101(45)
then approx outputs (223 div 45, 0) = (4, 0).

Case 2: X has more than 2 words and Y has 1 word. Case 2
has two sub-cases as follows:
Case 2-A: If x1 ≥ y1 then approx outputs (x1 div y1, lX − 1)
Example: If X = 1001, 0010, 1001(2345) and
Y = y1 = 0100(4) then x1 = 1001(9) and x1 ≥ y1 hold.
If this is the case, approx outputs (9 div 4, 3 − 1) = (2, 2).
We can confirm that α · Dβ = 2 · 162 = 512 approximates
X div Y = 2345 div 4 = 586.
Case 2-B: If x1 < y1 then approx outputs
(〈x1, x2〉 div y1, lX − 2)
Example: If X = 0100, 1101, 0010(1234) and Y = 1100(12)
then x1 = 0100(4) and 〈x1, x2〉 = 0100, 1101(77)
hold. Hence, x1 < y1 is satisfied and approx
outputs (77 div 12, 3 − 2) = (6, 1). We can
confirm that α · Dβ = 6 · 161 = 96 approximates
X div Y = 1234 div 12 = 102.

Case 3: X has more than 2 words and Y has 2 words. Case 3
has two sub-cases as follows:
Case 3-A: If 〈x1x2〉 ≥ 〈y1y2〉 then approx outputs
(〈x1x2〉 div 〈y1y2〉, lX − lY).
Example: If X = 1001, 0010, 1001(2345) and Y =
0011, 1011(59) then 〈x1x2〉 = 1001, 0010(146). Hence
〈x1x2〉 ≥ 〈y1y2〉 is satisfied and approx outputs
(146 div 59, 3− 2) = (2, 1).
We can confirm that α · Dβ = 2 · 161 = 32 approximates
X div Y = 2345 div 59 = 39.
Case 3-B: If 〈x1x2〉 < 〈y1y2〉 then approx outputs
(〈x1x2〉 div (y1 + 1), lX − 3).
Example: If X = 1001, 0010, 1001(2345) and Y =
1110, 0111(231) then 〈x1x2〉 = 1001, 0010(146) and y1 =
1110(14). Since 〈x1x2〉 < 〈y1y2〉 satisfied, approx outputs
(146 div (14+1), 3−3) = (9, 0). We can confirm that α·Dβ =
9 · 160 = 9 approximates X div Y = 2345 div 231 = 10.

Case 4: Both X and Y have more than 2 words. Case 4 has
three sub-cases as follows:
Case 4-A: If 〈x1x2〉 > 〈y1y2〉 then approx outputs
(〈x1x2〉 div (〈y1y2〉+1), lX − lY). Note that, from 〈x1x2〉 >
〈y1y2〉, we always have 〈y1y2〉 ≤ D2 − 1. Hence 〈y1y2〉 has
at most 2d bits.
Example: If X = 1101, 0100, 0011, 0001(54321) and Y =
0100, 1101, 0010(1234) then 〈x1x2〉 = 1101, 0100(212) and
〈y1y2〉 = 0100, 1101(77) Since 〈x1x2〉 > 〈y1y2〉 is satisfied,
approx outputs (212 div (77 + 1), 4 − 3) = (2, 1). We
can confirm that α · Dβ = 2 · 161 = 32 approximates
X div Y = 54321 div 1234 = 44.
Case 4-B: If 〈x1x2〉 ≤ 〈y1y2〉 and lX > lY then approx
outputs (〈x1x2〉 div (y1 + 1), lX − lY − 1).
Example: If If X = 1101, 0100, 0011, 0001(54321) and Y =
1111, 1010, 0000(4000) then 〈x1x2〉 = 1101, 0100(212) and
〈y1y2〉 = 1111, 1010(250) hold. Hence, 〈x1x2〉 ≤ 〈y1y2〉
holds. Since y1 = 1111(15), approx outputs (212 div (15 +
1), 4−3−1) = (13, 0). We can confirm that α·Dβ = 13·160 =
13 approximates X div Y = 54321 div 4000 = 13.
Case 4-C: If this is the case, 〈x1x2〉 ≤ 〈y1y2〉 and lX ≤ lY
hold. Recall that X ≥ Y and thus 〈x1x2〉 = 〈y1y2〉 and
lX = lY must be satisfied. Hence the values of X and Y
are almost the same and it makes sense to return (1, 0) and
α ·Dβ = 1 · 160 = 1 if this is the case.

389

TABLE III. AN EXAMPLE OF COMPUTATION PERFORMED BY

APPROXIMATE EUCLIDEAN ALGORITHM

X & Y CASE (α, β)
1 X 1111,1110,1101,1100,1011 4-A (1, 0)

Y 1011,1011,1011,1011,1011

X 1011,1011,1011,1011,1011 4-A (2, 1)
Y 0100,0011,0010,0001

3 X 1110,0110,1010,1111 4-A (3, 0)
Y 0100,0011,0010,0001

4 X 0100,0011,0010,0001 4-B (7, 0)
Y 0111,0101,0011

5 X 0111,0101,0011 4-A (1, 0)
Y 0011,1111,0111

6 X 0011,1111,0111 3-B (3, 0)
Y 1101,0111

7 X 1101,0111 1 (1, 0)
Y 1011,1001

8 X 1011,1001 1 (11, 0)
Y 1111

9 X 1111 1 (3, 0)
Y 0101

X 0101
Y 0000

Table III shows an example of computation performed by
approximate Euclidean algorithm for 4-bit words, that is, d = 4
and D = 16. It computes the GCD for the same inputs used
in Tables I and II in 9 steps. The values used to compute α
in approx are underlined. We can confirm that Approximate
Euclidean algorithm outputs 0101(5), the GCD of X and Y
correctly.

Recall that Fast Euclidean algorithm computes the exact
value of quotient Q = X div Y . On the other hand, Approx-
imate Euclidean algorithm uses an approximation α · Dβ of
quotient Q. Hence, Approximate Euclidean algorithm may take
more iterations than Fast Euclidean algorithm. Actually, from
Tables II and III, we can see that Fast Euclidean and Approx-
imate Euclidean performs 8 and 9 iterations, respectively, for
the same input numbers.

Further, we should note that approx returns β = 0 with
very high probability. As we will show later, it returns β > 0
and “rshift(X − Y · α ·Dβ + Y)” is executed with probability
less than 10−8 when d = 32.

IV. EFFICIENT IMPLEMENTATION OF EUCLIDEAN

ALGORITHMS FOR LARGE NUMBERS

This section is devoted to show the details of implementa-
tions of Euclidean algorithms for large numbers. We assume
that all numbers are stored in d-bit words. Hence, a number
with s bits is stored in s

d words. For example, a 512-bit
number is stored in sixteen 32-bit words. Since Euclidean
algorithms operates large numbers stored in multiple words,
naive implementations perform a lot of redundant memory ac-
cess operations. We will show how we implement fundamental
operations used in Binary Euclidean algorithm, Fast Binary
Euclidean algorithm, and Approximate Euclidean algorithm.
We will show that 3 s

d + O(1) memory access operations are
performed in each iteration of Binary Euclidean algorithm
and Fast Binary Euclidean algorithm if X and Y with s bits
are stored in d-bit words. More specifically, each iteration
essentially performs three operations, reading from X , reading
from Y , and writing in X , each of which involves s

d memory
access operations. Also, additional O(1) reading operations

11 · · · 000 · · · 101 · · · 000 · · · 1
X

00 · · · 001 · · · 101 · · · 100 · · · 1

memory

Y

register

lX

lY

4

3

x1 x2 x3 x4

y1 y2 y3

βα

7 0

Fig. 1. Implementation of X and Y

are performed for X and Y . Further, Approximate Euclidean
algorithm performs 3 s

d + O(1) memory access operations in
each iteration with very high probability, and 4 s

d + O(1)
memory access operations with very low probability.

Figure 1 illustrates how X and Y are implemented. Two
s-bit numbers X and Y are stored in arrays of s

d words. Two
registers are used to store pointers that specify arrays for X and
Y . Also, the values of lX , lY , α, and β are stored in registers.
We assume that d = 32 and show how each operation in
Binary Euclidean algorithm, Fast Binary Euclidean algorithm,
and Approximate Euclidean algorithm can be performed.

X is even : The result of the condition can be determined by
reading the least significant word of X .

Y �= 0: This condition is equivalent to “lY > 0.” Hence no
reading operation to Y is necessary.

X < Y : If lX < lY then X < Y is true and if lX > lY then
X < Y is false. Thus, access to the memory is not necessary
if lX �= lY . If lX = lY then we need to compare the values of
X and Y from the most significant word. More specifically,
x1 and y1 are read from the memory. If x1 < y1 then X < Y
is true and if x1 > y1 then X < Y is false. If x1 = y1 then x2

and y2 are read from the memory and they are compared in
the same way. If x2 and y2 takes 32-bit random values, then
x2 �= y2 with probability 1−2−32. Hence, the result of X < Y
can be determined without reading x3 and y3 with very high
probability. If this is the case, only four words x1, x2, y1 and
y2 in the memory are accessed.

swap(X,Y): This can be done by exchanging the pointer
variables for X and Y . Thus, access to the values of X and
Y is not necessary for swap(X,Y).

approx(X,Y): The value of approx(X,Y) can be determined
by those of lX , lY , x1, x2, y1, and y2. Hence, approx(X,Y)
accesses at most four words x1, x2, y1 and y2 in the memory.

X ←rshift(X −Y ·α): This operation can also be done by
reading words of X and Y and writing words of X from the
least significant word. For example, this operation for X with
four 32-bit words x1, x2, x3, x4 and Y for three 32-bit words
y1, y2, y3 as illustrated in Figure 1 can be performed using a
64-bit temporary register variable z and a 16-bit temporary
register variable r as follows:

z ← x4 + (x3 << 32)− y3 · α
r ← the number of consective 0 bits in z from the LSB
x4 ← (z >> r)&0xFFFFFFFF
z ← (z >> 32) + (x2 << 32)− y2 · α

390

x3 ← (z >> r)&0xFFFFFFFF
z ← (z >> 32) + (x1 << 32)− y1 · α
x2 ← (z >> r)&0xFFFFFFFF
x1 ← z >> (r + 32)

Clearly, each word in X and Y is read once, each word in X
is written once. Note that this algorithm works only if r ≤ 32.
The reader should have no difficulty to modify this algorithm
that works correctly even if r > 32. Further, update operations
“X ← X

2 ”, “X ← X−Y
2 ”, “X ←rshift(X − Y)”, and can be

implemented in the same way.

X ←rshift(X − Y · α · Dβ + Y): This can be done in a
similar way to “X ←rshift(X − Y · α)”. However, we need
to perform additional reading operations from Y to compute
“+Y .”

From above implementations of fundamental operations,
each iteration of Binary Euclidean algorithm and Fast Binary
Euclidean algorithm can be done in 3 s

d +O(1) memory access
operations if s-bit X and Y stored in d-bit words. Since
X ←rshift(X − Y · α · Dβ + Y) needs additional reading
operations, that of Approximate Euclidean algorithm can be
done in 3 s

d + O(1) memory access operations if function
approx returns β = 0, and in 4 s

d + O(1) memory access
operations if it returns β > 0. We should note that function
approx returns β = 0 with very high probability. As we will
show later, the probability that β > 0 is so small that we can
say that each iteration of Approximate Euclidean algorithm
performs 3 s

d +O(1) memory access operations in practice.

V. EUCLIDEAN ALGORITHMS FOR RSA MODULI

Recall that our target is breaking weak RSA keys by
computing the GCDs of RSA moduli. Hence, we can assume
that numbers given for which we compute the GCD are prod-
ucts of two large prime numbers. We assume that computing
devices such as CPU and GPU for GCD computation can
have memory of 32/64-bit words and registers of 32/64-bit
words and supports 64-bit fundamental arithmetic and logic
operations. Hence, we set d = 32 for our Approximate
Euclidean algorithm.

Since we are interested in factorizing two s-bit RSA moduli
by Euclidean algorithms, we can terminate algorithm when
Y has less than s

2 bits. Once Y (�= 0) has less than s
2 bits,

the input numbers are coprime. If they have the same s
2 -bit

factor, X stores it and Y = 0 when Euclidean algorithm
terminates. We say that Euclidean algorithm is early-terminate
if it terminates when Y has less than s

2 bits, and non-terminate
if it continue the computation until Y reaches 0. For exam-
ple, early-terminate Approximate Euclidean algorithm can be
written as follows:

[Early-terminate Approximate Euclidean algorithm]
gcd(X,Y){

do {
(α, β)← approx(X,Y);
if(β = 0){

if(α is even) α = α− 1; //α is odd
X ← rshift(X − Y · α); //Y · α is odd

} else X ← rshift(X − Y · α ·Dβ + Y); //α ·Dβ is even
if(X < Y) swap(X,Y);

} while (Y has at least s
2 bits);

if(Y has less than s
2 bits) return(1);

else return(X);
}

Also, approx(X,Y) is performed for X and Y with at least
s
2 bits. Hence, approx(X,Y) is executed only for Case 4 and
program source codes for Cases 1, 2, and 3 can be omitted.

Table IV shows the average number of iterations of do-
while loops performed by Euclidean algorithms, (A) Original
Euclidean algorithm, (B) Fast Euclidean algorithm, (C) Binary
Euclidean algorithm, (D) Fast Binary Euclidean algorithm,
(E) Approximate Euclidean algorithm for 10000 pairs of 512-
bit, 1024-bit, 2048-bit, and 4096-bit RSA moduli. Encryption
moduli are generated using OpenSSL Toolkit [22]. The number
of iterations are evaluated both for non-terminate and early-
terminate versions of Euclidean algorithms.

Each iteration of (A) and (B) is very costly, because they
computes quotient/modulo of two s-bit numbers. On the other
hand, (C) and (D) involves no division/multiplication opera-
tion. Further, each iteration of (E) involves one division of
two 64-bit numbers, and s

32 repetitions 32-bit multiplications.
Hence, the computation of each iteration takes more time than
that of (C) and (D). However, they perform the same memory
access operations to X and Y . Thus, if memory access latency
is large like GPUs, the computing time of each iteration of (E)
is just little larger than that of (C) and (D). Hence, it makes
sense to evaluate and compare the number of iterations of (C),
(D), and (E).

From Table IV, we can see that 1. the early-terminate ver-
sions of Euclidean algorithm reduce the number of iterations to
half, 2. the number of iterations is proportional to the length
of input RSA moduli, 3. the number of iterations of (E) is
about a half of (D) and about a quarter of (C), and 4. the
number of iterations of (B) is exactly the same as that of (E).
To see the small difference of (B) and (E), the table also show
the average value of (E)-(B), that is, the number of iterations
of (E) minus that of (B). Quite surprisingly, their difference
is only 0.001%-0.002%. Recall that (B) computes the exact
quotient by division of two large numbers, while (E) computes
an approximation by 64-bit division. Hence, we can say that
approximated quotient is sufficient for computing the GCD.

We should also note that the value of β computed by
function approx in Approximate Euclidean algorithm is zero
with very high probability. More specifically, if Approximate
Euclidean algorithm is executed to compute the GCD for 4096-
bit moduli on 32-bit word device, function approx returns non-
zero β 1191 times out of 201277617364 calls, that is, it returns
β = 0 with probability more than 1− 10−8.

VI. CUDA IMPLEMENTATION OF BREAKING WEAK RSA
CODE

We first show that Approximate Euclidean algorithms are
semi-oblivious. We then show how CUDA blocks are arranged
to execute Euclidean algorithms.

Intuitively, a sequential algorithm is oblivious if an address
accessed at each time unit is independent of the input [18] .

391

TABLE IV. THE NUMBER OF ITERATIONS PERFORMED BY EUCLIDEAN ALGORITHMS

Non-terminate Early-terminate
512 1024 2048 4096 512 1024 2048 4096

(A) Original Euclidean algorithm 299.2 598.4 1197.1 2392.7 149.9 299.3 598.8 1196.5
(B) Fast Euclidean algorithm 190.5 380.8 761.8 1523.1 95.2 190.3 380.9 761.6

(C) Binary Euclidean algorithm 722.2 1445.1 2890.8 5782.5 361.2 722.8 1445.8 2891.8
(D) Fast Binary Euclidean algorithm 362.3 723.6 1446.5 2892.8 180.4 361.0 722.4 1445.5
(E) Approximate Euclidean algorithm 190.5 380.8 761.8 1523.2 95.2 190.3 380.9 761.6

(E)−(B) 0.0032 0.0035 0.0157 0.0152 0.0014 0.0009 0.0089 0.0048

0

1

2

3

4

5

6

7

12

13

14

15

A[0] A[1] A[2] A[3]l = 5

5-stage pipeline regsiters

W (0)

W (1)

3 4 6 12

3

4

6

12

10 11 8 9

8

9

10

11

8

9

10

11

memory
2 warps

w = 4

Fig. 2. The UMM with width w = 4 and latency l = 5

More specifically, there exists a function a : {0, 1, . . . , t−1} →
N , where t is the running time of the algorithm and N is a
set of all non-negative integers such that, for any input of
the algorithm, it accesses address a(i) or does not access the
memory at each time i (0 ≤ i ≤ t−1). In other words, at each
time i (0 ≤ i ≤ t− 1), it never accesses an address other than
a(i). Suppose that we need to execute a sequential algorithm
for many different inputs on a single CPU in turn or on a
parallel machine at the same time. We call such computation
bulk execution.

For theoretical performance analysis of Approximate Eu-
clidean algorithm, we first define the UMM (the Unified
Memory Machine) [23], [24] which captures the essence of the
global memory access of CUDA-enabled GPUs. We the go on
to show that the bulk execution oblivious algorithms can be
implemented very efficiently on the UMM. Let us define the
UMM with width w and latency l. The memory of the UMM is
partitioned into address groups A[0], A[1], . . . such that each
A[j] (j ≥ 0) involves j · w, j · w + 1, . . . , (j + 1) · w − 1.
The reader should refer to Figure 2 that illustrates address
groups for w = 4. Also, the memory access is performed
through l-stage pipeline registers as illustrated in Figure 2. Let
p be the number of threads of the UMM and T (0), T (1), . . .,
T (p − 1) be the p threads. We assume that p is a multiple
of w. The p threads are partitioned into p

w groups called
warps with w threads each. More specifically, p threads are
partitioned into p

w warps W (0),W (1), . . ., W (p
w−1) such that

W (i) = {T (i ·w), T (i ·w+1), . . . , T ((i+1) ·w−1)}. Warps
are dispatched for the memory access in turn, and w threads
in a warp try to access the memory at the same time. More
specifically, W (0),W (1), . . . ,W (p

w − 1) are dispatched in a
round-robin manner if at least one thread in a warp requests
the memory access. If no thread in a warp needs the memory
access, such warp is not dispatched for the memory access.
When W (i) is dispatched, w threads in W (i) send the memory
access requests, one request per thread, to the memory banks

For the memory access, each warp sends the memory
access requests to the memory banks through the l-stage
pipeline registers. We assume that each stage can store the
memory access requests destined for the same address group.

For example, since the memory access requests by W (0) are
separated in three address groups in the figure, they occupy
three stages of the pipeline registers. Also, those by W (1) are
in the same address group, they occupy only one stage. In
general, if the memory access requests by a warp are destined
for d address groups, they occupy d stages. For simplicity, we
assume that the memory access is completed as soon as the
request reaches the last pipeline stage. Thus, all memory access
requests by W (0) and W (1) in the figure are completed in
3(address groups)+1(address group)+5(latency)−1 = 8 time
units. We also assume that a thread cannot send a new memory
access request until the previous memory access request is
completed. Hence, if a thread sends a memory access request,
it must wait at least l time units to send a new memory access
request.

We will show that the bulk execution of an oblivious
sequential algorithm can be done efficiently on the UMM.
Without loss of generality, we can assume that an oblivious
sequential algorithm works on a 1-dimensional array b of size
n. If p threads on the UMM perform the bulk execution,
the global memory stores p arrays of b. We use column-wise
arrangement to allocate p arrays as illustrated in Figure 3.
More specifically, let bj [i] denote the i-th element of b for
thread j. Each bj[i] is allocated in address j ·p+i. If all threads
execute a same oblivious algorithm, then they access the same
address at each time unit. In other words, if a sequential
algorithm access address i at some time unit, p threads access
b0[j], b1[j], . . . , bp−1[j] at the same time. Clearly, they are
arranged in addresses j · p + 0, j · p + 1, . . . , j · p + (p − 1)
in the same row of the 2-dimensional array. Hence, they are
in consecutive addresses and memory access by p threads is
always coalesced.

Let us evaluate the computing time for the bulk execution
of an oblivious sequential algorithm on the UMM. Let t be
the running time of an oblivious sequential algorithm and
p be the number of inputs and the number of thread. For
each memory access of the obvious sequential algorithm p
threads performs coalesced memory access. Since they are in
p
w address groups, it can be completed in p

w + l−1 time units.
Since the oblivious sequential algorithm performs at most t

392

b0[0] b1[0] b2[0] b3[0]

b0[1] b1[1] b2[1] b3[1]

b0[2] b1[2] b2[2] b3[2]

b0[3] b1[3] b2[3] b3[3]

b4[0] b5[0] b6[0] b7[0]

b4[1] b5[1] b6[1] b7[1]

b4[2] b5[2] b6[2] b7[2]

b4[3] b5[3] b6[3] b7[3]

Fig. 3. Column-wise arrangement for p = 8 arrays of size n = 4 each

memory access operations, p threads on the UMM terminates
in (p

w + l − 1) · t = O(ptw + lt) time units. Thus we have,

Theorem 1: The bulk execution of an oblivious sequential
algorithm runs O(ptw + lt) time units using p threads on the
UMM with width w and latency l, where t is the running time
of the corresponding oblivious sequential algorithm.

In our previous paper [18], we have proved that Theorem 1 is
time-optimal.

Unfortunately, Approximate Euclidean algorithm is not
oblivious. However, we will show that our Approximate Eu-
clidean algorithm is semi-oblivious in the sense that an address
accessed at each of almost all time units. In other words,
semi-oblivious algorithm may access different addresses in
few time units. If each of the CUDA threads executes a
semi-oblivious sequential algorithm for the bulk execution,
then they may perform non-coalesced access to the global
memory. However, if the ratio of non-coalesced access is
small enough, the bulk execution of a semi-oblivious sequential
algorithm still runs efficiently on the GPU. In Approximate
Euclidean algorithm, the computation of X ←rshift(X−Y ·α)
is oblivious. It reads X and Y from the least significant
words, and the resulting values are stored in X from the
least significant words. This computation performs 3 s

d memory
access operations. Approximate Euclidean algorithm performs
additional O(1) memory access operations for function approx
and for determining condition of if-else statements. These
memory access operations may not be oblivious. However, the
number of memory access operations is much smaller than
3 s
d , we can say that Approximate Euclidean algorithm is semi-

oblivious.

Suppose that we have m moduli n0, n1, . . . , nm−1 of s bits
each in RSA encryption keys. We are interested in computing

of the GCD of all
m(m−1)

2 pairs of m moduli. We partition
m moduli into m

r groups of r moduli. Let ni,k (0 ≤ i ≤
m
r − 1, 0 ≤ k ≤ r− 1) denote the k-th modulus in i-th group,

that is, ni·r+k. We use m2

r2 CUDA blocks. CUDA block (i, j)
(0 ≤ i, j ≤ m

r − 1) computes the GCD of moduli one in the
i-th group and the other in j-th group using r threads. Each
k-th thread in CUDA block (i, j) computes gcd(ni,k, nj,0),
gcd(ni,k, nj,1), . . ., gcd(ni,k, nj,r−1), one by one.

Let Ak and Bk be s
32 -word variables of thread k (0 ≤

k ≤ r − 1) to store input moduli. The details of the program
for CUDA block (i, j) (0 ≤ i, j ≤ m

r − 1) are spelled out as
follows:

Each thread k (0 ≤ k ≤ r − 1) works in parallel

if(i < j){
for u← 0 to r − 1 do {
Ak ← ni,k;
Bk ← nj,u;
gcd(Ak, Bk);

}
} else if(i = j) {

for u← k + 1 to r − 1 do {
Ak ← ni,k;
Bk ← ni,u;
gcd(Ak, Bk);

}
}

Note that CUDA block (i, j) such that i > j terminates
immediately. If i = j then the GCD of ni,k and ni,u such

that k < u is computed. Thus, m2

r2 CUDA blocks combined,

the GCDs of all
m(m−1)

2 pairs of m moduli are computed.

VII. EXPERIMENTAL RESULTS

This section shows the running time of Euclidean al-
gorithms. We have used Xeon X7460 (2.66GHz) CPU for
executing a sequential Euclidean algorithms and GeForce GTX
780 Ti GPU for evaluating the CUDA implementations. In our
CUDA implementation, we use CUDA blocks with 64 threads
in which each thread computes GCDs of 64 pairs of RSA
moduli. We have used local memory arranged in the global
memory to store X and Y .

Table V shows the time for computing one GCD in
microseconds when all 16384·16383

2 = 134209536 pairs of 16K
(= 16384) RSA moduli with 512, 1024, 2048, and 4096
bits. The moduli are generated by OpenSSL Toolkit [22].
It also shows the speedup ratio of the GPU over the CPU.
For example, the CPU computes the GCD of two 1024-bit
moduli in 28.6 microseconds, while the GPU computes it 0.346
microseconds. Hence, the execution time ratio of the GPU over
the CPU is 82.7.

From the table, we can see that Approximate Euclidean
algorithm is faster than the others. Since Euclidean algorithms
are semi-oblivious, the speedup ratio CPU/GPU is enough
large. However, the execution time ratio CPU/GPU of Binary
Euclidean algorithm is rather smaller than the others. This
is due to the branch divergence of a CUDA C program for
Binary Euclidean algorithm. Since CUDA architecture is based
on SIMT (Single Instruction Multiple Threads), all threads
in a warp must execute the same instruction in each clock
cycle. Hence, if CUDA C program has a branch using a
if-else statement, then the instructions for the true case are
executed first and then those for the false case are executed.
Note that, if all threads execute the instructions for the same
case, those for the other case are not executed. Binary Eu-
clidean algorithm has a if-else if-else statement to select one
of the three cases: (X,Y) is (even, odd), (odd, even), and
(odd, odd). Since the instructions for these three cases are
executed sequentially, and the branch divergence degenerates
the performance of Binary Euclidean algorithm. On the other
hand, we can ignore the branch divergence of Approximate
Euclidean algorithm. Approximate Euclidean algorithm has if-
else statement to select two cases: β = 0 or β > 0, where β
is the value computed by function approx. However, β > 0

393

TABLE V. THE PERFORMANCE OF EUCLIDEAN ALGORITHMS: ONE GCD COMPUTING TIME IN MICROSECONDS AND THE EXECUTION TIME RATIO

WHEN ALL PAIRS OF 16K MODULI ARE COMPUTED

Non-terminate Early-terminate
512 1024 2048 4096 512 1024 2048 4096

(C) Binary Euclidean algorithm 25.7 81.0 279 1040 17.1 56.2 200 771
CPU (D) Fast Binary Euclidean algorithm 16.9 49.7 166 624 10.8 33.6 117 448

(E) Approximate Euclidean algorithm 14.8 43.4 140 499 9.40 28.6 96.4 357

(C) Binary Euclidean algorithm 0.460 3.54 15.8 66.8 0.410 2.93 12.5 50.6
GPU (D) Fast Binary Euclidean algorithm 0.137 0.683 3.01 11.9 0.105 0.583 2.32 9.11

(E) Approximate Euclidean algorithm 0.115 0.437 1.75 6.69 0.0773 0.346 1.33 5.01

(C) Binary Euclidean algorithm 55.8 22.9 17.7 15.6 41.6 19.2 16.0 15.2
CPU/GPU (D) Fast Binary Euclidean algorithm 124 72.7 55.1 52.4 102 57.6 50.5 49.2

(E) Approximate Euclidean algorithm 129 99.3 79.8 74.6 122 82.7 72.8 71.2

with probability less than 10−8 if d = 32. Hence all threads
executes instructions for the case of β = 0 with very high
probability, and those for β > 0 are not executed. Further,
the 64-bit division operation for function approx and 32-bit
multiplications for rshift(X −Y ·α) takes a lot of time on the
CPU. On the other hand, on the GPU, time for these operations
are hidden by large memory access latency. Hence, the GPU
implementation for Approximate Euclidean algorithm achieves
much higher speedup ratio over the CPU.

We should also note that the time for transferring moduli
from the host PC to the GPU is so small that we can omit it.
For example, 16K 4096-bit moduli can be transferred in 0.002
seconds while all Euclidean algorithms for them runs at least
600 seconds.

VIII. CONCLUSION

We have presented a new Euclidean algorithm for com-
puting the GCD of all pairs of encryption moduli to break
weak RSA keys. The idea of our new Euclidean algorithm
that we call Approximate Euclidean algorithm is to compute
an approximation of quotient by just one 64-bit division and
to use it for reducing the number of iterations of the Euclidean
algorithm. We also present an implementation of Approximate
Euclidean algorithm optimized for CUDA-enabled GPUs. The
experimental results show that our implementation for 1024-
bit GCD on GeForce GTX 780Ti runs more than 80 times
faster than the Intel Xeon CPU implementation. Also, our GPU
implementation is more than 9 times faster than the best known
published GCD computation using the same generation GPU.

REFERENCES

[1] W. W. Hwu, GPU Computing Gems Emerald Edition. Morgan
Kaufmann, 2011.

[2] A. Uchida, Y. Ito, and K. Nakano, “Fast and accurate template matching
using pixel rearrangement on the GPU,” in Proc. of International
Conference on Networking and Computing. IEEE CS Press, Dec.
2011, pp. 153–159.

[3] Y. Takeuchi, D. Takafuji, Y. Ito, and K. Nakano, “Ascii art generation
using the local exhaustive search on the GPU,” in Proc. of International
Symposium on Computing and Networking, Dec. 2013, pp. 194–200.

[4] K. Ogawa, Y. Ito, and K. Nakano, “Efficient Canny edge detection
using a GPU,” in Proc. of International Conference on Networking and
Computing. IEEE CS Press, Nov. 2010, pp. 279–280.

[5] A. Kasagi, K. Nakano, and Y. Ito, “Offline permutation algorithms
on the discrete memory machine with performance evaluation on the
GPU,” IEICE Transactions on Information and Systems, vol. Vol. E96-
D, no. 12, pp. 2617–2625, Dec. 2013.

[6] ——, “An optimal offline permutation algorithm on the hierarchical
memory machine, with the GPU implementation,” in Proc. of Interna-
tional Conference on Parallel Processing (ICPP), Oct. 2013, pp. 1–10.

[7] A. Uchida, Y. Ito, and K. Nakano, “An efficient GPU implementation
of ant colony optimization for the traveling salesman problem,” in Proc.
of International Conference on Networking and Computing. IEEE CS
Press, Dec. 2012, pp. 94–102.

[8] NVIDIA Corporation, “NVIDIA CUDA C programming guide version
5.0,” 2012.

[9] ——, “NVIDIA CUDA C best practice guide version 3.1,” 2010.

[10] D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano, “Implementations
of a parallel algorithm for computing Euclidean distance map in
multicore processors and GPUs,” International Journal of Networking
and Computing, vol. 1, no. 2, pp. 260–276, July 2011.

[11] K. Nakano, “Optimal parallel algorithms for computing the sum, the
prefix-sums, and the summed area table on the memory machine
models,” IEICE Trans. on Information and Systems, vol. E96-D, no. 12,
pp. 2626–2634, 2013.

[12] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Communications of
the ACM, vol. 21, pp. 120 – 126, 1978.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein., Introduction
to Algorithms. MIT press, 2001.

[14] A. K. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung, and
C. Wachter, “Ron was wrong, Whit is right,” Cryptology ePrint Archive,
Report 2012/064, 2012. [Online]. Available: http://eprint.iacr.org/

[15] D. E. Knuth, The Art of Computer Programming, Volume 2: Seminu-
merical Algorithms. Addison-Wesley, 1997.

[16] J. Stein, “Computational problems associated with racah algebra,”
Journal of Computational Physics, vol. 1, no. 3, Feb. 1967.

[17] D. Takafuji, K. Nakano, and Y. Ito, “A CUDA C program generator
for bulk execution of a sequential algorithm,” in Proc. of International
Conference on Algorithms and Architectures for Parallel Processing,
Aug. 2014, pp. 178–191.

[18] K. Tani, D. Takafuji, K. Nakano, and Y. Ito, “Bulk execution of
oblivious algorithms on the unified memory machine, with GPU
implementation,” in Proc. of International Parallel and Distributed
Processing Symposium Workshops, May 2014, pp. 586–595.

[19] N. Fujimoto, “High throughput multiple-precision GCD on the CUDA
architecture,” in Proc. of International Symposium on Signal Processing
and Information Technology, Dec. 2009, pp. 507–512.

[20] K. Scharfglass, D. Weng, J. White, and C. Lupo, “Breaking weak 1024-
bit RSA keys with CUDA,” in Proc. of Internatinal Conference of
Breaking weak 1024-bit RSA keys with CUDA, Dec. 2012, pp. 207 –
212.

[21] J. R. White, “PARIS: A parallel RSA-prime inspection tool,” Ph.D.
dissertation, California Polytechnic State University - San Luis Obispo,
June 2013.

[22] “OpenSSL: The open source toolkit for SSL/TLS.” [Online]. Available:
https://www.openssl.org/

[23] K. Nakano, “Simple memory machine models for GPUs,” International
Journal of Parallel, Emergent and Distributed Systems, vol. 29, no. 1,
pp. 17–37, 2014.

[24] ——, “Sequential memory access on the unified memory machine with
application to the dynamic programming,” in Proc. of International
Symposium on Computing and Networking, Dec. 2013, pp. 85–94.

394

