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Abstract—The main contribution of this paper is to show a
new photomosaic generation method by rearranging subimages
of an image. In the photomosaic generation, an input image
is divided into small subimages and they are rearranged such
that the rearranged image reproduces another image given as
a target image. Therefore, this problem can be considered as a
combinatorial optimization problem to obtain the rearrangement
which reproduces approximate images to the target image. Our
new idea is that this rearrangement problem is reduced to
a minimum weighted bipartite matching problem. By solving
the matching problem, we can obtain the best rearrangement
image. Although it can generate the most similar photomosaic
image, a lot of computing time is necessary. Hence, we propose
an approximation algorithm of the photomosaic generation.
This approximation algorithm does not obtain the most similar
photomosaic image. However, the computing time can be short-
ened considerably. Additionally, we accelerate the computation
using the GPU (Graphics Processing Unit). The experimental
results show that the GPU implementations for the optimization
algorithm and the approximation algorithm can accelerate the
computation to 40 and 66 times faster than the serial CPU
implementation, respectively.

I. INTRODUCTION

Photomosaic is a technique which produces an input image
by arranging many smaller images, called tiles. Photomosaic is
used for works of art and advertisements such as portraits and
logo designs [1]. Figure 1 shows an example of photomosaic
that produces Lena [2] consisting of small images from
the image databases [3], [4], [5]. In general, a method of
photomosaic generation with an image database consisting of
many small images is widely used. Given a target image, the
method produces a photomosaic image, in the following steps:

1) Divide the target image into rectangular subimages,
2) For each subimage, find a small image which is similar

to the subimage image from the image database, and
3) Arrange the small images to the corresponding subim-

ages.
The main contribution of this paper is to propose a new

method for generating a photomosaic image which reproduces
a target image obtained by rearranging tiles of an input image.
Figure 2 shows an example of the proposed photomosaic
generation method, where an input image is divided into
32 × 32 tiles. Given an input image to be rearranged and a
target image, the proposed method generates a photomosaic
image as follows:

1) Divide the input image into tiles

Fig. 1. An example of photomosaic image by arranging small images

2) Rearrange the tiles such that the rearranged image re-
produces a target image

This photomosaic generation can be considered as an as-
signment problem that tiles in an input image are assigned
to tiles in a target image. Thus, in this paper, we propose
an optimization algorithm and an approximate algorithm for
generating photomosaic images.

In the optimization algorithm, we reduce the rearrangement
problem of tiles to a minimum weighted bipartite matching
problem. By solving the matching problem, we can obtain
the rearranged image. Although the optimization algorithm
can generate the most similar photomosaic image, a lot of
computing time is necessary.

On the other hand, the approximation algorithm is repeating
the local search such that for all possible pairs of two tiles, if
the total error is reduced by swapping two of tiles compared
with the before swapping, the two tiles are swapped. The
exchanging for all possible pairs is repeated until no swapping
is performed, that is, no more improvement is possible by
the local search. The approximation algorithm cannot generate
optimal photomosaic images since all possible rearrangements
are not considered. However, the resulting photomosaic images
by the approximation algorithm are virtually the same as those
by the optimization algorithm.

Furthermore, we propose a parallel approximation algo-



(a) Input image (Lena) (b) Target image (Sailboat) (c) Photomosaic image

Fig. 2. Photomosaic generation in this work

rithm. In the parallel algorithm, the swap operation of two tiles
is performed in parallel. To obtain pairs of tiles that can be
swapped at the same time, we solve the edge-coloring problem
of the complete graph. Using the result of the edge-coloring,
we perform the swap operation concurrently.

Recent GPUs (Graphics Processing Units) have a lot of
processing cores that can be used for general purpose par-
allel computation. CUDA (Compute Unified Device Archi-
tecture) [6] is the architecture for general purpose parallel
computation on GPUs. We can develop parallel algorithms
to be implemented in GPUs using CUDA. Therefore, many
studies have been devoted to implement parallel algorithms
using CUDA [7], [8], [9]. As the second contribution, we
have used the GPU to accelerate the computation for the
error values computation that is pre-computation for the above
optimization and approximation algorithms and the parallel
approximation algorithm. Our experimental results show that
the GPU implementation with the optimization algorithm can
run up to 40 times faster than the CPU implementation. On
the other hand, the GPU implementation with the approxima-
tion algorithm can run up to 66 times faster than the CPU
implementation.

This paper is organized as follows. Section II explains out-
line of our photomosaic generation method. In Section III, we
propose an optimization algorithm for the photomosaic method
by reducing the method to a minimum weighted bipartite
matching problem. We then go on to show an approximate
algorithm of the photomosaic method to shorten the generating
time in Section IV. In Section V, we show a GPU implemen-
tation to accelerate the computation. Section VI shows the
resulting photomosaic images, and shows the computing time.
Section VII concludes our work.

II. PHOTOMOSAIC GENERATION METHOD

The main contribution of this section is to show two algo-
rithms of our proposed photomosaic method that subimages of
an input image are rearranged such that the rearranged image
reproduces a target image. Let the size of an input image I
and a target image T be N ×N . Suppose an input image and

a target image are divided into S subimages, called tiles of
size M ×M , that is, S = N

M ×
N
M . Let {I1, I2, . . . , IS} be

the set of tiles from the input image, and {T1, T2, . . . , TS} be
the set of tiles from the target image. The rearrangement of
tiles I1, I2, . . . , IS can be considered as assignment of tiles
of I to T . Since no two tiles can be assigned to the same
tile of T , each tile of I is assigned to exactly one tile of T .
Let r : {I1, I2, . . . , IS} → {I1, I2, . . . , IS} denote a bijective
function that is rearrangement of tiles in I . Now we introduce
the error between two tiles Iu and Tv (1 ≤ u, v ≤ S) as
follows;

E (Iu, Tv) =
∑

1≤i,j≤M

|ei,j |, (1)

where ei,j is the error at each pixel location (i, j) of tiles
Iu and Tv . Let R be an image of size N × N obtained
by rearranging the tiles of I . The total error between the
rearranged image R and the target image T is defined as
follows:

Error(R, T ) =
∑

1≤u≤S

E(r(Iu), Tu). (2)

We note that we use gray scale images for input and target
images in this paper. However, we can easily extend the
proposed photomosaic method to deal with color images only
by changing the error function in Eq. (1).

A rearranged image R is a good approximation of the target
image T if the difference between R and T is small enough.
Thus, the best rearranged image R∗ that reproduces T is a
rearranged image given by:

R∗ = argmin
R

Error(R, T ). (3)

Since S tiles are rearranged, the total number of rearrangement
of them is S!. Therefore, a straightforward method to find the
best rearrangement is to evaluate Error(R, T ) for all possible
S! rearranged images R.

Using the above error function, our proposed method gen-
erates photomosaic images in the following steps:

Step 1: Divide an input image and a target image into S
tiles, respectively.



Step 2: Compute the error values between the tiles of two
images E (Iu, Tv) (1 ≤ u, v ≤ S).

Step 3: Rearrange tiles Iu (1 ≤ u ≤ S) such that the total
error in Eq. (2) is small.

In the following sections, we propose an optimization algo-
rithm and an approximation algorithm efficiently to perform
Step 3.

The distribution of intensity levels of images is different
for each image in general. If the distribution of an input
image greatly differs from a target image, it is difficult to
rearrange tiles of the input image to reproduce the target
image. Therefore, before rearranging the tiles of an input
image, we adjust the distribution of an input image to that
of a target image using the histogram equalization [10]. The
histogram equalization is to transform the intensity levels of
the image so that the histogram of the resulting image is
equalized to become a constant. In this work, the distribution
of an input image is changed to that of a target image using
the histogram equalization. Figure 3 shows the histogram-
equalized image of the input image (Figure 2(a)) such that
the distribution of the input image is adjusted to that of the
target image (Figure 2(b)). If the distribution of an input image
and/or a target image is exceedingly small, it is difficult to
adjust the distribution. However, this adjustment is effective
when the distribution is concentrated to the certain range.
Indeed, to obtain the photomosaic image in Figure 2, the
histogram-equalization is applied to the input image. In other
words, the photomosaic image consists of the tiles into which
Figure 3 is divided. In the following sections, all input images
are histogram-equalized to adjust the distribution to the target
images in advance.

Fig. 3. Adjustment of the distribution of intensity levels in the input image
(Figure 2(a)) to that in the target image (Figure 2(b)) using the histogram
equalization

III. OPTIMIZATION ALGORITHM

The main contribution of this section is to show an opti-
mization algorithm to obtain the rearranged image of which
the total error in Eq. (2) is the smallest by reducing the rear-
rangement problem to a minimum weighted bipartite matching
problem.

Recall that our proposed photomosaic method is finding the
rearrangement of subimages such that the total error is small.
Now, consider a weighted complete bipartite graph (V1, V2, E)
such that for every two vertices v1 ∈ V1 and v2 ∈ V2 is an edge
in E. As illustrated in Figure 4, each subset of vertices consists
of S vertices and they represent subimages of the input image
and target image I1, I2, . . . IS and T1, T2, . . . TS , respectively.
Using this bipartite graph, obtaining one of the rearranged
images R can be considered as finding a matching m in which
each vertex has exactly one edge incident on it. In addition,
suppose that each edge between Iu and Tv (1 ≤ u, v ≤ S)
has weight wu,v , as follows;

wu,v = E (Iu, Tv).

The sum of the weight values in m is equivalent to the total
error between the rearranged image Rm obtained by m and
the target image T , that is,

Error(Rm, T ) =
∑

(u,v)∈m

wu,v.

Thus, obtaining the best rearranged image R∗ is finding a
matching of minimum weight. In other words, the rearranged
problem can be reduced to a minimum weighted bipartite
matching problem.

To solve the minimum weighted bipartite matching prob-
lem, there are several existing algorithms. The Kuhn-Munkres
algorithm, which is also known as the Hungarian method,
solves this problem in O(S3) time [11], [12]. In this al-
gorithm, a weighted complete bipartite graph is considered
as a matrix of edge weights, and the problem is solved
with respected to these values. On the other hand, Blossom
algorithm is an algorithm for consulting maximum matchings
on graphs [13]. The algorithm constructs the matching by
iteratively finding an augmenting path and shrinking a cycle
called a blossom. There are several efficient implementations
of Blossom algorithm [14], [15]. Note that Blossom algorithm
performs maximum graph matching in a graph that is not
bipartite. However, in our experiments, Blossom V [15] that
is one of the implementations of Blossom algorithm is the
fastest implementation for the case that S is at most several
thousands among the above implementations. Therefore, we
use Blossom V in the following experiments.

The aforementioned optimized algorithm can find a pho-
tomosaic image with the minimum total error. On the other
hand, the generating time is also important. Photomosaic is
used in interactive photomosaic system [16] and real time
video photomosaic [17], [18]. To build such systems, GPUs are
utilized to accelerate the generation of photomosaic [19], [20].
Since photomosaic images in the above are generated with
the image database, the problem is different from this work.
Therefore, in the next section, we present an approximate
algorithm using the local search and its parallel algorithm.

IV. APPROXIMATION ALGORITHM

This section presents an approximation algorithm of the
proposed photomosaic generation using the local search, and
its parallel approximation algorithm.
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Fig. 4. Complete weighted bipartite graph for the optimization algorithm

A. Serial Approximation Algorithm

The idea of the proposed approximation algorithm is that
given an input image divided into tiles, the method repeats
the local search such that for all possible pairs of two tiles, if
the total error is reduced by swapping two of tiles compared
with the before swapping, the two tiles are swapped. The
exchanging for all possible pairs is repeated until no swapping
is performed, that is, no more improvement is possible by the
local search. Given an input image I = {I1, I2, . . . , IS} and
a target image T = {T1, T2, . . . , TS}, the algorithm of the
approximation algorithm is shown in Algorithm 1.

Algorithm 1 Serial approximation algorithm
1: repeat
2: flag ← 0
3: for all u, v such that 1 ≤ u < v ≤ S do
4: if E(Iu, Tu) + E(Iv, Tv) > E(Iv, Tu) + E(Iu, Tv)

then
5: swap Iu and Iv
6: flag ← 1
7: end if
8: end for
9: until flag = 0

The local search is performed for S(S−1)
2 pairs in each

iteration of the “for all” loop. Let k be the number of the
”for all” iteration. The total computing time of this approx-
imate algorithm is O(kS2). In our experiments as shown
in Section VI, the value k takes at most 9, 8, and 16 for
S = 16 × 16, 32 × 32, and 64 × 64, respectively. Thus, the
running time of this approximation algorithm is much shorter
than that of the optimization algorithm. On the other hand,
since the approximate algorithm cannot generate all possible

combinations of tiles, the total error of the photomosaic
image obtained by the approximate algorithm must be larger
than that by the optimization algorithm. Namely, the quality
of the photomosaic image by the approximate algorithm is
lower. However, in our experiments, the resulting photomosaic
images by the approximation algorithm are virtually the same
as those by the optimization algorithm although the total error
is larger.

B. Parallel Approximation Algorithm

Next, let us consider the parallel execution of the approx-
imate algorithm to accelerate the computation. As shown in
Algorithm 1, the swap operations of two tiles are performed
sequentially. Suppose that the exchanges are performed si-
multaneously. Clearly, two pairs that include the same tile
cannot be swapped at the same time. For example, two pairs
of tiles (I1, I2) and (I2, I3) cannot be swapped at the same
time since I2 is included in the both pairs. Therefore, it is
necessary to perform parallel swapping of pairs in which the
tiles are distinct. To obtain such pairs, we use a graph theoretic
result [21] as follows:

Theorem 1. A complete graph with n-vertices is n-
edge-colorable if n is odd, and (n− 1)-edge-colorable if n is
even.

Figure 5 illustrates an example of a complete graph with 16
vertices painted by 15 colors such that no vertex is connected
to edges with the same color. In other words, no two edges
with the same color share a vertex. The reader should refer
to [21] for the proof of Theorem 1.

Suppose that an input image consisting of S tiles I =
{I1, I2, . . . , IS} is given. We draw a complete graph G =
(V,E) of S as follows:



Fig. 5. A 15-edge-coloring of the complete graph with 16 vertices

• V = {I1, I2, . . . , IS} is a set of tiles each of which
corresponds to a tile of I .

• For each pair Iu and Iv , E has a corresponding edge
connecting Iu and Iv (∈ V ).

Clearly, an edge (Iu, Iv) (1 ≤ u < v ≤ S) corresponding
to a pair of two tiles to be swapped. Also, G = (V,E)
is a complete graph with S vertices. Hence, G is at most
S-edge-colorable from Theorem 1. Suppose that all of the
edges in E are painted by at most S colors 1, 2, . . . , S.
Using the result of the edge coloring, we define edge groups
P1, P2, . . . , PS . Each group Pi (1 ≤ i ≤ S) has pairs of index
of vertices such that when an edge (Iu, Iv) with color i, tuple
(u, v) is included in Pi. We note that when S is even, the graph
is (S− 1)-edge-colorable. If this is the case, we consider that
PS is empty, that is, PS = ∅. It should have no difficulty to
confirm that all tiles in each group are distinct. For example,
a complete graph with 16 vertices is 15-edge-colorable. Using
the result of the coloring, edges are divided into 16 edge
groups P1, P2, . . . , P16, as follows:

P1 = {(1, 2), (3, 15), (4, 14), (5, 13), (6, 12), (7, 11), (8, 10), (9, 16)}
P2 = {(1, 4), (2, 3), (5, 15), (6, 14), (7, 13), (8, 12), (9, 11), (10, 16)}
P3 = {(1, 6), (2, 5), (3, 4), (7, 15), (8, 14), (9, 13), (10, 12), (11, 16)}
P4 = {(1, 8), (2, 7), (3, 6), (4, 5), (9, 15), (10, 14), (11, 13), (12, 16)}
P5 = {(1, 10), (2, 9), (3, 8), (4, 7), (5, 6), (11, 15), (12, 14), (13, 16)}
P6 = {(1, 12), (2, 11), (3, 10), (4, 9), (5, 8), (6, 7), (13, 15), (14, 16)}
P7 = {(1, 14), (2, 13), (3, 12), (4, 11), (5, 10), (6, 9), (7, 8), (15, 16)}
P8 = {(1, 16), (2, 15), (3, 14), (4, 13), (5, 12), (6, 11), (7, 10), (8, 9)}
P9 = {(1, 3), (2, 16), (4, 15), (5, 14), (6, 13), (7, 12), (8, 11), (9, 10)}
P10 = {(1, 5), (2, 4), (3, 16), (6, 15), (7, 14), (8, 13), (9, 12), (10, 11)}
P11 = {(1, 7), (2, 6), (3, 5), (4, 16), (8, 15), (9, 14), (10, 13), (11, 12)}
P12 = {(1, 9), (2, 8), (3, 7), (4, 6), (5, 16), (10, 15), (11, 14), (12, 13)}
P13 = {(1, 11), (2, 10), (3, 9), (4, 8), (5, 7), (6, 16), (12, 15), (13, 14)}
P14 = {(1, 13), (2, 12), (3, 11), (4, 10), (5, 9), (6, 8), (7, 16), (14, 15)}
P15 = {(1, 15), (2, 14), (3, 13), (4, 12), (5, 11), (6, 10), (7, 9), (8, 16)}
P16 = ∅

Given an input image I = {I1, I2, . . . , IS} and a target
image T = {T1, T2, . . . , TS}, Algorithm 2 shows a parallel
approximation algorithm of the photomosaic method using the
above edge groups. Since all tiles in each Pi (1 ≤ i ≤ S)
are distinct, the swap operation at line 6 can be performed
at the same time. We note that edge groups P1, P2, . . . , PS

Algorithm 2 Parallel approximation algorithm
1: repeat
2: flag ← 0
3: for i = 1 to S do
4: for all (u, v) in Pi do in parallel
5: if E(Iu, Tu)+E(Iv, Tv) > E(Iv, Tu)+E(Iu, Tv)

then
6: swap Iu and Iv
7: flag ← 1
8: end if
9: end for

10: end for
11: until flag = 0

obtained by edge-coloring depend only on the number of
tiles S. In other words, they are not independent from input
images and their size. Therefore, we assume that the number of
tiles S is fixed and edge groups P1, P2, . . . , PS are computed
in advance. After that using them, photomosaic images are
generated for various input images.

V. GPU ACCELERATION FOR THE ERROR COMPUTATION
AND THE PARALLEL APPROXIMATE ALGORITHM

The main purpose of this section is to show our GPU
implementations of the error computation and the approximate
algorithm.

We briefly explain CUDA architecture that we will use.
NVIDIA provides a parallel computing architecture called
CUDA on NVIDIA GPUs. CUDA uses two types of memories
in the NVIDIA GPUs: the global memory and the shared
memory [22]. The global memory is implemented as an off-
chip DRAM of the GPU, and has large capacity, say, 1.5-12
GBytes, but its access latency is very long. The shared memory
is an extremely fast on-chip memory with lower capacity, say,
16-96 Kbytes.

CUDA parallel programming model has a hierarchy of
thread groups called grid, block and thread. A single grid
is organized by multiple blocks, each of which has equal
number of threads. The blocks are allocated to streaming
multiprocessors such that all threads in a block are executed by
the same streaming multiprocessor in parallel. All threads can
access to the global memory. However, threads in a block can
access to the shared memory of the streaming multiprocessor
to which the block is allocated. Since blocks are arranged to
multiple streaming multiprocessors, threads in different blocks
cannot share data in the shared memories. CUDA C extends C
language by allowing the programmer to define C functions,
called kernels. By invoking a kernel, all blocks in the grid
are allocated in streaming processors, and threads in each
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Fig. 6. CUDA hardware architecture

block are executed by processor cores in a single streaming
processor.

We are now in a position to explain how we implement the
following two computations on the GPU:

(i) the error values computation in Step 2, and
(ii) the parallel approximate algorithm in Step 3.

Regarding the optimization algorithm in Step 3, since it is not
easy to parallelize the algorithm, we sequentially perform it on
the CPU. We assume that an input image and a target image of
size N ×N are stored in the global memory in advance, and
the implementation writes the resulting photomosaic image to
the global memory. Furthermore, we assume the number of
tiles S is fixed and the edge groups P1, P2, . . . , PS are also
stored in the global memory.

In Step 2, given an input image and a target image, the
error values of E(Iu, Tv) (1 ≤ u, v ≤ S) are computed.
To implement this step, S CUDA blocks are invoked. Each
CUDA block is responsible for computing S error values
E(Iu, T1), E(Iu, T2), . . . , E(Iu, TS) (1 ≤ u ≤ S). In each
CUDA block, multiple threads are used and compute the
error values in parallel, as follows. First, threads in each
CUDA block read pixel values of tile Iu and store them to
the shared memory. After that, the corresponding error val-
ues E(Iu, T1), E(Iu, T2), . . . , E(Iu, TS) are computed using
multiple threads one by one.

To implement the parallel approximation algorithm of
Step 3, S CUDA kernels are invoked for each “for all” iteration
shown in Algorithm 2, where S is the number of edge groups
each of which shows pairs enabled to be swapped at the
same time. The implementation performs the local search for
P1, P2, . . . , PS , in turn. A CUDA kernel that performs the
local search for the corresponding edge group is invoked for
each group, that is, the execution is synchronized whenever
the computation of each iteration is finished. Since the swap
operation is concurrently performed based on the edge group,
one may argue that the total error by computing Eq. (2)
increases compared with that by the sequential one. However,
in our experiments, the total error are almost the same and
the quality of the resulting photomosaic images cannot be
distinguished.

Using the above two GPU implementation, the proposed
photomosaic method can be accelerated as follows. First, the
GPU implementation of the error values computation of tiles
in Step 2 can be used before the optimization algorithm and
the approximation algorithm. After that, using the error values,
the optimization algorithm is performed on the CPU. On the
other hand, the approximation algorithm can be performed by
the above GPU implementation of the parallel approximation
algorithm.

VI. EXPERIMENTAL RESULTS

In this section, we will show the resulting photomosaic
images and the computing time. We have used several images
in the image database [3]. To obtain the rearrangement in
the optimization algorithm, we have used Bloom V [15] that
can solve a minimum weight graph matching efficiently on
the CPU. Figure 7 shows the resulting photomosaic images
generated using the optimization algorithm and the sequential
and parallel approximation algorithms for S = 16×16, 32×32,
and 64×64. We also shows other three examples in Figure 8.

According to Figure 7, since for S = 16, the number of tiles
is small and the size of tiles is large, the resulting photomosaic
images do not reproduce the target image well. In the resulting
images for S = 32, the quality becomes better, but the borders
of tiles are still distinct. However, for S = 64, most of the
borders are not clear and the photomosaic image is very similar
to the target image.

Table I shows the total error in Eq. (2) of the resulting
images in the figure. The total errors of the optimization
algorithm are smaller than those of the approximation algo-
rithm. However, according to Figure 7, the difference of the
quality between the optimization algorithm and the approxi-
mate algorithm is very small. Furthermore, since the order of
executing the local search between the sequential and parallel
approximation algorithm is not the same, their total errors
differ, but the difference is small.

TABLE I
THE TOTAL ERROR OF THE PHOTOMOSAIC IMAGES IN FIGURE 7

S
Optimization Approximation

CPU CPU GPU
16× 16 7529146 7701450 7676311
32× 32 5410140 5520554 5506782
64× 64 3877820 3945836 4047410

Next, let us evaluate the computing time of generation pho-
tomosaic images. We have used a PC with Intel Core i7-3770
CPU (3.9GHz) and NVIDIA Tesla K40 GPU (875MHz) [23].
Using this, a sequential CPU implementation and a parallel
GPU implementation have been evaluated. The following
computing time is the average time of generating four kinds
of photomosaic images shown in Figures 7 and 8.

Sequential algorithms are executed as they are using a
single thread running Intel Core i7-3770. We may acceler-
ate these sequential algorithms using multiple threads and/or
SIMD instructions. However, these acceleration techniques for



Optimization Approximation (CPU) Approximation (GPU)
(a) S = 16× 16

Optimization Approximation (CPU) Approximation (GPU)
(b) S = 32× 32

Optimization Approximation (CPU) Approximation (GPU)
(c) S = 64× 64

Fig. 7. The Comparison of the optimization algorithm and the approximation algorithm on the CPU and the GPU



Input image (Airplane) Target image (Lena) Photomosaic image
(a) Airplane → Lena

Input image (Peppers) Target image (Barbara) Photomosaic image
(b) Peppers → Barbara

Input image (Tiffany) Target image (Baboon) Photomosaic image
(c) Tiffany → Baboon

Fig. 8. Examples of our photomosaic method by the optimization algorithm with 32× 32 tiles for images of size 512× 512



Core i7 CPU are out of scope of this work, because our goal
is not to compare the capability of NVIDIA GPU and Intel
Core i7 CPU. The speedup factors of GPU implementations
over CPU implementations shown by our experiments are just
for reference purpose.

Table II shows the computing time of the error values
between tiles in Step 2. When the size of images is larger, the
computing time is longer. Also, when the number of tiles is
larger, the computing time is longer. According to the results,
the GPU implementation of the error values computation can
run 66 to 92 times faster than the CPU implementation.

TABLE II
THE COMPUTING THE ERROR VALUES BETWEEN TILES IN STEP 2

Size of images number of tiles S CPU[s] GPU[s] Speed-up
16 × 16 0.397 0.005 78.30

512 × 512 32 × 32 1.599 0.017 92.12
64 × 64 6.253 0.107 58.22
16 × 16 1.574 0.020 77.28

1024 × 1024 32 × 32 6.178 0.077 80.00
64 × 64 24.890 0.269 92.70
16 × 16 6.238 0.079 78.56

2048 × 2048 32 × 32 20.980 0.316 66.39
64 × 64 98.485 1.230 80.08

Table III shows the computing time of rearrangement of
tiles in Step 3. According to the table, the computing time
of rearrangement does not depend on the size of image but
on the number of tiles. When S = 16 × 16, the GPU
implementation of the approximation algorithm is slower than
the CPU implementation because the number of tiles is small
and most of processor cores in the GPU are not used. However,
the GPU implementation of the approximation algorithm is at
least 2.6 and 18 times faster than the CPU implementation for
S = 32× 32 and 64× 64, respectively.

TABLE III
THE COMPUTING TIME OF REARRANGEMENT OF TILES IN STEP 3

Size of images number of Optimization Approximation
tiles S CPU[s] CPU[s] GPU[s] Speed-up

512 × 512
16 × 16 0.062 0.006 0.012 0.50
32 × 32 15.686 0.179 0.063 2.84
64 × 64 1209.082 6.660 0.343 19.42

1024 × 1024
16 × 16 0.070 0.006 0.011 0.55
32 × 32 15.518 0.180 0.069 2.61
64 × 64 1280.027 6.906 0.372 18.56

2048 × 2048
16 × 16 0.070 0.008 0.014 0.57
32 × 32 15.877 0.169 0.065 2.60
64 × 64 1304.024 7.467 0.352 21.21

Recall that the photomosaic generation with the optimiza-
tion algorithm can use the GPU implementation of the error
values computation. On the other hand, that with the ap-
proximation algorithm can use the GPU implementation of
the error values computation and the rearrangement of tiles.
Table IV shows the total computing time of the photomosaic
generation to evaluate the GPU acceleration. The optimization
algorithm can be accelerated up to 40 times faster than the
CPU implementation for S = 16 × 16. However, when
the number of tiles is larger, since the computing time of
the rearrangement of tiles on the CPU dominates the total
execution time, the speed-up factors take almost one. On the

other hand, in the approximation algorithm, the rearrangement
of tiles can be executed on the GPU. For the approximation
algorithm, our GPU implementation attains a speed-up factor
of up to 66 over the serial CPU implementation.

VII. CONCLUSION

In this paper, we have proposed a photomosaic generation
method by rearranging divided images. In the photomosaic
generation, an input image is divided into small subimages and
they are rearranged such that the rearranged image reproduces
another image given as a target image. We have shown an
optimization algorithm and an approximation algorithm of
rearranging tiles. Our new idea is that this rearrangement
problem is reduced to a minimum weighted bipartite matching
problem. In addition, we have also proposed an approximation
algorithm of the photomosaic generation. This approximation
algorithm does not obtain the most similar photomosaic image,
but the computing time can be shortened considerably.

Furthermore, we accelerate the computation using the GPU.
The experimental result shows that the GPU implementation
of the optimization and approximation algorithms attains a
speed-up factor of up to 40 and 66 times over the sequential
CPU implementation, respectively.
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