
Processor, Assembler, and Compiler Design Education using an FPGA

Koji Nakano and Yasuaki Ito
Department of Information Engineering, Hiroshima University

Kagamiyama 1-4-1, Higashi-Hiroshima, 739-8527, JAPAN

Abstract

This paper reports the design of two courses, “Embed-
ded Hardware” and “Embedded Software” offered in 2008
Spring semester at Hiroshima University. These courses
use 16-bit processor TINYCPU, cross assembler TINYASM,
and cross compiler TINYC. They are designed very simple
and compact: The total number of lines of the source code
is only 427. Thus, students can understand the entire de-
sign easily, and can learn the basics of computer and em-
bedded system, including processor architecture, assembler
and compiler design, assembler programming in a unified
way by experiment.

1 Introduction

An embedded system is a special-purpose computer sys-
tem designed to perform one or a few dedicated functions. It
is usually embedded as part of a complete device including
hardware and mechanical parts. Since embedded systems
usually use processors with limited computational power
and few hardware resources, it is important to write efficient
programs controlling the systems.

In most computer engineering departments, students are
leaning computer programming using high-level languages
such as C, Pascal, FORTRAN, etc. For developing efficient
programs, it is necessary to understand how computer pro-
grams are executed. For example, it is not easy to under-
stand how formulas in programs are evaluated. Further, it
is very difficult to understand a data structure “pointer” if
one does not know how it is implemented in a machine lan-
guage. Unfortunately, most students are learning high-level
language programming from just syntax of programs.

The main contribution of this paper is to present a sim-
ple, compact and portable processor, TINYCPU, which can
be implemented in various FPGAs. We also present a
cross assembler TINYASM and a cross compiler TINYC
for TINYCPU. TINYCPU, TINYASM and TINYC are de-
signed using Verilog HDL, Perl, and Flex/Bison, respec-
tively. Table 1 summarizes TINYCPU, TINYASM, and

TINYC. In this table, code size includes blank lines. Quite
surprisingly, TINYCPU, TINYASM, and TINYC are so
simple and compact that their total code size is 427 lines.
Hence, it is not difficult for students to understand the en-
tire design of TINYCPU, TINYASM, and TINYC. Also,
students can extend the design by themselves very easily.

We also report the design of two courses “Embedded
Hardware” and “Embedded Software” (2 credits each) of-
fered for graduate students in 2008 Spring semester at De-
partment of Information Engineering, Hiroshima Univer-
sity. These two courses use TINYCPU, TINYASM, and
TINYC as course materials. These courses use the FPGA
boards in Spartan-3E and Spartan-3A starter kit (Figure 1)
to implement and execute TINYCPU. The Spartan-3E and
Spartan-3A starter kits FPGA boards are equipped with
Spartan-3E family FPGA XC3S500E [11] and Spartan-
3A family FPGA XC3S700A [10], respectively. Both
FPGA boards have various switches (slide switches, button
switches and a rotary switch), LEDs, and LCD. They also
have VGA, PS/2, and Ethernet ports. In our TINYCPU im-
plementation, we use switches to provide clock pluses and
input values to TINYCPU, and LED to indicate the current
state of the state machine, and LCD to display miscella-
neous values including the program counter, the instruction
register, the address bus, the data bus of TINYCPU. Thus,
students can trace the behavior of TINYCPU in each clock
cycle easily.

Although many courses [2, 5, 8] for embedded systems
are offered, they are using existing processor such as ARM
and so on. As far as we know, there is no course teaching
the design of processor, assembler, and compiler in a unified
way by experiment.

This paper is organized as follows: In Section 2, we
show the architecture of TINYCPU, and its instruction set.
Section 3 describes our cross assembler TINYASM and
cross compiler TINYC. It also shows an example of a C-
based language program and the resulting object code pro-
vided using TINYCPU and TINYASM. Sections 4 and 5
show how we have used TINYC, TINYASM, and TINYC
as course materials for education. Section 6 offers conclud-
ing remarks.

Table 1. Our tiny processing system and its code size
language module or code size

function (lines)

TINYCPU 16-bit Processor Verilog HDL definitions (defs.v) 36
Verilog HDL ALU (alu.v) 39
Verilog HDL counter (counter.v) 14
Verilog HDL state machine (sate.v) 23
Verilog HDL stack (stack.v) 28
Verilog HDL memory (ram.v) 27
Verilog HDL top module (tinycpu.v) 112
total 279

TINYASM Cross Assembler Perl 38
TINYC Cross Compiler Flex lexical analysis 29

Bison context analysis
code generation 81

total 148
total 427

Figure 1. Spartan-3E Starter Kit

2 The Architecture of TINYCPU

TINYCPU is a pure stack architecture [4] and does not
have an accumulator or a register set. Instead, it has an oper-
ation stack, which is used for all operations including store,
load, arithmetic, and logic operations. The arithmetic and
logic instructions do not have operands, and the operations
performed for the stack.

TINYCPU is designed using Verilog HDL. The Ver-
ilog HDL code for TINYCPU is written as simple as pos-
sible, and the efficiency including hardware resources and
clock frequency are of secondary importance. Figure 2 il-

lustrates the block diagram of TINYCPU. It has seven com-
ponents including state machine state, 12-bit program
counter pc, 16-bit instruction register ir, 16-bit output
buffer obuf, 16-bit ALU alu, 16-bit stack stack, 16-
bit data and 12-bit address memory ram. It also uses 16-bit
data bus dbus and 12-bit address bus abus.

Every instruction of TINYCPU is a 16-bit word. Table 2
shows the list of all instructions of TINYCPU. It has 9 con-
trol instructions and 19 instructions for arithmetic and logic
operations. In the table, operands I and A are immediate
and address values, respectively, and f is a 5-bit code to
specify an operation. Also, top and next denote the top
and the second elements of the stack. Hence, the binary op-
erations are performed for next and top and the resulting
value is stored in top. The unary operations are performed
for top. The readers may think that TINYCPU has too
few instructions. However, these instructions are sufficient
to execute machine codes generated by C-based language
programs that we will explain later.

3 Cross Assembler and Cross Compiler

We have designed a cross assembler and a cross com-
piler for TINYCPU. The Assembler, TINYASM, translates
an assembly language program into a machine code, which
is a list of pairs of a 12-bit address and a 16-bit instruc-
tion codes. The compiler, TINYC, translates a C-based
language program into an assembly language program for
TINYASM. TINYC programming language supports 16-bit
signed integers, and if, if-else, while, do, and goto state-
ments. Also, it has basic arithmetic and logic operations
including addition (+), subtraction (−), multiplication (∗),

state0 pc0 ir0

ram0

q

addr

d

qd

q
obuf0

d

abus

dbus

stack0

d qtop

qnext

ba
alu0

s

in

d

Figure 2. TINYCPU architecture

Table 2. Instruction set of TINYCPU: Mnemonic names and instruction codes
Mnemonic Machine Operation

Code (HEX)
1 HALT 0000 Stop
2 PUSHI I 1000+I I→ top
3 PUSH A 2000+A mem[A]→ top
4 POP A 3000+A top → mem[A]
5 JMP A 4000+A A→pc
6 JZ A 5000+A A→pc if top=0
7 JNZ A 6000+A A→pc if top!=0
8 IN D000 in→top
9 OUT E000 top→out
10 OP f F000+f Perform operation f

ADD F000 next + top → top
SUB F001 next - top → top
MUL F002 next * top → top
SHL F003 next >> top → top
SHR F004 next << top → top
BAND F005 next & top → top
BOR F006 next | top → top
BXOR F007 next ˆ top → top
AND F008 next && top → top
OR F009 next || top → top
EQ F00A next == top → top
NE F00B next != top → top
GE F00C next >= top → top
LE F00D next <= top → top
GT F00E next > top → top
LT F00F next < top → top
NEG F010 - top → top
BNOT F011 ˜ top → top
NOT F012 ! top → top
I: 12-bit signed integer A: 12-bit unsigned integer

negation (−), bit shifts (<<, >>), bitwise logic operations
(&, |, ˆ, ˜), logic operations (&&, ||, !), and comparisons
(==, ! =, >, >=, <, <=).

List 1 shows an example of TINYC language program
collatz.c. Using TINYC compiler and TINYASM as-
sembler, collatz.c is translated into an assembly lan-
guage program and a TINYCPU machine code in List 2.
The C-language program in List 1 computes the formula in
Collatz conjecture [1, 9] as follows. Consider the following
operation on an arbitrary positive integer n: (1) If the num-
ber is odd, triple it and add one, that is, n← 3n+1, and (2)
If the number is even, divide it by two, that is, n ← n/2.
The Collatz conjecture asks if iterating this operation re-
turns 1 for any initial value n. For example, if n = 3 then,
we have the following sequence by iterating the operation.
3→ 10→ 5→ 16→ 8→ 4→ 2→ 1. It remains open if
the Collatz conjecture is true.

List 2 shows the TINYASM assembly language program
and TINYC machine code obtained using our TINYC com-
piler and TINYASM assembler. It contains a list of labels
with their address values, and a machine code, which is a
list of 16-bit instructions and initial values of variables.

List 1. C-based language program collatz.c
for Collatz conjecture

n=in;
while(n>1){
out(n);
if(n&1){
n= n*3+1;

} else {
n = n>>1;

}
}
out(n);
halt;
int n;

List 2. The translated assembly language pro-
gram and machine program of collatz.c

*** LABEL LIST ***
_001F 018
_001T 002
_002F 013
_002T 017
n 01B

*** MACHINE PROGRAM ***
000:D000 IN
001:301B POP n

_001T:
002:201B PUSH n
003:1001 PUSHI 1
004:F00E GT
005:5018 JZ _001F

006:201B PUSH n
007:E000 OUT
008:201B PUSH n
009:1001 PUSHI 1
00A:F005 BAND
00B:5013 JZ _002F
00C:201B PUSH n
00D:1003 PUSHI 3
00E:F002 MUL
00F:1001 PUSHI 1
010:F000 ADD
011:301B POP n
012:4017 JMP _002T

_002F:
013:201B PUSH n
014:1001 PUSHI 1
015:F004 SHR
016:301B POP n

_002T:
017:4002 JMP _001T

_001F:
018:201B PUSH n
019:E000 OUT
01A:0000 HALT
01B:0000 n: 0

4 Course Design

We have used TINYCPU, TINYASM, and TINYC for
two courses “Embedded Hardware” (Weeks from 1 to 4)
and “Embedded Software” (Weeks from 5 to 8) for graduate
students. These courses are organized in 8 weeks of 5 hours
each as follows: Week 1: Full Adders, N -bit Adders and
ALU, Week 2: Flip-Flops, Counters, State Machines, and
Stacks, Week 3: Chattering removal, LCD controller, mem-
ory, and instruction fetch, Week 4: CPU design: instruc-
tion set, control logic, and machine program, Week 5: Perl
language and cross assembler TINYASM design, Week 6:
Compiler Compiler :Flex and Bison , Week 7: TINYC Com-
piler, and Week 8: TINYC programming. We have used
Spartan-3E Starter Kit (Figure 1) and Spartan-3A Starter
Kit and students implement TINYCPU in the FPGA board
and confirm it works correctly by operating it. The details
of the contents of the eight weeks are as follows.

4.1 Week 1: Full Adders, N-bit Adders
and ALU

In Week 1, students first learn how to use ISE WebPACK,
which is a free version of the FPGA development tool for
Xilinx FPGAs. The main objective of Week 1 is to learn
how to design a combinational logic. For this purpose, they
design a full adder module and an 4-bit adder module by
instantiating the full adder module. To learn how to see
the correctness of a Verilog HDL module, they write a test
bench for the 4-bit adder module, and perform the simu-
lation using simulator included in ISE WebPACK. Finally,
they write a Verilog HDL module for ALU (Arithmetic and

Logic Unit) and its test bench, and perform the simulation
to verify if all functions of the ALU works properly.

4.2 Week 2: Flip-Flops, Counters, State
Machines, and Stacks,

In Week 2, students learn how to design a sequential
logic. They first write a (D-type) flip-flop with asyn-
chronous reset, which has 1-bit input ports clk, reset,
d, and 1-bit output port q and then learn a Verilog HDL
description of an N-bit counter.

Students design the state machine with five states, IDLE,
FETCHA, FETCHB, EXECA, and EXECB. Later, states
FETCHA and FETCHB are used to fetch an instruction code
from a memory, and the instruction is executed using two
states EXECA and EXECB.

Finally, they design a stack, which has four 16-bit reg-
isters. The stack supports operations, push, pop, and load
to the stack. Also, they design an operational stack using
the stack and the ALU, which evaluates a formula in post-
fix notation. For example, for formula 3 4 5 * +, the
operational stack outputs 23.

4.3 Week 3: Chattering removal, LCD
controller, memory, and instruction
fetch

In Week 3, students write the Verilog HDL source code
of a chattering removal circuit for the FPGA board of the
Spartan-3E/Spartan-3A starter kit. This circuit is used to
remove chattering of miscellaneous switches on the FPGA
board. They also implement an LDC controller, which is
used to display six 4-digit hexadecimal numbers in the LCD
on the FPGA board.

Students also implement a distributed RAM and a block
RAM. A distributed RAM is a asynchronous read/syn-
chronous write memory, which will be implemented in
slices of the FPGA. On the other hand, a block RAM is
a synchronous read/synchronous write memory, which will
be implemented in building block RAMs of the FPGA. Stu-
dents write test benches for them and perform the simula-
tion to understand their difference, and implement them in
the FPGA.

Finally, students develop an instruction fetch circuit us-
ing the counter module, the block RAM module, the chat-
tering removal module, and the LCD controller module. By
rotating the rotary switch on the FPGA board, clock pluses
are given to the main module through the chattering removal
module, and the LCD controller module is used to display
the values of program counter and the instruction register,
etc.

4.4 Week 4: CPU design: instruction set,
control logic, and machine program

In Week 4, students first determine the logic of seven-
teen control wires of the TINYCPU. For example, pcinc
is a control wire, which should be 1 iff the program counter
is incremented. Thus, pcinc is connected to inc input
port of the program counter and pcinc is 1 if the current
state is FETCHA. Based on the logic of the seventeen con-
trol wires, they complete the Verilog HDL source code of
the TINYCPU.

To verify the correctness of TINYCPU, they write a sim-
ple countdown program, which outputs n, n − 1, . . ., 0 for
a given n from the input port. They write a test bench and
see the countdown program works correctly by the simu-
lation. Further, they implement TINYCPU with the count-
down program on the FPGA board. The LCD on the FPGA
board shows the current values of program counter, instruc-
tion register, stack top, address bus, data bus, and the output
buffer. Also, 5 LEDs on the FPGA display the current state.

4.5 Week 5:Perl language and cross as-
sembler TINYASM design

In Week 5, students first learn basics of Perl language
programming including lists, associative arrays, regular ex-
pressions, pattern matching, and substitution, necessary
to understand TINYASM. Students are given the source
code of TINYASM which does not support error messages.
Hence, they extend it to show appropriate error messages.
The error messages include undefined mnemonic:undefined
mnemonic is used, undefined label: undefined label is used,
multiply defined label: the same label is defined twice or
more, immediate operand is out of range: the immediate
value of an operand is not in the range of 12-bit 2’s comple-
ment, initial value is out of range: the initial value of a vari-
able is not in the range of 16-bit 2’s complement. This ex-
tension is not possible if they do not understand the source
code of TINYASM.

4.6 Week 6: Compiler Compiler :Flex and
Bison

The main objective of Week 6 is to understand how to
write a compiler using the lexical scanner generating tool
Flex [7] and the parser generating tool Bison [3]. For this
purpose, students first write a postfix notation (or inverse
polish) calculator using Flex. For example, the postfix no-
tation calculator computes formula 3 4 5 * + and out-
puts 23. They also write the same calculator using Bison.
After that, students also write a infix notation calculator us-
ing both Flex and Bison. For example, the infix notation
calculator computes formula 3+4*5 and outputs 23.

Finally they develop a very small C-like programming
language cross compiler, that supports 16-bit signed inte-
gers, addition (+), subtraction (-), multiplication (*), and
equality (==), goto, if-goto, and unless-goto statements.

4.7 Week 7: TINYC cross compiler

In Week 7, students develop a TINYC cross compiler
using Flex and Bison by extending the small C-like lan-
guage compiler written in Week 6. TINYC cross compiler
supports, 16-bit signed integers, if, if-else, while, do, and
goto statements. Also, it supports basic arithmetic and logic
operations including addition (+), subtraction (−), multi-
plication (∗), negation (−), bit shifts (<<, >>), bitwise
logic operations (&, |, ˆ, ˜), logic operations (&&, ||, !),
and comparisons (==, ! =, >, >=, <, <=). After that,
students extend the function of TINYC, TINYASM, and
TINYC. For example, to support ++ and -- operators in
TINYC, they add INC and DEC unary operators in TINY-
CPU and also add INC and DEC mnemonics in TINYASM.
Also, they modify TINYC cross compiler to support con-
ditional operator (? :). Finally, they write a BCD counter
program using TINYC programming language.

4.8 Week 8: TINYC programming

In Week 8, students develop a stop watch program us-
ing TINYC programming language. The stop watch should
have three buttons, start/stop, reset, and lap. It also should
have accuracy 0.01 seconds from 00.00 to 99.99 seconds.
If “start/stop” is clicked while the counter stops, then the
counter starts or restarts. if “start/stop” is clicked while the
counter is incrementing, then the counter stops. If “reset”
is clicked, then the value of counter becomes 0. If “lap” is
clicked while the counter is working, then the counter incre-
ment continues but the display of the counter value stops. If
“lap” is clicked while the counter display stops, then the dis-
played value is updated by the current counter value, and the
counter display continue to stop. If “start/stop” is clicked
while the counter display stops, then the display starts to
show the current value of the counter. They also need to
verify if the developed stop watch works correctly using the
FPGA board.

5 The Results of Two Courses Embedded
Hardware and Embedded Software

Two courses “Embedded Hardware”(Weeks 1 to 4) and
“Embedded Software” (Weeks 5 to 8) offered in 2008
Spring semester at Department of Information Engineering,
Hiroshima University. Eighteen students enrolled in these
courses, and fifteen students of them have completed 8-
week course. In Week 9, fifteen of them took the final exam

to confirm that they understand the contents of the courses.
From the result of final exam, we can say that students have
learned and understood CPU design, Verilog HDL, assem-
bler design, and compiler design very well.

6 Concluding Remarks

We have presented a small computer system including
16-bit processor TINYCPU, cross assembler TINYASM,
and cross compiler TINYC. We have also reported the
course design of “Embedded Hardware” and “Embedded
Software” offered in 2008 Spring semester at Department of
Information Engineering, Hiroshima University. Students
taking these courses were able to learn digital circuit de-
sign using HDL, processor architectures, assembler design,
assembly language programming, and compiler design in a
unified way. Thus, TINYCPU, TINYASM, and TINYC can
be used as good course materials to learn basics of computer
and embedded system by experiment.

Based on TINYCPU, TINYASM, and TINYC, the au-
thors have been publishing serialized articles “Verilog HDL
& FPGA Design Learned from Basics” in Design Web
Magazine from April 2007 [6].

References

[1] E. Akin. Why is the 3x+1 problem hard ? Contemporary
Mathematics, 356:1–20, 2002.

[2] J. Chen, H.-M. Su, and J.-H. Liu. A curriculum design on
embedded system education for first-year graduate students.
In Proc. of International Conference on Parallel and Dis-
tributed Systems (ICPADS), volume 2, pages 1–6, 2007.

[3] C. Donnelly and R. Stallman. Bison: The YACC-compatible
Parser Generator. Free Software Foundation, 1995.

[4] P. Koopman. Stack Computers: the new wave. Ellis Hor-
wood, 1989.

[5] I. McLoughlin, D. Maskell, S. Thambipillai, and W.-B. Goh.
An embedded systems graduate education for singapore.
In Proc. of International Conference on Parallel and Dis-
tributed Systems (ICPADS), volume 2, pages 1–5, 2007.

[6] K. Nakano and Y. Ito. Verilog HDL & FPGA design learned
from basics. appears bimonthly in Design Wave Magazine,
2007-2009.

[7] G. T. Nicol. Flex: The Lexical Scanner Generator. Free
Software Foundation, 1993.

[8] N. Vun and W.-B. Goh. Issues and challenges of embedded
processor education for working professionals. In Proc. of
International Conference on Parallel and Distributed Sys-
tems (ICPADS), volume 2, pages 1–8, 2007.

[9] E. W. Weisstein. Collatz problem. From
MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/CollatzProblem.html.

[10] Xilix Inc. Spartan-3A FPGA Family: Data Sheet, 2008.
[11] Xilix Inc. Spartan-3E FPGA Family: Complete Data Sheet,

2008.

