
Efficient Byte Stream Pattern Test using Bloom
Filter with Rolling Hash Functions on the FPGA

Takuma Wada, Naoki Matsumura, Koji Nakano and Yasuaki Ito
Department of Information Engineering

Hiroshima University
Kagamiyama 1-4-1, Higashi Hiroshima, 739-8527 Japan

Abstract—The main purpose of this paper is to present an
efficient FPGA implementation for the Bloom filter, in which a
large set P of l-byte patterns are registered beforehand. Our
Bloom filter circuit performs the byte stream pattern test such
that it receives an input byte stream t and outputs the bit stream
in every clock cycle. Each bit of the output bit stream is 1 if an
l-byte sequence of t starting from the corresponding position is
identical with one of the patterns in P . Such byte stream pattern
test has a lot of applications. For example, it can be used for
detecting malicious patterns in byte stream of network traffic.
Our Bloom filter circuit fully utilizes 288K-bit Ultra RAMs and
18K-bit Block RAMs in the Xilinx UltraScale+ VU9P FPGA.
We use Ultra RAMs to implement bit arrays to register all
patterns in P and Block RAMs to compute signatures using
rolling hash functions. Unlike the previously published FPGA
implementations of the Bloom filter, which use XOR-based hash
functions, our Bloom filter circuit using rolling hash functions can
support much larger l. We have evaluated the performance of our
Bloom filter circuit using Xilinx UltraScale+ FPGA VU9P, which
is a popular high-end FPGA used in Amazon Web Service. The
experimental results show that our Bloom filter circuit for 4800K
(= 4, 915, 200) patterns of length 1024 can perform the byte
stream pattern test for 1.14Gbps input byte stream with false
positive probability 10−12. Also, we can configure our Bloom
filter circuit to work for 100K (= 102, 400) patterns of length
1024 and 49.5Gpbs input byte stream with the same false positive
probability.

Index Terms—hash function, hardware algorithm, data base,
intrusion detection

I. INTRODUCTION

A. Background

A Bloom filter [1] is a space-efficient data structure, which
can be used to test if x is in P , where P is a large set of
elements, and x is a query element. The Bloom filter uses a
hash function f that returns an integer (or signature) in the
range [0, s− 1] and a bit array B of size s initialized by zero.
For every element y (∈ P ), we write 1 in B[f(y)] in advance.
Clearly, for any query element x, if B[f(x)] = 0 then it is
guaranteed that x is not in P , because f(x) ̸= f(y) holds for
all y ∈ P . However, if B[f(x)] = 1 then x may or may not
be in the set. Thus, this membership test of x for P using B
is false positive. Since the membership test can be done by
simply computing signature f(x) and reading B[f(x)], it is
very efficient if the computation cost of hash function f is low.
Also, the false positive probability can be any small using a
larger bit array and/or multiple hash functions. A Bloom filter
has a lot of applications [2], [3]. For example, it can be used

to detect weak passwords [4] as follows. Let P be a set of
weak passwords such as all English words. Using the Bloom
filter for P , we can determine if a password x registered by
a user is in P . We can quickly reject registration of x if it is
in P . Note that, it is acceptable to reject x even if it is not in
P . Further, the Bloom filter can be used for signature-based
intrusion detection in the network traffic [5]–[7]. If we have
a large set of malicious patterns such as malware, then the
Bloom filter can be used to detect a malicious pattern from
byte stream. It also can be used for Web cache control [8],
[9].

A Field Programmable Gate Array (FPGA) is a pro-
grammable logic device designed to be configured by cus-
tomers or designers after manufacturing. Since an FPGA chip
maintains relative lower price and programmable features, it is
widely used in those fields which need to update architecture
or functions frequently such as image processing [10], [11]
and education [12]. The most common architecture of recent
FPGAs is an array of Configurable Logic Blocks (CLBs) [13],
Block RAMs [14], DSP slices [15], and programmable routing
channels connecting them [16]. In addition, latest FPGA has an
Ultra RAM [14], which is 16 times larger than a Block RAM.
Although the architecture of the latest FPGAs is targeted
for high performance digital signal processing [15], [17],
it can be used for other applications and general purpose
computing [18]–[20].

B. Our contribution

The main purpose of this paper is to develop an efficient
circuit for the Bloom filter as illustrated in Figure 1 to be
implemented in the FPGA. A byte stream is input to the Bloom
filter circuit such that a byte data in it is read in every clock
cycle continuously. In the Bloom filter circuit, a set P of l-byte
patterns are registered beforehand. It outputs a bit stream in
every clock cycle continuously such that bit i is 1 if the l-byte
interval starting from the i-th byte of the input byte stream
matches one of patterns in P . In the figure, the 4th and the
6th bits are 1, because the byte stream has patterns dabc and
bcdb from these positions, respectively.

The Bloom filter uses a large bit array B to store signatures
of all patterns in P of length l. We use rolling hash functions
to compute the signature f(x) of a pattern x in P defined as



Bloom filter
circuit

0 1 2 3 4 5 6 7 8 9

a b a c d a b c d b

P = {dabc,
aabb,
bcdb,
cbad}

0 1 2 3 4 5 6 7 8 9

0 0 0 1 0 1 0 0 0

input byte stream

output bit stream

0

Fig. 1. A Bloom filter circuit

follows:

f(x) = (x0 · dl−1 + x1 · dl−2 + · · ·
+xl−2 · d1 + xl−1) mod q, (1)

where q and d are integer parameters selected appropriately.
We call the resulting value of rolling hash function f signature.
For uniform distribution of signatures, q should be a prime
number. Suppose that all bits in bit array B are initialized by
zero and 1 is written in B[f(y)] for every pattern y in P in
advance. Let t0t1 · · · be bytes of the input byte stream. The
signature f(tjtj+1 · · · tj+l−1) is computed for every j in turn.
Clearly, if B[f(tjtj+1 · · · tj+l−1)] = 0 then tjtj+1 · · · tj+l−1

is not in P . On the other hand, tjtj+1 · · · tj+l−1 may not be
in P , even if B[f(tjtj+1 · · · tj+l−1)] = 1. Thus, the value
of B[f(tjtj+1 · · · tj+l−1)] determines if tjtj+1 · · · tj+l−1 ∈
P with some false positive probability. We can use multiple
bit arrays with multiple distinct rolling hash functions so that
membership is positive if all of the bit arrays return 1. Using
this technique, the false positive probability can be any small.

18 bits

1024 words

4096 words

72 bits

18K-bit Block RAM 288K-bit Block RAM

output
register

Fig. 2. Block RAM and Ultra RAM

Our target FPGA is Xilinx Ultrascale+ VU9P, a very popular
high-end FPGA, which has been used by AWS (Amazon Web
Service) FPGA cloud instance. This FPGA has 4,320 Block
RAMs and 960 Ultra RAMs, which are on-chip memories of
size 18K bits and 288K bits, respectively. Hence, it makes
sense to implement bit arrays using Ultra RAMs, because
larger bit arrays can support more patterns and/or can decrease

the false positive probability. However, there are several dif-
ficulties of FPGA implementations for the Bloom filter using
rolling hash function as follows:

• Rolling hash functions require the computation of arith-
metic modulo a prime, which needs a large combinational
circuit with a long critical path.

• The value of f(tjtj+1 · · · tj+l−1) can be computed by
the values of f(tj−1tj · · · tj+l−2), tj−1, and tj+l−1, but
combinational circuits for this computation are quite large
and have long critical paths.

• Since the capacity of an Ultra RAM is not a power of two,
some non-trivial technique is necessary to fully utilize it.

To get over these difficulties, we develop the following tech-
niques:

• We use 18K-bit block RAMs as a Look-Up-Table to
compute arithmetic modulo a prime.

• We partition the input byte stream into four byte streams
t0t4t8 · · · , t1t5t9 · · · , t2t6t10 · · · , and t3t7t11 · · · , and
compute f(tjtj+4tj+8 · · · tj+l−4), t(t1t5t9 · · · tj+l−3),
f(t2t6t10 · · · tj+l−2), and f(t3t7t11 · · · tj+l−1). Since
f(tjtj+4tj+8 · · · tj+l−4) can be computed using
f(tj−4tjtj+8 · · · tj+l−8), tj−4, and tj+l−4, 4 clock
cycles can be used for this computation. Our circuit
for this computation is pipelined, and so hash functions
for four byte streams can be computed using just one
circuit. By combining the resulting four values for four
byte streams appropriately, we have one hash function
with large codomain, which can be used to determine
the bit position of an Ultra RAM.

• We developed a sophisticated circuit to select one integer
in 9 integers 0, 1, 2, . . ., 8 with almost equal frequency
to fully utilize 288K-bit Ultra RAMs.

Table I summarizes the performance our Bloom filter circuit
for various configurations, including the number of stream
buffers, the number of Block RAMs, the number of Ultra
RAMs as used hardware resources in the FPGA. It also shows
the total number of registered patterns and the false posi-
tive probability of the Bloom filter. In the table, BF(1, 1, 1)
corresponds to the minimum configuration that we call BF
engine. It has one circuit to compute the signatures for an
input byte stream using one and a half of the Block RAMs
for hash function computation and a half of Ultra RAM to
implement 144K-bit bit array for the Bloom filter. If we store
signatures of 100K(= 102, 400) patterns, the false positive
probability is approximately 2−1. A byte stream buffer (i.e.
FIFO) is attached to an BF engine, which is used to store
the latest l bytes of the byte stream, because tj−4 and tj+l−4

are used to update the resulting value of the hash function. If
l < 2K then one 18K-bit Block RAM configured as a 2K×9
memory is sufficient to implement the byte stream buffer as
a conventional ring buffer. Thus, BF(1, 1, 1) uses 1.5 Block
RAMs for hash function computation and 1 Block RAM for
buffering a byte stream.

If we use h BF engines, the false positive probability is de-
creased to 2−h. This configuration corresponds to BF(1, h, 1)



TABLE I
THE PERFORMANCE OF OUR BLOOM FILTER CIRCUITS

circuit configuration # Block RAMs # Ultra RAMs # byte streams # patterns false positive probability
out of 4320 out of 960

BF(w, h, p) 1.5hw + w 0.5whp w 100K×p 2−h

BF(1, 1, 1) 1.5+1 0.5 1 100K 2−1

BF(1, h, 1) 1.5h+ 1 0.5h 1 100K 2−h

BF(1, h, p) 1.5h+ 1 0.5hp 1 100K×p 2−h

BF(w, h, 1) 1.5wh+ w 0.5wh w 100K 2−h

BF(1, 40, p) 61 20p 1 100K×p 10−12

BF(w, 40, 1) 61w 20w w 100K 10−12

in the table. Since BF(1, h, 1) accepts one byte stream, only
one Block RAM is used for buffering latest l bytes. Clearly, the
numbers of Block RAMs and Ultra RAMs are proportional to
h. If we want to receive multiple byte streams, we can simply
use multiple BF(1, h, 1)s, which corresponds to BF(w, h, 1).
It accepts w byte streams, and performs the byte stream
pattern test for one set of 100K patterns. To perform byte
stream pattern test for more patterns, we can use BF(1, h, p),
which accept p sets of 100K patterns. This configuration has
h BF engines, each of which is used to read p bit arrays for
byte stream pattern test. In general, we can use configura-
tion BF(w, h, p), which consists of w BF(1, h, p)s. Thus, it
performs byte stream pattern test for w byte streams and p
sets of 100K patterns with false positive probability 2−h. It
uses 1.5wh+w Block RAMs and 0.5whp Ultra RAMs. When
we use a Xilinx Ultrascale+ VU9P FPGA for implementation.
1.5wh+w ≤ 4320 and 0.5whp ≤ 960 must be satisfied not to
exceed available numbers of Block RAMs and Ultra RAMs.
The table also shows the used resources and the performance
for BF(1, 40, p) and BF(w, 40, 1), which fully utilizes 960
Ultra RAMs in a VU9P FPGA when p = w = 48. The
performance of these two configurations are actually evaluated
in Section IV.

C. Related work

There are several previously published works for imple-
menting the Bloom filter in the FPGA [21]–[24]. Manoharan et
al. [21] presented an FPGA implementation of the Bloom filter
for string matching. Their implementation simply uses XOR-
based hash functions [25] f : {0, 1}L → {0, 1}S such that

f(x0x1 · · ·xL−1)

= (d0 · x0)⊕ (d1 · x1)⊕ · · · ⊕ (dL−1 · xL−1),

where x0x1 · · ·xL−1 are L-bit input and d0, d1, . . . , dL−1 are
predetermined constant numbers with S bits. Hence, for l-byte
patterns, L must be 8l and the circuit size for f is proportional
to LS, which is quite large. Harwayne-Gidansky et al. [22]
also uses XOR-based hash functions. Hence, their experimen-
tal results show only for l ≤ 8. Cho et al. [23] presented an
FPGA implementation of the Bloom filter. However, they did
not describe the details of hash functions. The implementation
of [24] also uses XOR-based hash functions. As far as we
know, no previously published work uses rolling hash function,

by which the combinational circuit size for it is fixed and
independent of pattern length l.

This paper is organized as follows. In Section II, we
explain the Bloom filter and rolling hash functions. Section III
presents our Bloom filter circuits and FPGA implementations.
In Section IV shows experimental and implementation results.
Section V concludes our work.

II. BYTE STREAM PATTERN TEST USING BLOOM FILTER

The main purpose of this section is to show how byte stream
pattern test is performed using Bloom filter [1] with rolling
hash function.

A. Bloom filter

We first review basic ideas of the Bloom filter. Let U be a
universe and P = {p0, p1, . . . , pm−1} be an m-element subset
of U . Let f : U → [0, s− 1] be a hash function. Usually, s is
much smaller than the number of elements in U and so f is a
many-to-one function. We call the value of f(x) the signature
of x. We use a zero-initialized bit array B with s bits to store
the signatures of all f(pi) (0 ≤ i ≤ m − 1). We write 1 in
B[f(pi)] for all i (0 ≤ i ≤ m − 1). Clearly, B[k] = 0 if and
only if k ̸= f(pi) for all i (0 ≤ i ≤ m − 1). Let x be any
element in U . We can use the bit array B thus obtained to test
if x ∈ P . Clearly, if B[f(x)] = 0 then it is guaranteed that
x ̸∈ P holds. However, even if B[f(x)] = 1, x ∈ P may not
hold. Thus, membership x ∈ P can be tested by the value of
B[f(x)], but the result is false positive.

Let us evaluate the false positive probability. We assume that
all f(pi) (0 ≤ i ≤ m− 1) take values in [0, s− 1] uniformly
and independently at random. For any fixed value r in [0, s−1]
and pi in P , we have,

Pr(r ̸= f(pi)) = 1− 1

s
.

Since B[r] = 0 if and only if r ̸= f(pi) for all i (0 ≤ i ≤
m− 1), we have

Pr(B[r] = 1) = 1− (1− 1

s
)m ≈ 1− e−

m
s ,

which is equal to the false positive probability Pr(B[f(x)] =
1 | x ̸∈ P ).

Lemma 1: Let P be a set of m elements in universe U and
x be an element in U . A Bloom filter with one hash function
with a bit array of s bits can test if x ∈ P with false positive
probability 1− e−

m
s .



In the Bloom filter, multiple hash functions can be used to
decrease the false positive probability. Let f0, f1, . . . , fh−1 be
h distinct hash functions. Again, we use a zero-initialized s-
bit bit array B and we write 1 in B[fk(pi)] for all i and k
(0 ≤ i ≤ m − 1 and 0 ≤ k ≤ h − 1). Similarly, we can use
the bit array B to test if x ∈ P . If B[fk(x)] = 0 for some k
(0 ≤ k ≤ h−1), then it is guaranteed that x ̸∈ P holds. Thus,
x ∈ P can be tested by the values of B[f0(x)], B[f1(x)], . . .,
B[fh−1(x)]. The false positive probability can be computed as
follows. Let r be any fixed value in [0, s− 1]. Since B[r] = 0
if and only if r ̸= fk(pi) for all i and k (0 ≤ i ≤ m− 1 and
0 ≤ k ≤ h− 1), we have

Pr(B[r] = 1) = 1− (1− 1

s
)mh ≈ 1− e−

mh
s ,

which is equal to the false positive probability Pr(B[fk(x)] =
1 for all k | x ̸∈ P ). Thus, we have,

Lemma 2: Let P be a set of m elements in universe U and
x be an element in U . A Bloom filter with h hash functions
with a bit array of s bits can test if x ∈ P with false positive
probability (1− e−

mh
s )h.

If the Bloom filter with h hash functions is implemented as
it is, h bits in a bit array B must be read at the same time
or in turn. For efficient implementation of the Bloom filter,
we should separate B into multiple bit arrays as illustrated in
Figure 3, so that each array is accessed once for each test. Let
B0, B1, . . . , Bh−1 be h bit arrays of size s′ = s

h each and f0,
f1, . . ., fh−1 be hash functions that return integers in [0, s′−1].
For zero-initialized bit arrays B0, B1, . . . , Bh−1, we write 1 in
Bk[fk(pi)] for all i and k (0 ≤ i ≤ m−1 and 0 ≤ k ≤ h−1).
Similarly, if Bk[fk(x)] = 0 for some k (0 ≤ k ≤ h−1), then it
is guaranteed that x ̸∈ P holds. Thus, x ∈ P can be tested by
the values of B0[f0(x)], B1[f1(x)], . . ., Bh−1[fh−1(x)]. The
false positive probability can be computed as follows. For any
fixed k and r (0 ≤ k ≤ h− 1 and 0 ≤ r ≤ s′ − 1).

Pr(Bk[r] = 1) = 1− (1− 1

s′
)m = 1− (1− h

s
)m

≈ 1− e−
mh
s .

Hence, the false positive probability is

Pr(Bk[fk(x)] = 1 for all k | x ̸∈ P ) ≈ (1− e−
mh
s )h

Thus, we have,
Theorem 3: Let P be a set of m elements in universe U and

x be an element in U . A Bloom filter with h hash functions
using h bit arrays of s

h bits each can test if x ∈ P with false
positive probability (1− e−

mh
s )h .

From Lemma 2 and Theorem 3, we can see that the false
positive probability is the same. However, from 1 − (1 −
1
s )

mh < 1 − (1 − h
s )

m, we can say that the false positive
probability of the single bit array Bloom filter is a little smaller
(or better) than that of the multiple bit arrays. The difference
of the probability is quite small for large s. Since only one bit
is read in each of multiple bit arrays, the implementation of
the multiple bit arrays is easier. So, we use multiple bit arrays
to implement the Bloom filter in the FPGA.

s bits

· · ·f0 f1 fh−1

f0 f1

· · ·
s/h-bits s/h-bits s/h-bits

fh−1· · ·

(1) single bit array

(2) multiple bit arrays

Fig. 3. Single bit array and multiple bit arrays for the Bloom filter

Suppose that the total number of bits s and the number
of patterns m are fixed. We can choose the number h of
hash functions (or bit arrays) to minimize the false positive
probability (1− e−

mh
s )h. It takes the minimum value when

mh = s ln 2.

If this is the case, the false positive probability is

(1− e− ln 2)h = 2−h.

When h = 1, the false positive probability 2−1. If this is the
case, approximately s

2 bits in the s-bit bit array is 1 and so
the information entropy of the bit array is maximized. Hence,
we should design the Bloom filter so that 1 is written to a
s-bit bit array s ln 2 = mh times. In the resulting s-bit array,
approximately a half of the bits are 1.

Our FPGA implementation that we will show later uses a
half of 288K-bit Ultra RAM to implement a bit array. Thus,
we set s′ = 144K. From mh = s ln 2 and s′ = s

h , we have

m =
s

h
ln 2 = s′ ln 2 = 102, 208. (2)

Thus, we can perform byte stream pattern test for 100K
(= 102, 400) patterns with false positive probability approxi-
mately 2−h using h

2 288K-bit Ultra RAMs.

B. Rolling hash function

In this subsection, we assume that a universe U is a set of
all sequences with l bytes and define a hash function for U .

Recall that, for efficient computation of hash functions,
we employ a rolling hash function defined in formula (1) in
Subsection I-B. Two parameters q and d should be selected so
that di mod q is non-zero for all i (i ≥ 0). In other words, d
should have prime factors that are not those of q. Clearly, f
defined in formula (1) returns an integer in [0, q− 1]. We will
show that, for input byte stream t = t0t1 · · · , the signatures
f(tjtj+1 · · · tj+l−1) for all j (≥ 0) can be computed very
efficiently. To simplify the treatment of boundary case, we
assume that ti = 0 for all i (< 0). These values can be
computed by the following algorithm:



[Rolling Hash Function Algorithm]
v ← 0;
for j ← 0 to n− 1

v ← (v · d− tj−l · dl + tj) mod q;

We can confirm that v stores f(tj−l+1tj−l+2 · · · tj) for all j
(≥ 0) in turn, by induction on j. Initially, we can think that v
is storing f(t−lt−l+1 · · · t−1) = 0. Suppose that v is storing
f(tj−ltj−l+1 · · · tj−1) = (tj−l · dl−1 + tj−l+1 · dl−2 + · · · +
tj−2 · d1 + tj−1) mod q. By executing v ← (v · d− tj−l · dl +
tj) mod q, v stores f(tj−l+1tj−l+2 · · · tj) = (tj−l+1 · dl−1 +
tj−l+2 · dl−2+ · · ·+ tj−1 · d1+ tj) mod q. Thus, all values of
f(tj−l+1tj−l+2 · · · tj) are computed one by one correctly.

Let us see how we select appropriate values of q and d.
Let γ(q, d) denote the minimum value of i (> 0) such that
di mod q = 1. Note that, no such i exists if q and d are not
coprime. We should not select such pair of q and d, and so we
assume that γ(q, d) = 0 for such pair. Clearly, d0 = dγ(q,d) =
d2γ(q,d) = d3γ(q,d) = · · · = 1 (mod q) holds for any pair of
q and d. More generally, by multiplying dj , we have dj =
dγ(q,d)+j = d2γ(q,d)+j = d3γ(q,d)+j = · · · (mod q). Thus,
swapping two bytes in distance of a multiple of γ(q, d) does
not change the value of hash function f . Hence, the value
of γ(q, d) should be as large as possible, because the values
of d0, d1, . . . , dγ(q,d)−1 (mod q) are distinct and swapping
two bytes in distance less than γ(q, d) does not change the
signature with high probability. Since di mod q takes value in
[1, q − 1], the maximum possible value of γ(q, d) is q − 1.
If γ(q, d) = q − 1, then we can guarantee that all values
d0, d1, . . . dq−2 (mod q) are distinct.

Let max(γ(q)) be a function such that

max(γ(q)) = max{γ(q, d) | d > 0}

Also, let num(γ(q)) denote the number of ds in [1, q − 1]
satisfying γ(q, d) = max(γ(q)). Table II shows the val-
ues of max(γ(q)), num(γ(q)), and the first 8 ds satis-
fying max(γ(q)) = γ(q, d) for each q in [1008, 1024].
In the table, prime ds are boldfaced. For example, when
q = 1021, γ(q, d) = 1020 holds for 256 numbers d =
10, 22, 30, 31, 34, 35, 37, 40, . . . , 1011. From the table, we can
see that, we should choose prime numbers for q, because
max(γ(q)) = q − 1. In our FPGA implementation, we use
four prime numbers 1009, 1013, 1019, and 1021 for q.

III. FPGA IMPLEMENTATIONS OF THE BLOOM FILTER

This section presents our Bloom filter circuits to be imple-
mented in the FPGA. We first explain the details of Block
RAMs and Ultra RAMs of the FPGA. After that, we show a
basic circuit to compute rolling hash functions on the FPGA.
We then go on to present BF engine, which computes bit
position of the Ultra RAM to be read. Finally, we show our
Bloom filter circuits using multiple BF engines.

A. Block RAM and Ultra RAM

This subsection explain a Block RAM and Ultra RAM
necessary to understand our Bloom filter circuits. Xilinx
Ultrascale+ family FPGA has two types of memory resources:

TABLE II
THE VALUES OF max(γ(q)), num(γ(q)), AND THE FIRST 8 qS SATISFYING

max(γ(d)) = γ(q, d)

q max(γ(q)) num(γ(q)) examples of d
1008 12 128 5, 11, 13, 19, 29, 37, 43, 53
1009 1008 288 11, 17, 22, 26, 31, 33, 34, 38
1010 100 240 3, 7, 11, 13, 23, 27, 29, 33
1011 336 192 10, 19, 20, 22, 23, 29, 31, 34
1012 110 280 3, 5, 7, 13, 15, 17, 19, 27
1013 1012 440 3, 5, 7, 12, 17, 18, 20, 26
1014 156 96 7, 11, 37, 41, 59, 67, 71, 85
1015 84 288 2, 3, 11, 18, 19, 23, 26, 31
1016 126 252 3, 7, 11, 13, 15, 21, 23, 29
1017 336 192 5, 20, 23, 29, 34, 38, 43, 47
1018 508 252 3, 7, 13, 15, 19, 27, 31, 33
1019 1018 508 2, 6, 7, 8, 10, 13, 18, 21
1020 16 128 7, 11, 23, 29, 31, 37, 41, 61
1021 1020 256 10, 22, 30, 31, 34, 35, 37, 40
1022 72 144 5, 11, 13, 15, 29, 31, 33, 39
1023 30 336 5, 7, 10, 13, 14, 17, 19, 20
1024 256 256 3, 5, 11, 13, 19, 21, 27, 29

Block RAM and Ultra RAM [14] as illustrated in Figure 2.
We use Block RAMs to compute arithmetic modulo a prime
number, which needs a large circuit with long delay if we use
a combinational circuit. Using a Block RAM, modulo can be
computed in one clock cycle. Also, Ultra RAMs are used to
implement bit arrays.

A Block RAM is a 18K-bit dual port memory, which can
be configured as 16K×1, 8K×2, 4K×4, 2K×9, or 1K×18.
Figure 2 illustrates a 1K×18 Block RAM with 10-bit address
with 18-bit word. It has two pairs of address input port with
10 bits each and data output ports with 18 bits each. Using
these ports, two 18-bit words stored in two addresses can be
accessed at the same time. A 1K × 18 Block RAM supports
synchronous read and a rising clock edge is necessary to read
a 18-bit word specified by the address port. More specifically,
it has two 18-bit output register, a word specified by a 10-bit
address input port is read and stored in a 18-bit output register,
from which a stored word is continuously output to the 18-bit
data output port. Note that, it is not possible to bypass the
output register.

An Ultra RAM is a 4K× 72 dual-port memory with 288K-
bit capacity as illustrated in Figure 2. Unlike the Block RAM,
a word size is fixed to 72. It has two pairs of address input port
with 12 bits each and data output ports with 72 bits each. Using
these ports, words stored in two addresses can be accessed at
the same time. Thus, we can use an Ultra RAM as two 2K×72
single-port memory with 144K-bit capacity. Similarly, an Ultra
RAM supports synchronous read and a rising clock edge is
necessary to read a 72-bit word.

B. A basic circuit to compute rolling hash functions

We show how (v · d− tj−l · dl + tj) mod q is computed to
evaluate f(tj−l+1tj−l+2 · · · tj) for every j one by one. Recall
that, we use q = 1009, 1019, 1013, and 1021. Here, we use
q = 1021 as an example for the detailed explanation. Let
α : [0, 1020] → [0, 1020] and β : [0, 255] → [0, 1020] be
functions such that



• α(x) = (x · d) mod q, and
• β(y) = (q − (y · dl mod q)) mod q.

From (v ·d−tj−l ·dl+tj) mod q = (α(v)+β(tj−l)+tj) mod
q, it is sufficient to show the computation of (α(v)+β(tj−l)+
tj) mod q. For the computation of α and β, we use one block
RAM each. More specifically, each address x (0 ≤ i ≤ 1020)
of a block RAM for α stores the value of α(x). By reading
address x, the value of α(x) can be computed in one clock
cycle. Similarly, each address y (0 ≤ i ≤ 255) of a block
RAM for β stores the value of β(y) to compute it in one
clock cycle.

Let z = α(v) + β(tj−l) + tj . We simply use an adder to
compute the value of z. Since z ≤ (q− 1) + (q− 1) + 255 =
2q + 253 < 3q, exactly one of z, z − q, and z − 2q is in
[0, q − 1]. By selecting one of them appropriately, we can
obtain the value of (α(v) + β(tj−l) + tj) mod q.

Figure 4 illustrates a circuit to compute
f(tj−l+1tj−l+2 · · · tj). It has a FIFO of size l, which
stores tj−l, tj−l−1, . . . , tj+1. Thus, the total capacity of FIFO
is 8l bits. A 10-bit register is used to store the value of v. Two
block RAMs compute α(v) and β(tj−l). An adder computes
the sum z of α(v), β(tj−l), and tj . Two subtractors are used
to compute z − q and z − 2q. A 3-to-1 selector chooses one
of z, z − q and z − 2q. For this purpose, the sign bits of
z − q and z − 2q are used and the output of the selector can
be determined by the following logic:

if(z − q < 0) output z;
else if(z − 2q < 0) output z − q;
else output z − 2q;

Since the resulting value is in [0, q − 1], the selector outputs
z mod q correctly.

v

tj−ltj

α

FIFO

β

−q −2q

block RAMs

z

Fig. 4. A circuit to compute v = (β(v) + α(tj−l) + tj) mod q

Let us analyze the timing of this circuit in Figure 4. We
should focus on the path from the output of register v to the

input of v to determine the correct timing. In this circuit, α(v)
is computed using a block RAM. Since a block RAM works
synchronous read mode, the value of g(v) is read and stored
in the output register in a block RAM at the rising edge of
the clock input. Thus, one clock cycle is necessary to compute
α(v). Therefore, two clock cycles are necessary to update the
value of v. Also, the circuit has a long critical path. The path
from the output of the block RAM to compute α to the input
of v involves an adder, a subtractor, and a 3-to-1 selector. This
long critical path degenerates the clock performance.

C. Hash function for efficient FPGA implementation

We will modify hash functions so that the signature
f(tj−l+1tj−l+2 · · · tj) is computed in every clock cycle. We
will show how f(x) is computed, where x = x0x1 · · ·xl−1 is
a l-byte sequence. We assume that l is divisible by four. We
make four sequences of length l

4 by picking every four bytes
in x as follows:

• X0 = x0x4x8 · · ·xl−4,
• X1 = x1x5x9 · · ·xl−3,
• X2 = x2x6x10 · · ·xl−2, and
• X3 = x3x7x10 · · ·xl−1.

We define two hash function a and b for x using a rolling hash
function f for X0, X1, X2, and X3 as follows:

a(x) = a′(x) mod 16K

b(x) =

{
8 if b′(x) mod 16K ≤ 1820
b′(x) mod 8 otherwise,

where

a′(x) = f(X0) + 31 · f(X1) + 127 · f(X3)

b′(x) = f(X1) + 127 · f(X2) + 31 · f(X3).

Note that mod 16K (i.e. mod 16,384) can be computed by
taking least significant 14 bits. If rolling hash function f for
q = 1021 is used, then the return values of f are in [0, 1020].
The values of a(x) and b(x) are in [0, 16K − 1] and [0, 8],
respectively. Constant numbers 31, and 127 in the definition
are selected from prime numbers, which are powers of two
minus 1. Thus, multiplication is not necessary. For example,
31 · f(X1) can be computed by evaluating (f(X1) << 5) −
f(X1). Also, a constant number 1820 is used in the definition
of b, because 16K

9 ≈ 1820.4. Hence, b′(x) mod 16K ≤ 1820 is
satisfied with probability 1

9 and thus the resulting value of b(x)
is 8 with probability 1

9 . If b′(x) mod 16K > 1820 then b′ mod
8 takes 0, 1, . . ., 7 with equal probability 1

8 . Since b′(x) mod
16K > 1820 with probability 8

9 , the value of b(x) takes 0,
1, . . ., 7 with equal probability 8

9 ·
1
8 = 1

9 . Let a13a12 · · · a0
and b3b2b1b0 denote the binary representations of the resulting
values of a(x) and b(x). We use a10a9 · · · a0, which takes
value in [0, 2K − 1], to specify an address of the 2K × 72
2-dimensional bit array. Also, b3b2b1b0a13a12a11, which is in
[0, 71], is used to specify a bit of a 72-bit word.

To clarify that the resulting values of a and b are almost
uniform, we have evaluated the number of occurrences of
each resulting values of a and b. More specifically, the number



of occurrences of 144K integers b3b2b1b0a13a12 · · · a0 for all
possible values of f(X0), f(X1), f(X2) and f(X3). Since each
number takes q = 1021 integers, the total number of all
possible combinations is q4 = 10214 ≈ 1012, which is too
large to evaluate them by a conventional CPU. Thus, we have
used NVIDIA Tesla V100 GPU for this task. Table III shows
the minimum/average/maximum numbers of occurrences of
144K integers for q = 1009, 1013, 1019, and 1021. For
example, the average number of occurrences of each integer if
10214

144K ≈ 7369542.4, when q = 1021. Also, the numbers of oc-
currences of all integers are in the range [7354614, 7400244].
Thus, the bias ration is 7400244−7354614

7369542.4 = 0.0062. We can see
that the bias ratios for all qs are less than 1%, so the resulting
values of a and b are almost uniformly distributed.

TABLE III
THE RANGE OF THE OCCURRENCES OF 144K NUMBERS USING OUR HASH

FUNCTIONS

q minimum average maximum bias ratio
1009 7004135 7029140.4 7069022 0.0092
1013 7119695 7141268.0 7179593 0.0084
1019 7295475 7311968.1 7345400 0.0068
1021 7354614 7369542.4 7400244 0.0062

D. BF engine to compute hash functions a and b

We will modify a circuit shown in Figure 4. Figure 5
illustrates a modified circuit to compute a(tj−l+1tj−l+2 · · · tj)
and b(tj−l+1tj−l+2 · · · tj) from the values of tj and tj−l.
The register v is used to store the previous signature f . Two
pipeline stages with pipeline registers are inserted to decrease
the critical path. Thus, the path from the output of v to the
input of v, has 3 registers including the output register of the
block RAM for g and registers in two pipeline stages.

Let vj = f(tj−ltj−l+4tj−l+8, · · · tj−4) and uj = g(vj) +
h(tj−l) + tj . Figure 6 illustrates a timing chart of the circuit.
We can see that, from the value of vj stored in register v, the
value of vj+4 is computed and stored in register v in 4 clock
cycles. Three registers are used to store past three values of
v. Using the four values of v, we can compute the resulting
values of a and b by combinational circuits. We should insert
pipeline stages to these combinational circuits to maximize the
clock frequency. For later reference, BF engine E(q, d) denote
this circuit in Figure 5 with parameters q and d.

E. Bloom filter circuit using multiple BF Engines

We will design a circuit for the Bloom filter with multiple bit
arrays using multiple BF engines E(q, d)s and multiple Ultra
RAMs. Since a BF engine uses a 144K-bit bit array, two BF
engines can share a 288K-bit Ultra RAM, which stores two
144K-bit bit arrays.

Figure 7 illustrate our Bloom filter with multiple bit ar-
rays, which corresponds to BF(1, h, 1) in Table I. We use
BF engines E(q0, d0), E(q1, d1), . . ., E(qh−1, dh−1), each
of which computes the values of a(tj−l+1tj−l+2 · · · tj) and
b(tj−l+1tj−l+2 · · · tj) with parameters qi and di. This circuit
can perform byte stream pattern test for 1 byte stream and

v

tj−ltj

α

FIFO

β

−q −2q

block RAMs

b

a

pipeline stage

pipeline stage

register A

register B

ultra RAM

Fig. 5. A BF engine E(q, d) to compute a(tj−l+1tj−l+2 · · · tj) and
b(tj−l+1tj−l+2 · · · tj)

register v

block RAM for g

register A

clock

vj vj+1 vj+2 vj+3 vj+4 vj+5

g(vj) g(vj+1 g(vj+2) g(vj+3) g(vj+4)

register B

uj uj+1 uj+2 uj+3

uj uj+1 uj+2

Fig. 6. A timing chart of the BF engine in Figure 5

100K patterns. We should select every pair qi and di such
that

• all pairs are distinct,
• qi is 1009, 1013, 1019, or 1021, and these four values

are used equally for h BF engines,
• γ(qi, di) = max(γ(qi)) = qi − 1.

Recall that d0i , d
1
i , · · · , d

qi−2
i (mod qi) take distinct integers

in [1, qi − 1], and d0i mod qi = dqi−1
i mod qi = 1. Thus, a

sequence d0i , d1i , d2i , . . ., (mod qi) is a repeat of a sequence



d0i , d
1
i , · · · , d

qi−2
i (mod qi) of length qi − 1. Since we use

4 prime numbers 1009, 1013, 1019, and 1021, we can think
that 4 sequences using these 4 prime numbers, one for each,
involve iterations of length 1009 · 1013 · 1019 · 1021 ≈ 1012,
which is quite large.

We should use multiple BF circuits to reduce the false
positive probability. Figure 7 illustrates BF(1, h, 1) with h = 6
in Table I. Note that a bit array is generated for each pair of
parameters qi and di and written in a half of the Ultra RAM
before hand. Each BF engine E(qi, di) compute functions a
and b for the input byte stream.

E(q0, d0)

E(q1, d1)

E(q2, d2)

E(q3, d3)

E(q4, d4)

E(q5, d5)

FIFO

Ultra
RAMs

Fig. 7. Illustrating Bloom filter circuit BF(1, 6, 1).

Recall that an BF engine for q = 1021 computes two func-
tions α : [0, 1020] → [0, 1020] and β : [0, 255] → [0, 1020]
using Block RAMs. Since uses 256 words in a dual-port Block
RAMs, two different hs can be computed at the same time.
Hence, two BF engines can share one Block RAM to compute
h. Thus, two BF engines can be implemented using 3 Block
RAMs, two for α and one for β.

F. Bloom filter circuits for multiple pattern sets

Figure 8 illustrate our Bloom filter circuit, which corre-
sponds to BF(1, h, p) with h = 6 and p = 5 in Table I. Each
of p = 5 rows of Ultra RAMs uses h bit arrays used for one
of p = 5 pattern sets P1, P2, . . . , Pp−1. Thus, the signatures
of patterns in each Pi are written in Ultra RAMs in i-th row.
Using h

2 Ultra RAMs in each i-th row, we can perform the
byte stream pattern test for Pi. Hence, we have,

Lemma 4: BF(1, h, p) can perform the byte stream pattern
test for P1, P2, . . . , Pp−1 with 100K patterns each in parallel
with false positive probability 2−h.

We can simply arrange multiple BF(1, h, p)s to perform the
byte stream pattern test for multiple byte streams. Thus, we
have,

Theorem 5: BF(w, h, p) can perform the byte stream pattern
test for w byte streams and P1, P2, . . . , Pp−1 with 100K
patterns each in parallel with false positive probability 2−h.

E(q0, d0)

E(q1, d1)

E(q2, d2)

E(q3, d3)

E(q4, d4)

E(q5, d5)

FIFO

Ultra
RAMs

Fig. 8. Illustrating Bloom filter circuit BF(1, 6, 5).

IV. EXPERIMENTAL RESULTS

A. The false positive probability

We have evaluated the false positive probability using (1)
randomly generated byte streams and (2) Wikipedia text. We
have used Mersenne twister random number generator [26] to
generate 1G-byte streams, in which 8-bit numbers are selected
uniformly at random. Also, randomly selected 100K 1024-
byte data in it to use them as patterns. Thus, each pattern
matches at least one position in 1G-byte streams. Further, we
merged Wikipedia text appropriately to have 1G-byte streams
to see the false positive probability for biased byte streams.
Similarly, we randomly selected 100K 1024-byte sequence in
it to use them as patterns. Table IV shows the resulting the
false positive probability for these cases. We can see that the
false positive probability is close to 2−h ≈ 103h/10, and so
we can say that the theoretical analysis of the false positive
probability is correct. The false positive probability is a little
larger than 10−12, because we use 102,400 patterns, which is
a little larger than 102,208 in formula (2).

TABLE IV
THE FALSE POSITIVE PROBABILITY

h random Wikipedia
1 0.5007 0.5007
10 0.989× 10−3 0.990× 10−3

20 0.971× 10−6 0.959× 10−6

30 1.061× 10−9 1.024× 10−9

40 1.500× 10−12 1.250× 10−12

B. The performance of our Bloom filter circuits

We have implemented our Bloom filter circuits and evalu-
ated the used hardware resources of the FPGA and the perfor-
mance. The used hardware resources are the number of CLBs,
LUTs, FFs, Block RAMs, and Ultra RAMs. CLBs (Config-
urable Logic Blocks) in the FPGA are used for implementing



combinational and sequential logic [13]. One CLB contains 8
LUTs (Look-Up-Tables) and 16 FFs (Flip-Flops). An LUT is
a 64-bit memory, which can be configured as a 6-to-1 LUT
or a 5-to-2 LUT. A VU9P FPGA has 147,780 CLBs with
1,182,240 LUTs and 2,364,480 FFs totally. We also evaluated
the number of 4,320 18K-bit Block RAMs and 960 288K-bit
Ultra RAMs used in our Bloom filter circuits. Table V shows
the performance of our Bloom filter circuits BF(1, 40, p) for
p = 1, 2, 4, 8, 16, 32, 48. In these circuits, the false positive
probability for testing one sequence is 2−40 ≈ 10−12. Our
Bloom filter circuit BF(1, 40, 1) runs in 456MHz and so the
throughput of a byte stream is 456MHz×8 = 3.65Gbps. We
can think that the circuit outputs one false positive result in
every 1

456·106·10−12 ≈ 2193 seconds on average, which is
quite large. Also, BF(1, 40, 48), which fully utilizes 960 Ultra
RAMs, runs in 143MHz. Due to wire routing and resource
mapping overhead, the clock frequency is lower than that of
BF(1, 40, 1). In this implementation, only 33.5% CLBs and
1.4% Block RAMs are used. Also, the false positive frequency
is one false positive result in 48

143·106·10−12 = 146 seconds on
average, which is still quite large.

Table VI shows the performance of our Bloom filter circuits
BF(w, 40, 1) for w = 1, 2, 4, 8, 16, 32, 48. The false positive
probability is also 2−40 ≈ 10−12. Note that, BF(w, 40, 1) and
BF(1, 40, p) are the same when w = p = 1. We can see
that BF(48, 40, 1) fully utilized 960 Ultra RAMs, and runs in
129MHz. Since it uses 40×48 = 1920 BF engines, more CLBs
and Block RAMs are used than BF(1, 40, 48). Further, since
it reads w = 48 byte streams, the throughput is 129MHz ×
8× 48 = 49.5Gpbs. The false positive frequency is one false
positive result in 48

129·106·10−12 = 161 seconds on average.

C. Comparison with a sequential algorithm

Although the performance of our Bloom filter circuit is
quite high, it is not easy to see how high it is. So, we
have implemented a sequential Bloom filter algorithm and
evaluated the performance using a latest Intel CPU. Note
that, this is just a reference to see the performance of our
Bloom filter circuit relative to a sequential algorithm on an
Intel CPU for the same byte stream pattern test. For fair
comparison, we optimize a sequential byte stream pattern test
to obtain almost the same result as BF(48, 40, 1). Recall that
our BF engine computes four hash functions and combine
them to obtain a signature due to the limitation of circuits.
However, since modulo of a large prime can be computed
by a CPU very easily, we select q = 147, 451 which is the
largest prime number less than 144K. Also, we select d’s such
that max(γ(q, d)) = q − 1. For such q and d’s, we simply
perform v ← (v · d − tj−l · dl + tj) mod q in the Rolling
Hash Function Algorithm. We can accelerate this sequential
algorithm by omitting the computation of hash functions as
follows. Recall that, in the Bloom filter, h signatures f0(x),
f1(x), . . ., fh−1(x) are computed for all sequences x in the
input byte stream, and it returns positive (that is, x ∈ P ) if all
of B[f0(x)], B[f1(x)], . . ., B[fh−1(x)] are 1. If one of them

is 0, it returns negative. Thus, the following algorithm works
correctly as a Bloom filter.

for i← 0 to h− 1
if(B[fi(x)] = 0) then return negative;

return positive;

Since each B[fi(x)] = 1 with probability 2−1, the value of
B[fi(x)] is read only if B[f0(x)], B[f1(x)], . . ., B[fi−1(x)]
are 1. Hence, the probability that B[fi(x)] (0 ≤ i ≤ h− 1) is
read is 2−i So, it makes sense to evaluate the value of fi(x)
from scratch using formula (1) for large i, because B[fi(x)]
is not read with probability 1 − 2−i. Thus, to accelerate the
sequential algorithm we modify it so that

• each fi(x) (0 ≤ i ≤ T − 1) is evaluated for every
sequence x = tj−l+1tj−l+2 · · · tj by evaluating v ←
(v · d− tj−l · dl + tj) mod q, and

• each fi(x) (T ≤ i ≤ h − 1) is evaluated from the
scratch using formula (1) only if the value of B[fi(x)] is
necessary.

Roughly speaking, the expected running time of the modified
sequential algorithm is

O(1)× T +

h−1∑
i=T

(O(l)× 2−i) = O(T + l2−T )

time per byte of the input byte stream, where l is the length
of the patterns. We can select threshold value T so that the
running time is minimized. From above theoretical analysis of
the running time, the value of T that minimizes the running
time satisfies T = O(log l − log log l). Table VII shows
experimental results of this modified sequential algorithm for
l = 1024 and h = 40 with each T in [8, 14]. From the table, we
can see that the throughput is maximized when T = 11. In this
case, the throughput is 0.218Gbps, and that of BF(48, 40, 1)
is 49.5Gbps

0.218Gbps = 227 times better.
Since Core i7-6700K has 4 cores with eight hyperthreads, it

may be possible to accelerate the computation. It needs parallel
computing techniques, and so it is out of scope of this paper.
However, we can say that the throughput can not be improved
more than 8 times using 8 hyperthreads. Thus, we can say
that our Bloom filter circuit implemented in the FPGA is fast
enough.

V. CONCLUSION

In this paper, we have presented Bloom filter circuits for
byte stream input optimized for the Xilinx Ultrascale+ VU9P
FPGA. It computes rolling hash functions using Block RAMs
in the FPGA, and uses Ultra RAMs to store signatures of
patterns. The experimental results show that, the throughput
of our Bloom filter circuit for 48 byte streams and 100K
patterns is 49.5Gbps. On the other hand, the throughput of the
optimized sequential algorithm is 0.218Gbps on Intel Core i7-
6700K. Thus, our Bloom filter circuit running on the FPGA
is 227 times faster than a sequential algorithm on an Intel
Core i7 CPU for the same task.



TABLE V
THE PERFORMANCE OF BF(1, 40, p)

p CLB LUT FF Block RAM Ultra RAM Clock Throughput Patterns false positive
(MHz) (Gbps) (K) frequency (sec)

VU9P 147,780 1,182,240 2,364,480 4,320 960 - - - -
1 1,512 (1.0%) 7,358 (0.6%) 8,516 (0.4%) 61 (1.4%) 20 (2.1%) 456 3.65 100 2193
2 2,477 (1.7%) 12,524 (1.1%) 15,618 (0.7%) 61 (1.4%) 40 (4.2%) 453 3.62 200 1104
4 4,394 (3.0%) 22,832 (1.9%) 29,823 (1.3%) 61 (1.4%) 80 (8.3%) 452 3.62 400 553
8 8,949 (6.1%) 41,917 (3.5%) 58,232 (2.5%) 61 (1.4%) 160 (16.7%) 389 3.11 800 321

16 17,633 (11.9%) 81,241 (6.9%) 115,049 (4.9%) 61 (1.4%) 320 (33.3%) 274 2.19 1,600 228
32 33,553 (22.7%) 160,699 (13.6%) 228,682 (9.7%) 61 (1.4%) 640 (66.7%) 167 1.34 3,200 187
48 49,541 (33.5%) 240,200 (20.3%) 342,315 (14.5%) 61 (1.4%) 960 (100%) 143 1.14 4,800 146

TABLE VI
THE PERFORMANCE OF BF(w, 40, 1)

w CLB LUT FF Block RAM Ultra RAM Clock Throughput Patterns positive false
(MHz) (Gbps) (K) frequency (sec)

VU9P 147,780 1,182,240 2,364,480 4,320 960 - - - -
1 1,512 (1.0%) 7,358 (0.6%) 8,516 (0.4%) 61 (1.4%) 20 (2.1%) 456 3.65 100 2193
2 2,851 (1.9%) 14,286 (1.2%) 16,919 (0.7%) 122 (2.8%) 40 (4.2%) 425 6.80 100 1176
4 5,585 (3.8%) 28,984 (2.5%) 33,734 (1.4%) 244 (5.6%) 80 (8.3%) 409 13.1 100 611
8 11,100 (7.5%) 57,983 (4.9%) 67,363 (2.8%) 488 (11.3%) 160 (16.7%) 388 24.9 100 322

16 22,532 (15.2%) 108,746 (9.2%) 134,624 (5.7%) 976 (22.6%) 320 (33.3%) 298 38.1 100 210
32 46,476 (31.4%) 211,047 (17.9%) 269,133 (11.4%) 1952 (45.2%) 640 (66.7%) 175 44.8 100 179
48 68,783 (46.5%) 316,558 (26.8%) 403,646 (17.1%) 2928 (67.8%) 960 (100%) 129 49.5 100 161

TABLE VII
THE THROUGHPUT OF THE MODIFIED SEQUENTIAL ALGORITHM FOR EACH

THRESHOLD T

T 8 9 10 11 12 13 14
Gps 0.148 0.190 0.213 0.218 0.216 0.204 0.193

REFERENCES

[1] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communication of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[2] A. Broder and M. Mitzenmacher, “Network applications of Bloom
filters: A survey,” Internet Mathematics, vol. 1, pp. 485–509, Jan. 2004.

[3] S. Geravand and M. Ahmadi, “Bloom filter applications in network
security: A state-of-the-art survey,” Computer Networks, vol. 57, no. 18,
pp. 4047–4064, Dec 2013.

[4] E. H. Spafford, “OPUS: Preventing weak password choices,” Computers
& Security, vol. 11, no. 3, pp. 273–278, May 1992.

[5] N. S. Artan, K. Sinkar, and J. Patel, “Aggregated Bloom filters for
intrusion detection and prevention hardware,” in Proc. of IEEE Global
Telecommunications Conference, Nov. 2007.

[6] S. Parthasarathy and D. Kundur, “Bloom filter based intrusion detection
for smart grid SCADA,” in Proc. IEEE Canadian Conference on
Electrical and Computer Engineering (CCECE), Oct. 2012.

[7] M. Aldwairi, K. Al-Khamaiseh, F. Alharbi, and B. Shah, “Bloom filters
optimized wu-manber for intrusion detection,” The Journal of Digital
Forensics, Security and Law (JDFSL), vol. 11, no. 4, 2016.

[8] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A scal-
able wide-area web cache sharing protocol,” IEEE/ACM Transactions
on Networking, vol. 8, no. 3, pp. 281–293, Jun. 2000.

[9] M. Ahmadi and S. Wong, “A cache architecture for counting Bloom
filters,” in Proc. of IEEE International Conference on Networks, Nov.
2007, pp. 218–223.

[10] K. Nakano and E. Takamichi, “An image retrieval system using FPGAs,”
IEICE Transactions on Information and Systems, vol. E86-D, no. 5, pp.
811–818, May 2003.

[11] K. Nakano and Y. Yamagishi, “Hardware n choose k counters with ap-
plications to the partial exhaustive search,” IEICE Trans. on Information
& Systems, vol. E88-D, no. 7, pp. 1350–1359, 2005.

[12] K. Nakano and Y. Ito, “Processor, assembler, and compiler design
education using an FPGA,” in Proc. of International Conference on
Parallel and Distributed Systems, Dec. 2008, pp. 723–728.

[13] Xilinx Inc., “Ultrascale architecture configurable logic block: User
guide,” Feb 2017.

[14] ——, “Ultrascale architecture memory resources,” May 2017.
[15] ——, “Ultrascale architecture DSP slice,” June 2017.
[16] ——, “Ultrascale architecture and product data sheet: Overview,” Feb.

2017.
[17] R. Woods, J. McAllister, and G. L. amnd Ying Yi, FPGA-based

Implementation of Signal Processing Systems:2nd Edition. Wiley, May
2017.

[18] J. L. Bordim, Y. Ito, and K. Nakano, “Instance-specific solutions to
accelerate the CKY parsing for large context-free grammars,” Interna-
tional Journal on Foundations of Computer Science, vol. 15, no. 2, pp.
403–416, 2004.

[19] Y. Ito, K. Nakano, and S. Bo, “The parallel FDFM processor core
approach for CRT-based RSA decryption,” International Journal of
Networking and Computing, vol. 2, no. 1, pp. 79–96, Jan. 2012.

[20] T. Kawamoto, X. Zhou, J. L. Bordim, Y. Ito, and K. Nakano, “An FPGA
implementation for a flexible-length-arithmetic processor employing the
FDFM processor core approach,” IEICE Transactions on Information
and Systems, vol. E99-D, no. 12, pp. 2901–2910, Dec. 2016.

[21] A. Manoharan, A. Krishnan, and P. Periasamy, “Design and implemen-
tation of a string matching system for network intrusion detection using
FPGA-based low power multiple-hashing bloom filters,” International
Journal of Computer Science and Applications, vol. 1, no. 3, pp. 186–
189, Jan. 2008.

[22] J. Harwayne-Gidansky, D. Stefan, and I. Dalal, “FPGA-based SoC for
real-time network intrusion detection using counting Bloom filters,” in
Proc. of IEEE SOUTHEASTCON, 2009.

[23] J. M. Cho and K. Choi, “An FPGA implementation of high-throughput
key-value store using Bloom filter,” in Technical Papers of 2014 Inter-
national Symposium on VLSI Design, Automation and Test, Jun. 2014.

[24] Sireesha and M. Roopa, “An FPGA implementation of hashed key-value
store using bloom filter,” International Journal of Computer Science and
Mobile Computing, vol. 4, no. 5, pp. 1094–1100, May 2014.

[25] H. Vandierendonck and K. D. Bosschere, “XOR-based hash functions,”
IEEE Transactions on Computers, vol. 54, no. 7, pp. 800–812, 2005.

[26] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number genera-
tor,” ACM Transactions on Modeling and Computer Simulation, vol. 8,
no. 1, pp. 3–30, Jan. 1998.


