Parallelization Techniques for Error Diffusion with GPU Implementations

Akihiko Kasagi*, Koji Nakano, and Yasuaki Ito
Department of Information Engineering
Hiroshima University
Kagamiyama 1-4-1, Higashi Hiroshima, 739-8527 Japan
* Currently with Fujitsu Laboratories Lid.

Abstract—Error diffusion is a classical but still popular
method for generating a binary image that reproduces an
original gray-scale image. In error diffusion, pixel values are
rounded to binary in raster scan order and the rounding error
is distributed to neighboring pixels that have not yet been
processed. The main contribution of this paper is to show
several parallel algorithms and implementation techniques for
error diffusion. We first present error collection, which collects
the quantization error from neighboring pixels that have
already been processed. Error collection, which outputs the
same binary image as error diffusion, performs fewer memory
writing operations, and thus it is more efficient than error
diffusion. We also present parallel implementations for error
diffusion and error collection on the asynchronous CRCW-
PRAM. From the theoretical analysis, we show that parallel
error diffusion must use one of the three costly sidestep
techniques: lower parallelism, atomic addition operations, or
extra barrier synchronization steps, while parallel error col-
lection does not need them. We have implemented parallel
error diffusion and parallel error collection designed for the
asynchronous CRCW-PRAM in the GPU. Experimental results
show that parallel error collection runs the fastest on the
GPU. Further, we have designed parallel algorithms for error
diffusion and error collection optimized for CUDA-enabled
GPUs using various implementation techniques. From the
theoretical point of view, our parallel algorithms are global
memory access optimal. Our parallel error collection algorithm
for 256M pixels on GeForce GTX 780Ti runs only 46.75ms and
achieves a speedup factor of 43.9 over the best sequential error
collection algorithm running on Intel Core-i7 3770K CPU.

Keywords-digital halftoning, parallel algorithms, CUDA,
GPGPU.

I. INTRODUCTION

Halftoning is an important task to convert a continuous-
tone image into a binary image with pure black and
white pixels [1]. This task is necessary when printing a
monochrome or color image by a printer with limited
number of ink colors. Error diffusion [2] is a classical but
still popular method for generating a binary image that
reproduces an original gray-scale image. In error diffusion,
pixels are rounded to binary in raster scan order and the
rounding error is distributed to neighboring pixels that have
not yet been processed. Ordered dithering [3] is also a
popular halftoning method, which is used for inkjet and laser
printers. It generates a binary image by applying a threshold
map to an original gray-scale image. In general, error

diffusion can generate binary images with better printing
results than ordered dithering as we can see in Figure 1.
Although both error diffusion and ordered dithering can be
done in O(n) time for a gray-scale image with n pixels,
computation by error diffusion is much more complicated
than that by ordered dithering. Hence, error diffusion is
used only for high-quality printing in many inkjet printers,
because it takes a lot of time to prepare a binary image
for printing. On the other hand, since ordered dither can
run much faster than error diffusion, it is mainly used for
regular printing. Thus, it is very important to accelerate error
diffusion for getting high-quality printing results in a short
time.

The GPU (Graphics Processing Unit) is a specialized
circuit designed to accelerate computation for building and
manipulating images [4], [5]. Latest GPUs are designed for
general purpose computing and can perform computation
in applications traditionally handled by the CPU. Hence,
GPUs have recently attracted the attention of many appli-
cation developers. NVIDIA provides a parallel computing
architecture called CUDA (Compute Unified Device Ar-
chitecture) [6], the computing engine for NVIDIA GPUs.
CUDA gives developers access to the virtual instruction
set and memory of the parallel computational elements in
NVIDIA GPUs. In many cases, GPUs are more efficient
than multicore processors [7], since they have thousands of
processor cores and very high memory bandwidth.

When we develop programs running on GPUs, we can use
CUDA programming model to support scalability. Usually,
a CUDA program executed on the host computer invokes
CUDA kernels one or more times. A CUDA kernel executes
one or more CUDA blocks running on SMs (Streming
Multiprocessors) of the GPU. CUDA blocks in a CUDA
kernel are identical in the sense that they have the same
number of threads executing the same program. CUDA
blocks are dispatched to a SM in turn. Hence, to synchronize
all threads in all CUDA blocks, we need to use separate
CUDA kernel calls, because SMs in the GPU executes
CUDA blocks in turn. Since the synchronization of all
CUDA blocks are very costly, we should minimize the
number of such synchronization operations.

CUDA uses two types of memories in the NVIDIA
GPUs: the shared memory and the global memory [6]. The

Original gray-scale image

Figure 1.

shared memory is an extremely fast on-chip memory with
lower capacity, say, 16-64 Kbytes. The global memory is
implemented as an off-chip DRAM, and thus, it has large
capacity, say, 1.5-6 Gbytes, but its access latency is very
long. The efficient usage of the shared memory and the
global memory is a key issue for CUDA developers to
accelerate applications using GPUs. In particular, we need
to consider bank conflicts of the shared memory access
and coalescing of the global memory access [8]-[10]. The
address space of the shared memory is mapped into several
physical memory banks. If two or more threads access the
same memory banks at the same time, the access requests
are processed in turn. Hence, to maximize the memory
access performance, threads of CUDA should access distinct
memory banks to avoid bank conflicts of memory access. To
maximize the bandwidth between the GPU and the DRAM
chips, consecutive addresses of the global memory must be
accessed at the same time. Thus, threads should perform
coalesced access when they access the global memory. Fur-
ther, it is important for accelerating computation to reduce
the size of global memory access.

The main contribution of this paper is to present several
parallelization techniques and algorithms for error diffusion
and implement it on the GPU. We first present error collec-
tion, which collects rounding errors from neighboring pixels
that have already been processed. Error collection outputs
the same binary image as error diffusion. Figure 2 illustrates
error diffusion and error collection. In error diffusion, the
rounding error is distributed to four unprocessed neighboring
pixels. On the other hand, error collection gathers the round-
ing errors from processed neighboring pixels. Error diffusion
involves four writing operations to neighboring pixels, while
error collection performs one writing operation to store
the sum of four rounding errors. Hence, error collection
performs fewer writing operations than error diffusion and
runs faster especially when writing operation is costly.

We then go on to show parallel algorithms for error

Error diffusion

Ordered dithering

An original gray scale image “lena” and binary images generated by error diffusion and ordered dithering

j—1 J j+1 j—1 J j+1
7 . 1 5 3
i EHEETS i—1i 16 16 16
1 |
A/ - \J
; 3 5 1 e
1+1 5 5 1% il 16 ik

Error Diffusion Error Collection

Figure 2. Error diffusion and error collection

diffusion and error collection. To see the essence of par-
allelism of error diffusion and error collection, we use
the asynchronous version of the CRCW-PRAM (Concurrent
Read Exclusive Write-Parallel Random Access Machine)
model [11], in which every processor works asynchronously.
We assume that processors in the asynchronous CRCW-
PRAM can execute BARRIR_SYNC instruction for barrier
synchronization. Also, atomic operations such as atomi-
cAdd is supported. Since barrier synchronization and atomic
operations impose certain overhead costs, these operations
should be avoided when we design parallel algorithms. Our
algorithm for error diffusion on the asynchronous CRCW-
PRAM is based on a parallel error diffusion technique for
a linear array [12]. Each processor is assigned to a row of
an input image, and it executes error diffusion operation
from left to right. The reader should refer to a snapshot of
2-delay parallel error diffusion (2-D PED) in Figure 3 to
see how error diffusion is performed in each row. Adjacent
error diffusion operations may diffuse error to the same pixel
at the same time and the resulting binary image may be
incorrect. We will show that, to resolve this problem, parallel
error diffusion need to use one of the three costly sidestep
techniques: lower parallelism, atomic addition operations,
or extra barrier synchronization steps. We will show that 2-
delay parallel error collection (2-D PEC) does not have such
simultaneous writing operation as we can see in Figure 3. We

E]E]e] 2]
=11 [=
NEIR] e
==
]

BBl][] -]
ry ===
NEIEIEE]][]
PR

SIEIRIRIFIERIE]
RHRIIRIER
ANEIRIEIRIRIE]E]
)
]

===
~EIRIEIRIRIEIFIE]
Rt
]

Figure 3. Parallel error diffusion and parallel error collection

have implemented parallel error diffusion and parallel error
collection using CUDA and evaluated the performance on
GeForce GTX 780Ti. The experimental results show that, 2-
D PEC runs faster than 2-D PED with each of three sidestep
techniques. Hence, 2-D PEC is more efficient than 2-D PED
from the practical point of view.

Since 2-D PED and 2-D PEC are designed for the
asynchronous CRCW-PRAM, there is a lot of room for im-
provement to implement these algorithms on CUDA-enabled
GPUs. Our new idea is to partition the input gray-scale
image into parallelogram blocks, and block-wise parallel
error diffusion/error collection is executed for them at the
same time. To guarantee that errors are diffused/collected
correctly, parallelogram blocks are processed from the top-
left corner to the bottom-right corner of the gray-scale
image. One CUDA block is assigned to a parallelogram
block and 2-D PED/2-PEC are executed on the shared
memory of a streaming multiprocessor of a GPU in par-
allel. Our implementations for an n-pixel gray-scale image
perform n + O(i) writing operations, and n + O(3)

reading operations to the global memory, where w is the
number of threads in a warp and the number of memory
banks of the GPU. Since at least n writing operations and
n reading operations are necessary, we can say that our
implementations are global memory access optimal from
the theoretical point of view. Further, all memory access
operations to the global memory and the shared memory
are coalesced and conflict-free, respectively. Implementation
results show that our parallel error collection algorithm for
256M pixels on runs only 46.75ms. Since the best sequential
algorithm runs 2052ms in Intel Core-i7 processor, achieves
a speedup factor of 43.9.

GPUs have been used for accelerating various halfton-
ing algorithms [13]-[15]. There are several implementation
results for accelerating error diffusion using GPUs [16],
[17]. Tt was shown in [16] that parallel error diffusion
implemented in GeForce 8600M run 400ms for 16M pixels.
On the other hand, our implementation runs only 16.63ms
on GeForce GTX 780 Ti for an image of the same size. A
variant of error diffusion called pinwheel error diffusion [18]
have been implemented in a GPU [17]. The basic idea of
pinwheel error diffusion to partition an input gray-scale im-
age into square blocks and execute error diffusion operation
for all blocks in parallel. Since all blocks of images can be
processed independently, high parallelism can be obtained
very easily. However, rounding errors are trapped within
each block, the resulting binary images have uncomfortable
periodical artifacts especially when the size of block is small.
Their implementation achieves 475.5M pixels/s for 16M-
pixel halftoning for 14 x 14 blocks using GeForce GTX 460.
Our implementation follows the original error diffusion [2]
that distributes errors to whole pixels. Although the original
error diffusion is hard to parallelize, the performance of our
implementation is better.

This paper is organized as follows. We first review error
diffusion and present error collection in Section II. Also, we
show register caching technique to accelerate error diffusion
and error collection, and evaluate the number of memory
access operations. Section III shows parallel algorithms for
error diffusion and error collection on the asynchronous
CRCW-PRAM and Section IV shows implementations of
these parallel algorithms in a CUDA-enabled GPU. In Sec-
tion V, we show parallel algorithms for error diffusion and
error collection that are optimized for CUDA-enabled GPUs.
We show experimental results for all sequential/parallel
algorithms for error diffusion and error collection on a
single Intel CPU and a CUDA-enabled GPU in Section VI.
Section VII concludes our work.

II. ERROR DIFFUSION AND ERROR COLLECTION

This section first reviews error diffusion [2], and then
shows our new method, error collection, which outputs
exactly the same binary image as error diffusion. Since error

collection performs fewer writing operations to image arrays
than error diffusion, it is more efficient and runs faster.

Let a be a gray-scale image of size \/n X y/n such
that each pixel ali][j] (0 < 4,5 < /n — 1) takes an
intensity level (i.e. a real number) in the range [0, 1]. For
simplicity, we assume that an image is square, but all
algorithms presented in this paper can be modified to run on
non-square rectangular images easily. Error Diffusion (ED)
outputs a binary image b of the same size such that each
pixel b[¢][j] takes a binary value (i.e. O or 1). Input image a
is scanned in raster scan order and error diffusion operation
is performed one by one. Error diffusion operation rounds
the value of a[é][j] to O or I and the resulting binary value
is stored in b[i][]. Rounding error e (= a[i][j] — b[é][j]) is
diffused to neighboring unprocessed four pixels as illustrated
in Figure 2. The details are spelled out as follows:

[Error Diffusion (ED)]
fori« 0to /n—1do
for j < 0to v/n—1do

if afi][j] < % then r < 0 else r < 1;

blillj] < 73 e« alil[j] —r;

ali[j + 1] < ali][j +1] + & - e
ali+1[j + 1]« ali+1[j + 1]+ 15 - €
ali +1[j] = ali + 1[j] + % - e
ai +1][j — 1]« ali+1][j — 1]+ 2 - e
We assume that two temporary variables r and e are allo-
cated as registers in a processor. Variable r is used to store
the resulting binary value and variable e stores the rounding
error to be diffused. For simplicity, we assume that the values
of a[i][] such that i = —1,/n or j = —1,+/n are zero to
avoid special treatment for boundary pixels.

Similarly to error diffusion, error collection scans input
image a in raster scan order, and for each pixel in a,
rounding errors are collected from neighboring processed
four pixels as illustrated in Figure 2. The details of error
collection are spelled out as follows:

[Error Collection (EC)]
fori « 0to /n—1do
for j < 0 to v/n—1 do
s alilli] + % -alillj — 1] + & - ali — 1) — 1]
+1g - ali =[]+ 15 - ali = 17 +1];
ifsgéthenreOelserel;
ali][j] <= s — 7 bli][j] = 7

Similarly, we assume that two temporary variables r and s
are allocated as registers. Variables r and s are used to store
the sum of rounding errors and the resulting binary value.
The reader should have no difficulty to confirm that, for each
pair of neighboring pixels, errors diffused/collected are the
same, and thus resulting binary images b generated by error
diffusion and error collection are identical.

Since the value of each binary pixel b[i][j] can be
determined by a constant number of instructions, both

Table I
MEMORY ACCESS OPERATIONS OF ERROR DIFFUSION (ED) AND ERROR
COLLECTION (EC) WITH AND WITHOUT REGISTER CACHING (RC)

main memory | register caching
read | write | read write
ED 5n 5n
EC 5n 2n - -
ED with RC 2n 2n In 10n
EC with RC 2n 2n In ™

halftoning algorithms run O(n) time for an input image
with n pixels. However, error collection performs fewer
memory access operations to gray-scale a and binary image
b than error diffusion. To determine the value of a binary
pixel b[¢][7], error diffusion performs five reading operations
for ald][j],ald)[j + 1], ali + 17 + 1, ali + 1][5],ali +
1][f — 1] and five writing operations for b[i][1], a[¢][J
1, ali + 1[j + 1), ali + 1][j], ali + 1][j — 1]. On the other
hand, error collection performs five reading operations for
ali)lj], alillj + 1, ali + 1][j + 1), ali + 1][3], afi + 1][j — 1]
and two writing operations for b[¢][j] and a[¢][;]. Thus, error
collection performs fewer writing operations to image a and
runs faster than error collection.

We can reduce the number of memory access operations to
gray-scale image a by error diffusion and error collection us-
ing register caching technique. In register caching technique,
we use five additional registers in a processor to store the
current values of a[i][j], ali][j+ 1], ali + 1][F + 1], a[i + 1] 4],
and ali + 1)[j — 1]. Hence, to perform error diffusion
operation for pixel a[i][7], the current values of a[i][j+1] and
afi+1][j+1] are copied to registers. After error diffusion op-
eration for pixel a[i][4] is completed, and the resulting values
of a[¢][j—1] in a register are copied to ¢ in the main memory.
For next error diffusion operation for a[i][j + 1], the values
of registers are shifted by one from right to left. Hence, error
diffusion with register caching technique performs two read
operations and one write operation per pixel in the main
memory for a One write operation to b is also performed.
Similarly to error diffusion, we can apply register caching
technique to error collection. We use five additional registers
to cache afi — 1][j + 1], ali — 1]], afi - 1][j - 1, afi]], and
ali][j — 1] for error collection.

Table I summarizes the number of memory access opera-
tions for error diffusion and error collection with and without
register caching. The number of memory access operations
for register caching does not include that for temporal
register variables such as r, e, and s. Note that the number
of memory access to the register caching is evaluated based
on straightforward register caching implementations. We can
see that EC performs fewer memory access operations than
ED.

III. PARALLEL ALGORITHMS FOR ERROR DIFFUSION
AND ERROR COLLECTION

This section shows parallel algorithms for error diffusion
and error collection. To see the essence of parallelization of

error diffusion and error collection, we use the asynchronous
CRCW-PRAM as a target parallel machine. The PRAM
(Parallel Random Access Machine) is a standard theoretical
model for parallel computing, which has a shared memory
can be accessed by all processors at the same time [19],
[20]. In CRCW-PRAM (Concurrent Read Exclusive Write-
PRAM), simultaneous reading from the same address is
allowed. Simultaneous writing is also allowed, but one of
them succeeds in writing and the others fails if two or
more processors write to the same address at the same
time. The asynchronous PRAM is a variant of the PRAM,
in which processors work asynchronously [11]. For the
purpose of barrier synchronization, processors can execute
barrier synchronization instruction BARRIER_SYNC. If a
processor executes BARRIER_SYNC, it is stalled until all
the other processors execute it. Also, they can execute atomic
writing operations such as atomicAdd(z,y) in which three
instructions “load z”, “add 4”, and “store z” are executed
without any interruption to guarantee that “z <— x + y” can
be completed consistently.

We first show a basic parallel algorithm called k-delay
parallel scan (k-D PS) for a fixed parameter k£ (> 1), which
will be used in parallel error diffusion and parallel error
collection. In k-delay parallel scan, a processor is assigned
to each i-th row of gray-scale image a and binary image b
and performs some computation for pixels in this row from
left to right. The details are spelled out as follows:

[£-delay parallel scan (k-D PS)]
fort < 0to (k+1)(yn—1) do
for i - 0 to y/n — 1 do in parallel
j=t—Fk-i
if 0 <j<+/n—1then
COMP(i, j);
BARRIER_SYNC;

In k-D PS, COMP(i,j) denotes some computation for

ali][j] and b[é][j]. It can be error diffusion operation or
error collection operation for a[i][j] and b[i][j]. Let us
see how k-D PS works. First, when t = 0, a processor

assigned to the first row performs COMP(0, 0). After that,
it performs COMP(0, 1), COMP(0, 2), ..., COMP(0, k — 1)
one by one, when ¢t = 1,2,...,k — 1. When t = k,
it performs COMP(0, k), and a processor assigned to the
second row performs COMP(1,0). The same procedure
is repeated until COMP(y/n — 1,4/n — 1) is performed
when ¢ = (k + 1)(v/n — 1). Hence, k-D PS performs
BARRIER SYNC (k + 1)(y/n — 1) + 1 times. Clearly, k-
D PS performs COMP for one pixel in every k columns.
Hence, pixels in at most m = L‘/r_;gl

rows are processed, and m processors are sufficient to exe-
cute k-D PS. More specifically, the (i mod m)-th processor
(0 < i < y/n—1) works for computation of i-th row of
a. Since m COMP(i, j)’s are executed by m processors in
parallel, we can say that k-D PS has a parallelism factor of

o YR

If COMP(i, 5) in k-D PS performs error diffusion op-
eration or error collection operation for a[i][j], we call
them k-delay parallel error diffusion (k-D PED) and k-delay
parallel error collection (k-D PEC), respectively. The reader
should refer to Figure 3 illustrating 2-delay parallel error
diffusion (2-D PED), 3-delay parallel error diffusion (3-D
PED), and 2-delay parallel error collection (2-D PEC). From
the figure, we can see that 3-D PED always diffuses errors
to distinct pixels and thus, it works correctly. Also, in 2-
D PEC there is a pixel from which rounding error may
be read at the same time. Since simultaneous reading in
the asynchronous CRCW-PRAM is possible, it computes a
binary image properly. On the other hand, in 2-D PED, there
is a pixel to which two errors are diffused at the same time.
So, we need to use several sidestep techniques to avoid
simultaneous additions to the same pixel to get a binary
image correctly.

For the purpose of avoiding simultaneous additions in 2-
D PED, we can use extra BARRIER_SYNC not to execute
addition operations to a[i][j + 1] and a[i + 1][j — 1] by
different calls of COMP(i, j) as follows:

[2-D PED with extra BARRIER_SYNC]
COMP(i, j)
{ if ali][j] < 3 then r « 0 else r + 1;
blillj] < 73 e« alil[] — 13
alil[j + 1] < alil[j + 1] + 5 - &
BARRIER_SYNC;
i+ UG afi+ 1+ 1]+ e
ali +1][7] = ali +][] + 5 - &;
ali+ 1~ 1] ali+ 15 1]+ 5 e}

By BARRIER_SYNC, processors are stalled until all pro-
cessors execute alfi][j + 1] < ali][j + 1] + {5 - e. Since
BARRIER_SYNC is also executed after COMP(i,j) is
finished, processors are stalled until all processors execute
ali +1][j — 1] + a[i + 1][j — 1] + & - e. Hence, additions
to afi][j + 1] and afi + 1][j — 1] are never executed at the
same time.

We can use atomicAdd instruction to guarantee that the
resulting values of additions are correct even if the two
addition operations to the same pixel by different calls of
COMP(i, j) are executed at the same time. Error diffusion
operation is modified using atomicAdd as follows:

[2-D PED with atomicAdd]

COMP(, j)

{ if ali][j] < 3 then r « 0 else r + 1;
bli][j] <= 73 e « ali][j] —r;
atomicAdd(a[d][j + 1], = 16 * ©)s

ali +1][j +1] < ali +1][j + 1] +
ali + 1][j] < a[i + 1][j] + % - €

+Log
5 16
atomicAdd(ali + 1][j — 1], %); }

Even if two atomicAdd instructions are executed at the same

Table IT
THE NUMBERS OF MEMORY ACCESS OPERATIONS TO THE MAIN MEMORY, THE NUMBER OF BARRIER SYNCHRONIZATIONS, AND THE NUMBER OF
EXECUTED ATOMICADD INSTRUCTIONS, AND PARALLELISM OF PARALLEL SCAN (PS), PARALLEL ERROR DIFFUSION (PED), AND ERROR COLLISION
(PEC) ON THE ASYNCHRONOUS CRCW-PRAM

read | write | BARRIER_SYNC | atomicAdd | parallelism
k-D PS - - (k+1)vn - V/n
3-D PED 5n 5n 4v/n - ﬁ
2-D PED with extra BARRIER_SYNC 5n 5n 6v/n - @
2-D PED with atomicAdd 5n | 5n 3vn 6v/n yn
2-D PEC 5n | 2n 3y/n - yn

time, additions to a[i][j+1] and a[i+1][j — 1] are performed
correctly.

Table II summarizes the performance of parallel algo-
rithms presented in this section. We can see that 2-D
PEC executes fewer BARRIER_SYNC instructions and no
atomicAdd instruction, and higher parallelism. Note that
if register caching technique is used, both read and write
operations can be reduced to 2n. Even if this is the case,
the performance of 2-D PEC is better than the others in
terms of the number of BARRIER_SYNC instructions and
parallelism. Actually, in Section VI, we will show that 2-D
PEC implemented on a GPU runs faster than the others.

IV. GPU IMPLEMENTATIONS OF PARALLEL ERROR
DIFFUSION AND PARALLEL ERROR COLLECTION USING
THE GLOBAL MEMORY

Let us implement parallel error diffusion and parallel error
collection designed for the asynchronous PRAM to CUDA-
enabled GPU. We assume that input gray-scale image a is
stored in the global memory and the resulting binary image
b is also written in the global memory.

Each thread in the GPU can work as a processor of
the asynchronous CRCW-PRAM. We use m CUDA threads
if parallelism is m. A CUDA block of CUDA compute
capability 2.x or later can have up to 1024 threads [6]. If
we use CUDA block with 32 threads, % CUDA blocks
are invoked. By a CUDA kernel call, CUDA blocks are
invoked asynchronously, and there is no way to synchronize
CUDA blocks during the execution of a kernel call. Hence,
we need to use separate CUDA kernel calls for barrier
synchronization. Further, since separate CUDA kernel calls
cannot share values in registers, register caching technique
cannot be applied.

If we implement k-D PS based algorithm using CUDA as
it is, memory access to the global memory is not coalesced.
As illustrated in Figure 3, addresses accessed by threads
are not consecutive. For coalesced global memory access,
we can permute pixels of input image a in advance as
illustrated in Figure 4. More specifically, each row is shifted
(row-wise shift) and then image is transposed. Row-wise
shift can be done by reading every pixel and writing it to
appropriate address in an obvious way. Transpose can be

also done by block-wise reading/writing [21], [22]. Hence,
data permutation for coalesced memory access can be done
2n reading and 2n writing operations with two kernel calls.
Similarly, writing operations to output binary image b can be
coalesced. For this purpose, we need to perform inverse data
permutation after binary image b is obtained in the global
memory.

Table III summarizes the numbers of memory access
operations, barrier synchronizations, and processors per-
formed by parallel error diffusion, parallel error collision
and data permute for coalesced memory access. Please note
that 2-D PED with extra BARRIER_SYNC has additional
global memory read because extra kernel calls must read
pixels in gray-scale image a. By executing data permutation
for gray-scale image a and inverse data permutation for
binary image b, parallel error diffusion and parallel error
collision implementations can be changed not to perform
non-coalesced global memory access.

V. PARALLEL ERROR DIFFUSION AND PARALLEL ERROR
COLLECTION OPTIMIZED FOR GPUs

The main purpose of this section is to show parallel error
diffusion and parallel error collection optimized for CUDA-
enabled GPUs. We assume that image a are stored in the
global memory of a GPU. We focus on the implementation
of 2-delay parallel error diffusion (2-D PED) in a GPU.
3-delay and 2-delay parallel error diffusion can be imple-
mented in the same way.

We use parameter w to denote the number of threads
in a warp and the number of memory banks in the shared
memory of a streaming multiprocessor. Each warp has 32
threads in CUDA for all compute capability, and each shared
memory has 32 threads in CUDA compute capability 2.x
or later [6]. Hence, we set w = 32 when we implement
our parallel algorithms using CUDA for experiment. For
theoretical analysis, we use parameter w for the number of
threads in a warp and the number of memory banks in the
shared memory.

In many GPU algorithms, images and matrices are parti-
tioned into square blocks [6], [8], [10], [21]. Our new idea
is to partition image a into parallelogram blocks with width
w and height w, each of which has w rows with w pixels.

][[2]B1[a][5][s] (7]
21314167 [8] (9]
[4](5][e][7][8] [0] [n0] [11]
(o] [7] [8] (o] [10] 1] [12] 13]
(8] (0] [r0] [} [12] [13] [14] 15]
[10f 1] [12] [13][14][15] [16] 7]
[12)[13][14][15] [16] [17] [18] 19]
[14] [15] [1e] [17] 18] [19] 20] 1]

rOW-
shift

ninjaBnEEE
FPEEEDRED
5000 E G
FR0HEEED
)00 i 2 B [)
5) 0]) [2)) 3] 5
) (7)) [[2) |3 3])
) 7 5] 5]) o) 3])

[0][8][81(81[8] ko] lte] e]
[]PIEIE]I 17] 7]
[2][2] 0] o] fro] fro] [18] 8]
B]B])] o] o]
[4][2][4]02) 2] (2] 2] o]
5155103 [3] i3] 3] pL]
[0][6][6][0 4] 4] (4] 4]
I Rs]B5] 5] 1]

transpose

Figure 4. Data permutation for coalesced access using 2-delay parallel error diffusion

Table III
THE ANALYTICAL PERFORMANCE OF PARALLEL ERROR DIFFUSION (PED), PARALLEL ERROR COLLISION (PEC) AND DATA PERMUTATION FOR
COALESCED MEMORY ACCESS ON A GPU

global memory kernel calls | atomicAdd | threads
read | write | coalesced
3-D PED 5n | 5n no 4y/n - n
2-D PED with extra BARRIER_SYNC 5n 6n no 6v/n - @
2-D PED with atomicAdd 5n | 5n no 3y/n 3y/n ve
2-D PEC sn | 2n no 3y/n - yn
Data permutation/inverse data permutation 2n 2n yes 2 - n

Figure 5 illustrates a parallelogram block for w = 8. Every
row is shifted by two pixels to the left from the above row.

A gray-scale image a of size v/n X /n is partitioned into
parallelogram blocks as illustrated in Figure 6. First, image
a is partitioned into */Tﬁ strips of w rows each. Each strip is
further partitioned into % + 2 parallelogram blocks. In the
figure, 64 x 64 pixels are partitioned into 8 strips of 8 rows
each. Each strip is partitioned into 10 parallelogram blocks.
We use one CUDA block with w threads to execute 2-D
PEC for a parallelogram block. For this purpose, a CUDA
block copies pixels in a parallelogram blocks and additional
pixels necessary to compute the resulting values of pixels in
parallelogram blocks to the shared memory. CUDA block
executes 2-D PEC using w threads.

Figure 5 illustrates how a parallelogram block and addi-
tional pixels in image a are copied to the shared memory.
We use a 2-dimensional array of size (w+1) x (w+3) in the
shared memory to store them. As illustrated in the figure, one
row above the parallelogram block is necessary to collect
errors. Also, three pixels to the left from the leftmost pixels
of the parallelogram block are necessary. They are copied to
the 2-dimensional array in the shared memory as illustrated
in the figure, and 2-D PEC is executed using w threads in
a CUDA block.

Suppose that, 2-D PEC is executed for a parallelogram
block of gray-scale image a arranged on a 2-dimensional
array of size (w + 1) x (w + 3) in the shared memory. Let
a'li]lj] 0 < i < w,0 < j < w4+ 2) be an element of
the array. We can think that a’[§][j] is arranged in address

i- (w4 3)+7J, and thus, it is in memory bank (i - (w+3) 4+
j) mod w = (3i+7) mod w of the shared memory. It should
be clear that w threads in a warp access to the same column
of a’. For example, they access a’[0][], a'[1][1],...,a'[w —
1][j], which are in memory banks (3-0+j) mod w, (3-1+
j)mod w,..., (3 (w—1)+j) mod w. Since w and 3 are
relatively prime, these w memory banks are distinct. Hence,
all memory access operations performed by 2-delay parallel
error collection are conflict-free.

Binary image b is also stored in the shared memory. If b is
arranged in the shared memory as it is, writing operations to
the same column by w threads in a CUDA block cause bank
conflicts. We can avoid bank conflicts if we use padding
technique [6] or diagonal arrangement technique [21] easily.

After 2-D PEC for a parallelogram block of image a
terminates, we need to write resulting values of the parallel-
ogram block and resulting binary subimage to the global
memory. We can copy the resulting binary subimage in
the global memory in an obvious way. Note that it is not
necessary to copy all values in the parallelogram block of
image a. It is sufficient to copy values that will be used
for later computation by the other blocks, that is, to copy
additional pixels of the other CUDA blocks. Additional
pixels consists of those in the last row and the rightmost
three pixels in each row. In Figure 5, such pixels are
highlighted. We have w + 3 - (w — 1) = 4w — 3 additional
pixels. We should arrange such pixels in a 1-dimensional
array in the global memory for coalesced memory access.

We are now in a position to show how all parallelogram

G EREEEE

diagonal block

Figure 5.

Figure 6. Partition of image a into parallelogram blocks for w = 8

blocks are processed. As illustrated in Figure 6, we assign
integer labels to parallelogram blocks. In the figure, 10
parallelogram blocks of the first strip are assigned labels
from 0 to 9. In general, g + 2 parallelogram blocks of the
i-th strip (0 <7 < % — 1) are assigned labels from 37 to
31+ % + 1. Let PB(3, j) denote a parallelogram block with
label j in the i-th strip. It should be clear that 2-D PEC for
parallelogram blocks with the same label is independent and
can be executed at the same time. For example, in Figure 6,
we can execute 2-D PEC for four parallelogram blocks with
label 12 at the same time. Hence, we can execute 2-D PEC
for all parallelogram blocks to obtain the resulting binary
image of error collection as follows:

[2-D PEC on a GPU]
fort<—0t04%—2do

A diagonal block of image a and copy operation to the shared memory when w = 8

for i + 0 to % — 1 do in parallel
if 3i <t <3i+ ¥ 41 then
A CUDA block executes 2-D for PB(i, t)

For a particular ¢, the number of values @ satisfying 3¢ <
NG
t < 32'—!—‘/754—1 is at most ’WTH—i-l (=~ 3‘/—5) Hence,

approximately % CUDA blocks are used to execute 2-D
PEC in parallel. Also, for each ¢, one CUDA kernel call
is used to synchronize the computation, because 2-D PEC
for parallelogram blocks with label ¢+ 1 can be started only
after that for parallelogram blocks with label ¢ is completed.

Hence, approximately 4% CUDA kernel calls are invoked.

Let us evaluate the number of memory access operations
to the global memory. We assume that image a is so large
that w < n holds. A CUDA block for PB(i,t) reads
(w+ 1) x (w + 3) pixels of gray-scale image a in the
global memory. Since we have % . (% +2) = 5+
QT‘/}E parallelogram blocks, read operation is performed for

(o= + 2@) (w4 1) (w+3) = n+ O(;) pixels in
the global memory. After the computation of 2-D PEC, a
CUDA block writes 4w — 3 values of a and w? values of b
in the global memory. Hence, write operation is performed
(7= + 2%) - (w? + 4w — 3) = n+ O(2) pixel values in
the global memory.

Similarly to 2-D PEC, we can implement 2-D PED using
parallelogram blocks. The readers may think that extra
BARRIER_SYNC or atomicADD operation are necessary to
avoid simultaneous additions. However, it is guaranteed that
w threads in the same warp work synchronously [6], that is,
they always execute machine instruction in the same address.
Hence, we do not have to use such sidestep techniques
for 2-D PED. Also, please note that register caching (RC)
technique can be used for computation on parallelogram
blocks. Table IV summarizes analytical evaluation of 2-D
PED and 2-D PEC with and without RC.

Table TV
THE ANALYTICAL PERFORMANCE OF 2-DELAY PARALLEL ERROR DIFFUSION (2-D PED) AND 2-D PARALLEL ERROR CORRECTION (2-D PEC) WITH
AND WITHOUT REGISTER CACHING (RC)

global memory shared memory register caching | kernel calls | threads
read write read write read write
2-D PED nt+0(2) [n+0(2) | 6n+0(2) | 6n+0(2) | - - 4v/n yo
2D PED with RC | n+O(2) | n+0(2) | 3n+0(Z) | 3n+0(2) | 9n | 10n 4vn yo
4/n Vn
2DPEC with RC | n+O(2) | n+0(2) | 3n+0(2) | 3n+0(2) | 9n | 7 4y vo

VI. EXPERIMENTAL RESULTS

This section shows experimental results for sequential al-
gorithms and parallel algorithms presented in this paper. We
use Intel Core-i7 3770K (3.5GHz) for evaluating sequential
algorithms and GeForce GTX 780Ti for evaluating parallel
algorithms. We have used 8-bit “unsigned char” for input
gray-scale image a and output binary image b. Since most
gray-scale images have 8-bit depth, it makes sense to use
8-bit unsigned integers. Also, we use 32-bit “unsigned int”
to store intermediate pixel values as fixed-point numbers.
Table V shows the running time of sequential/parallel al-
gorithms for images of size from 1Kx1K (1024 x1024) to
16K x 16K (16384 x16384).

Table V (1) shows the running time of sequential algo-
rithms for error diffusion (ED) and error collection (EC)
with and without register caching (RC). From the table, we
can see that EC with RC runs faster than the others because
it performs fewest memory access operations.

Table V (2) shows the performance of parallel algorithms
designed for the asynchronous CRCW-PRAM. They are
implemented in the GPU using the global memory as they
are. Hence, it performs a lot of non-coalesced memory
access to the global memory of the GPU. Clearly, 2-D PEC
runs faster than the others. By comparing the running time
of PED-based algorithms, we can see that kernel calls have
large overhead, while the overhead of atomicAdd is small.
Hence, we should minimize the number of kernel calls to
improve the performance.

As we have shown in Section IV, we can avoid non-
coalesced memory access if data permutation for input gray-
scale image and output binary image is used. Table V (3)
shows the running time of each parallel algorithms if data
permutation is used. The running time includes that for data
permutation of input gray-scale image and output binary
image. By comparing (2) and (3) in the table, we can see
that non-coalesced access to the global memory has very
large overhead.

Table V (4) shows the running time of 2-D PED and
2-D PEC optimized for the CUDA-enabled GPU architec-
ture. Since the global memory access is minimized, they
run much faster than parallel algorithms designed for the
asynchronous CRCW-PRAM. As we have shown in analyt-

ical performance, 2-D PEC with RC runs faster than the
others. In particular, the running time of 2-D PEC with RC
runs 46.75ms for 256M pixels, while the best sequential
algorithm EC with RC runs 2052ms. Thus, 2-D PEC with
RC achieves a speedup factor of 43.9.

Table V (5) shows the time necessary to transfer images
between the host PC and the GPU. We can say that, even
if the data transfer time is included, 2-D PEC with RC runs
approximately 151ms for 256M pixels. Hence, our GPU
implementation is practically fast.

VII. CONCLUSION

The main contribution of this paper is to present several
algorithmic techniques for error diffusion. Although error
diffusion involves sequential operations that scan an input
image in raster scan order, our new technique that partition
the image into parallelogram blocks can extract enough
parallelism. Our parallel algorithm optimized for CUDA-
enabled GPUs runs 43.9 times faster than the best sequential
algorithm on a single Intel CPU. Even if the data transfer
time between the host PC and the GPU is included, it
runs more than 13.5 times faster than the best sequential
algorithm.

REFERENCES

[1] D.L.Lau and G. R. Arce, Modern Digital Halftoning, Second
Edition. CRC Press, 2008.

[2] R. W. Floyd and L. Steinberg, “An adaptive algorithm for
spatial gray scale,” SID 75 Digest,Society for Information
Display, pp. 36-37, 1975.

[3] B. E. Bayer, “An optimum method for two-level rendition
of continuous-tone pictures,” in proc. of IEEE International
Conference on Communications, vol. 1, June 1973, pp. 11-15.

[4] W. W. Hwu, GPU Computing Gems Emerald Edition. Mor-
gan Kaufmann, 2011.

[5] R. Farber, CUDA Application Design and Development. El-
sevier, 2011.

[6] NVIDIA Corporation, “NVIDIA CUDA C programming
guide version 7.0,” Mar 2015.

Table V
THE RUNNING TIME (IN MS) OF SEQUENTIAL/PARALLEL ERROR DIFFUSION AND ERROR COLLECTION

[Vn= | 1K 2K 3K 4k 5K 6K 7K 8K 10K 12K 14K 16K |
(1) Sequential algorithms on the Intel CPU
ED 19.63 77.63 1744 309.8 4915 6964 952.0 1242 1938 2789 3797 4967
EC 19.60 74.21 1658 2939 467.7 663.6 9025 1177 1846 2654 3671 4712
ED with RC 14.72 55.38 1249 2202 3575 5057 676.6 878.1 1384 1974 2690 3521
EC with RC 8.616 33.14 7343 1288 2012 2924 393.3 5142 802.8 1165 1571 2052
(2) Parallel algorithms designed for the asynchronous CRCW-PRAM
3-D PED (low parallelism) 32.23 68.50 99.50 1405 167.3 2322 2572 3043 383.0 50I.1 613.8 805.8
2-D PED with atomicAdd 23.43 56.14 7835 1074 1283 1654 1995 2332 3062 421.1 589.1 796.1
2-D PED with double kernel calls | 40.49 82.42 127.1 173.8 2244 2826 3329 4038 528.7 6913 9419 1254
2-D PEC 17.41 3527 5316 7828 1153 1369 1589 191.6 261.7 357.1 4762 650.5
(3) Parallel algorithms on the GPU using the global memory with data permutation
3-D PED (low parallelism) 18.77 3756 57776 7740 99.29 119.8 1505 1625 212.0 2582 305.0 355.5
2-D PED with atomicAdd 14.06 28.37 4235 5563 71.12 86.75 101.6 127.0 1550 209.9 2279 266.8
2-D PED with double kernel calls | 24.26 4943 81.12 98.80 125.7 186.8 1958 2039 266.8 353.2 404.1 448.6
2-D PEC 14.28 26.10 39.10 51.33 6592 8526 94.04 118.0 146.5 1765 207.7 260.6
(4) Parallel algorithms on the GPU using the global memory and the shared memory
2-D PED 2.192 4559 6944 9298 11.66 14.13 16.64 19.09 2421 29.74 3527 56.27
2-D PED with RC 1.891 3.945 5976 7.993 10.04 12.19 1430 1645 2426 29.59 3505 55.77
2-D PEC 2.009 4365 6519 8748 1094 1337 15,65 18.12 2298 28.88 3426 51.36
2-D PEC with RC 1.847 3919 6.000 8.097 10.08 1226 1425 16.63 21.07 2633 3132 46.75
(5) Data transfer between the host and the GPU
Host— GPU 0.2979 0.8501 1.834 3346 4.782 6.855 9.245 12.39 1892 29.82 3843 49.83
GPU— Host 0.3107 0.8529 1.828 3.389 4.896 7386 9.475 1236 1995 30.85 3997 5475

[7]1 D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano, “Imple- [15] K. Chandu, M. Stanich, B. Trager, and C. W. Wu, “A

mentations of a parallel algorithm for computing Euclidean GPU implementation of color digital halftoning using the
distance map in multicore processors and GPUs,” Interna- direct binary search algorithm,” in International Symposiun
tional Journal of Networking and Computing, vol. 1, no. 2, on Circuits and Systems, May 2012, pp. 185 — 188.

pp. 260-276, July 2011.
[16] A. Deshpande, I. Misra, and P. J. Narayanan, “Hybrid imple-

(8] NVIDIA C?}‘POTaﬁOU, “NVIDIA CUDA C best practice guide mentation of error diffusion dithering,” in Proc. of Interna-
version 3.1,” 2010. tional Conference on High Performance Computing (HiPC),
2011, pp. 1 - 10.

[9] K. Nakano and S. Matsumae, “The super warp architecture
with random address shift,” in Proc. of High Performance [17]

Computing (HiPC), Dec. 2013, pp. 256-265. Y. Zhang, J. Recker, R. Ulichney, G. Beretta, L. Tastl, I.-J. Lin,

and J. D. Owens, “A parallel error diffusion implementation
[10] A. Kasagi, K. Nakano, and Y. Ito, “Parallel algorithms for the on a GPU,” in Proceedings of SPIE, vol. 7872, Jan. 2011.
summed area table on the asynchronous hierarchical memory

machine, with GPU implementations,” in Proc. of Interna- [18] P. Li and J. P. Allebach, “Block interlaced pinwheel error

tional Conference on Parallel Processing (ICPP), Sept. 2014, diffusion,” Journal of Electronic Imaging, vol. 14, no. 2, June
pp. 251-250. 2005.

[11] C. U. Martel, R. Subramonian, and A. Park, “Asynchronous [19] A. Gibbons and W. Rytter, Efficient Parallel Algorithms.
PRAMs are (almost) as good as synchronous prams,” in Proc. Cambridge University Press, 1988.
of Symposium on Foundations of Computer Science, vol. 2,
1990, pp. 590 — 599. [20] J. JaJa, An Introduction to Parallel Algorithms. Addison-

Wesley, 1992.
[12] P. T. Metaxas, “Parallel digital halftoning by error-diffusion,”

in Proc. of the Paris C. Kanellakis memorial workshop on [21] K. Nakano, “Simple memory machine models for GPUs,”
Principles of computing & knowledge, 2003, pp. 35— 41. in Proc. of International Parallel and Distributed Processing

. . Symposium Workshops, May 2012, pp. 788-797.
[13] H. Kouge, Y. Ito, and K. Nakano, “A GPU implementation

of clipping-free halftoning using the direct binary search,” in [22] A. Kasagi, K. Nakano, and Y. Ito, “An optimal offline

Proc. of International Con_fetrence on Algorithms and Archi- permutation algorithm on the hierarchical memory machine,
tectures for Parallel Processing (LNCS 8630), Aug. 2014, pp. with the GPU implementation,” in Proc. of International

57-10. Conference on Parallel Processing (ICPP), Oct. 2013, pp.
[14] Y. Zhang, J. L. Recker, R. Ulichney, I. Tastl, and J. D. Owens, 1-10.

“Plane-dependent error diffusion on a GPU,” in Proc. SPIE,
vol. 8295, Jan. 2012.

