
A Flexible-Length-Arithmetic Processor Using
Embedded DSP Slices and Block RAMs in FPGAs

Md. Nazrul Islam Mondal, Kohan Sai, Koji Nakano, and Yasuaki Ito
Department of Information Engineering, Hiroshima University

1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan

Abstract—Some applications such as RSA encryp-
tion/decryption needs integer arithmetic operations with
many bits. However, such operations cannot be performed
directly by conventional CPUs, because their instruction
supports integers with fixed bits, say, 64 bits. Since the CPUs
need to repeat arithmetic operations to numbers with fixed bits,
they have considerably overhead to execute applications involving
integer arithmetic with many bits. On the other hand, we can
implement hardware algorithms for such applications in the
FPGAs for further acceleration. However, the implementation of
hardware algorithm is usually very complicated and debugging
of hardware is too hard. The main contribution of this paper is
to present an intermediate approach of software and hardware
using FPGAs. More specifically, we present a processor based
on FDFM (Few DSP slices and Few Memory blocks) approach
that supports arithmetic operations with flexibly many bits,
and implement it in the FPGA. Arithmetic instructions of
our processor architecture include addition, subtraction, and
multiplication for numbers with variable size longer than 64 bits.
To show the potentiality of our processor, we have implemented
2048-bit RSA encryption/decryption by software written by
machine instructions. The resulting processor uses only one
DSP48E1 slices and four Block RAMs (BRAMs), and RSA
encryption software on it runs in 635.65ms. It has been shown
that the direct hardware implementation of RSA encryption
runs in 277.26ms. Although our intermediate approach is slower,
it has several advantages. Since the algorithm is written by
software, the development and the debugging are easy. Also, it
is more flexible and scalable.

Index Terms—Multiple-length-arithmetic, Montgomery Mod-
ular Multiplication, FPGA, DSP Slices, Block RAMs.

I. INTRODUCTION

An FPGA is a programmable logic device designed to be
configured by the customer or designer by HDL (Hardware
Description Language) after manufacturing. An FPGA chip
maintains relative lower price and programmable features [1],
[2], [3], hence, it is widely used recently. We refer the readers
to see some circuit implementations in FPGAs [4], [5], [6],
[7], [8], [9], [10], [11], [12] to accelerate computation. In
particular, since, FPGAs can implement hundreds of circuits
that work in parallel, they are used to accelerate useful
computations.

Applications require arithmetic operations on integer num-
bers which exceed the range of processing by a CPU directly is
called Multiple Double Length Numbers or Multiple Precision
Numbers and hence, computation of these numbers is called
Multiple-Length-Arithmetic. More specifically, application in-
volving integer arithmetic operations for multiple-length num-
bers with size longer than 64 bits cannot be performed directly

by conventional 64-bit CPUs, because their instruction sup-
ports integers with fixed 64 bits. To execute such application,
CPUs need to repeat arithmetic operations for those numbers
with fixed 64 bits which increase the execution overhead.
Alternatively, hardware algorithms for such applications can be
implemented in FPGAs to speed up computations. However,
the implementation of hardware algorithm is usually very
complicated and debugging of hardware is too hard.

Since, low level of instructions, represented by 0’s and
1’s is an almost impossible to understand even by an ex-
pert, the debugging of an algorithm at this level is very
hard. Moreover, to implement hardware algorithm, written
by hardware language such as Verilog HDL, users should
have sufficient knowledge of hardware such as registers which
makes it complicated to the non-expert or to the beginners. The
instructions in assembly language are written by alphanumeric
symbols instead of 0’s and 1’s in low level that is an almost
similar to the high level language, written by English which
makes the instructions as well as algorithms easy to read,
modify and debugging by the non-expert or by the beginners.

The main contribution of this paper is to present an interme-
diate approach of software and hardware using FPGAs (Field
Programmable Gate Arrays) to support arithmetic operations
for numbers with flexibly many bits such that the development
and debugging of it become easier. More specifically, we
propose a flexible-length-arithmetic processor based on FDFM
approach that supports applications involving arithmetic op-
erations for numbers with variable size longer than 64 bits
and these applications, written by software become easier for
debugging and further development.

For the reader’s benefit, this paper precisely describes our
main contributions as follows:

• We propose a flexible-length arithmetic processor based
on FDFM approach for computing of integer numbers
with flexibly many bits, even longer than 2048-bit by a
single machine instruction.

• We present an intermediate approach of software and
hardware to write the algorithm which makes the debug-
ging and further development easy.

• Our designed processor provides flexibility so that it can
be used for computing of integer numbers with flexibly
many bit such as 64-bit, 128-bit, even longer than 2048-
bit without further modification.

Since, our designed processor based on FDFM approach,
the key idea of the FDFM approach is to use few DSP slices

and few block RAMs to perform routine computations which
can be treated alternatively as a resource efficient approach.
Let us explain briefly the FDFM approach using a simple
example. Figure 1 (1) illustrates a hardware algorithm to
compute the output of FIR (Finite Impulse Response) yi =
a0 ·xi+a1 ·xi−1+a2 ·xi−2+a3 ·xi−3. A conventional approach
implementing the FIR is to use four DSP slices as illustrated
in Figure 1 (2)[13]. In this conventional approach, the number
of DPS blocks must be the same as that of multipliers in the
hardware algorithm. However, FDFM approach uses one or
few DSP slices and one or few block RAMs to implement
the FIR. The Figure 1 (3) shows the FDFM approach using
one DSP slice and one block RAM to implement the same
mentioned above. Note that, the coefficients a0, a1, . . . are
stored in the block RAM.

× × × ×

+ + +

(1) FIR

DSP DSP DSP DSP

DSP

(2) Conventional approach

(3) FDFM approach

RAM

xi

xi

yi

xi

yi

yi

Fig. 1. FDFM approach over conventional one for FIR

For readers, we also refer to the papers [14], [15], [16],
[17] in which they can find details about FDFM approach
and conventional approach. Let us describe the two important
advantages of the FDFM approach are as follows:

1. Even if the large main circuit occupies the most of
hardware resources in the FPGA, we can implement
a necessary hardware algorithm in the FPGA using
remaining few hardware resources as illustrated in
Figure 2 (1).

2. Also, if enough hardware resources are available,
we can implement multiple FDFM processor cores
that work in parallel (Figure 2 (2)). The resulting
hardware implementation has maximum throughput

by parallel computation.

DSP

RAM

DSP

RAM

DSP

RAM

DSP

RAM

DSP

RAM

DSP

RAM

Main Circuit

(1) Minimum implementation

(2) Parallel implementation

Fig. 2. Two advantages of FDFM approach

Because of the above mentioned advantages of the FDFM
approach, we design flexible-length-arithmetic processor based
on FDFM approach. More precisely, our proposed processor
supports minimum implementation in Figure 2 (1). However,
if enough hardware resources are available in FPGA, it can be
used to work in parallel (Figure 2 (2)) to maximize throughput.
Note that, our designed flexible-length-arithmetic processor
using FPGA based on FDFM approach can perform arithmetic
operations for numbers with variable size longer than 64 bits
by a single command or instruction whereas today’s PCs of 64
bits must require complicated arithmetic algorithm with many
commands to compute these.

The most common FPGA architecture consists of an array
of logic blocks, I/O pads, Block RAMs and routing channels.
Furthermore, embedded DSP blocks which is integrated into
an FPGA that makes a higher performance and a broader
application. Figure 3 illustrates the Virtex-6 FPGA devel-
oped by Xilinx. The CLB (Configurable Logic Blocks) in
Virtex-6 consists of 2 sub-logic blocks called slice. Using
LUTs (Look Up Tables) and Flip-Flops in the slices, var-
ious combinatorial circuits and sequential circuits can be
implemented. The Virtex-6 FPGAs also has DSP48E1 slices
equipped with a multiplier, adders, and logic operators, etc.
More specifically, as illustrated in Figure 4, the DSP48E1
slice has a two input multiplier followed by multiplexers
and a three-input adder/subtractor/accumulator. The DSP48E1
multiplier can perform multiplication of the 18-bit and the
25-bit 2’s complement numbers and produces one 48-bit 2’s
complement production. Programmable pipelining of input
operands, intermediate products, and accumulator outputs en-
hances throughput and improves the frequency. The DSP48E1
also has pipeline registers between operators to reduce the
delay. The block RAM in the Virtex-6 FPGA is an embedded
memory supporting synchronized read and write operations.

���������	��	��	 ��	��	��	 ��	��	��	 ��	��	��	

��
��
��
��
����	��	��	��	 �������

��	��	��	��	

�� ��� ��� ��� ��� ���

����������� ���

��

Fig. 3. Internal Configuration of Virtex-6 FPGA���
���

× �
��	
��
�����

������������ ����������
Fig. 4. Architecture of DSP48E1

In Virtex-6 FPGA, it can be configured as a 36k-bit dual-port
block RAMs, FIFOs, or two 18k-bit dual-port RAMs. In our
architecture, it is used as a 2k x 18-bit dual-port RAM.

We are mainly thinking the following scenario for designing
a flexible-length-arithmetic processor:

1) Our aim is mainly to emphasis the beginners or non-
expert users. Since our processor is designed to be
implemented for computing numbers even longer than
2048-bit by a single machine instruction, not by hard-
ware language, they can understand or change or mod-
ify it easily. More specifically, since the application
algorithm is written by software, the development and
debugging are easy to them.

2) Our designed processor can be used for integer arith-
metic operations on numbers with variable size longer
than 64 bits without further modifications.

3) We exploit the feature of embedded DSP (DSP48E1)
block in FPGA for processing flexible-length numbers.
Because of this feature, we process each 17-bit block
of these numbers rather than single bit to speed up
computations.

To the best of our knowledge, there is no related work
so far. However, we have shown the potentiality of our
designed flexible-length processor. For this purpose, we have
implemented 2048-bit RSA encryption/decryption by soft-

ware written by machine instructions and compare it with
direct hardware implementation of 2048-bit RSA encryp-
tion/decryption [15], maximized making use of DSP blocks
in FPGA. Direct hardware implementation of 2048-bit RSA
encryption/decryption module runs in 447.027MHz using
123940864 clock cycles, that is, in 277.26ms. A multiplier
in the DSP block works in more than 90 percent over all the
clock cycles. Thus, it has minimum overhead. Also, it uses
one DSP48E1, one BRAM and few (170) logic blocks (slices).
Therefore, this is an optimal implementation.

On the other hand, our intermediate approach using our
designed processor for implementing 2048-bit RSA encryp-
tion/decryption by software uses one DSP48E1, four BRAMs
and few (170) logic blocks (slices) that runs in 635.65ms.
Although, our intermediate approach is slower, it has several
advantages. Since application algorithm is written by software,
the development and debugging even by a non-expert are easy.
Also, it is more flexible and scalable.

We summarize several significant points of our results as
follows:

• A flexible-length-arithmetic processor is proposed for
the applications which require arithmetic operations for
numbers longer than 64 bits. Even, numbers longer than
2048 bits or higher can be computed by our designed
processor without any modification.

• We say that our proposed processor is flexible in a sense
that it can support arithmetic operations for numbers with
flexibly many bits or numbers with variable size longer
than 64 bits.

• We propose an intermediate approach of software and
hardware to implement above mentioned applications
which makes it easy for debugging and further devel-
opment by the non-experts or by the beginners.

• We have shown the potentiality of our designed pro-
cessor through the implementation of 2048-bit RSA en-
cryption/decryption by software. The resulting proces-
sor uses one DSP48E1, four BRAMs and few (170)
logic blocks (slices) and RSA encryption software runs
in 635.65ms. We compare our results with the results
of 2048-bit RSA encryption/decryption optimal imple-
mentation [15] by HDL. This optimal implementation
requires one DSP48E1, one BRAM and few (180) logic
blocks (slices) and runs it in 277.265ms. Although our
approach is slower, however, it has several advantages.
Since, the application algorithm is written by software,
the development and debugging are easy. Also, it is an
almost scalable based on experimental results.

• Further, we compare the results of the execution time
for 64-bit, 128-bit, 256-bit, 512-bit and 1024-bit RSA
encryption/decryption as illustrated in Table IV. Experi-
mental results show that the execution time ratio of our
work over optimal one is decreasing with increasing bit
length which indicates that proposed processor architec-
ture will be more efficient for a bit length higher than
2048-bit.

����������	
���������	����
��	������
�� �����	
�� ����� !"#$�%��� !"#$�&���� !"#$�&%�' !"#$ �������	 ()(*(+)�����	������

�������	,-�. �/���	��	�
012345678963:632;7<=>7> ?@AB?CDEF (+*0GHIJKLMNLOP

Fig. 5. Data of 1024-bit Length is Stored in Memory (BRAM)

The rest of this paper is organized as follows: Section II
briefly describes the Multiple-length-arithmetic operation. In
Section III, we describe our proposed architecture. The RSA
cryptography as an application is described briefly in Sec-
tion IV. Section V describes experimental results and discus-
sions. Finally Section VI concludes this work.

II. MULTIPLE-LENGTH-ARITHMETIC OPERATION

The main purpose of this section is to describe Multiple-
Length-Arithmetic operations. Suppose that A and B are two
multiple-length numbers of 1024 bits each. We partition these
numbers into several blocks of 17 bits. First, we see that how a
multiple-length number of 1024 bits is stored in data memory.
Figure 5(a) shows a data memory (BRAM). Every 17-bit block
data together with 1-bit flag represents a bit-block of 18 bits
and MSB (Most Significant Bit) of each bit-block is known as
flag which set to 1 indicates the end of each stored multiple-
length data into the data memory as shown in Figure 5(b).
In this figure, multiple-length data A of 1024 bits is divided
into 61 numbers of 17 bits block such as a0, a1, . . ., a60, a61.
Every 17 bits block of multiple-length data, A together with
1-bit flag is stored in different memory location of the data
memory (BRAM).

Now, let us see the instruction memory as well as instruc-
tion format of multiple-length or multi-double long data as
illustrated in Figure 6. Figure 6 (a) represents an instruction
memory in which 53 bits instruction together with 1-bit flag
can be stored at any address of the instruction memory
addresses. In this case, 1-bit flag is set to 1 indicates the
last instruction for execution. Note that, addresses of the
instruction memory are handled by the Program Counter (PC)
which will be described later.

Let us give an example of a multiplication of two multiple-
length or two multi-double long data. However, we can
also perform other arithmetic operations such as addition,
subtraction, division, comparison of multi-double long data.
Suppose u and v represent two multi-double long data. We
are multiplying u by v and the result is stored in w, that is

DSP

Adder

Counter

Temporary
RAM

d1

d2

addr1

addr2

A

B

Zero Flag

Carry Flag

Output1

Output2

ALU
Control

Unit

Add
Control

Unit

MUL
Control

Unit

MULV
Control

Unit

Output
Control

Unit
ALU OverALU Start

q1

q2

Fig. 9. ALU Architecture

w = u · v. An assembly instruction for this computing of
multi-double long data is as follows:

MUL A, B, C
In the above instruction, A, B and C are known as operands

of 16-bit each which can be used to indicate 216 different
addresses 0, 1, . . ., 216 − 1 of the data memory (BRAM) and
MUL is known as OPCODE of 5-bit which determines the
operation of operands (in this case multiplication) as illustrated
in Figure 6(b). Let us see Algorithm 1 for multiplication of
two multi-double long data u and v.

- Algorithm 1: Multi-Double Long Multiplication -
B: number of digits in radix-217 operands
n: last number of digit of radix-217 numbers in u
m: last number of digit of radix-217 numbers in v

Input: u =
∑n−1

i=0 ui ·Bi, v =
∑m−1

i=0 vi ·Bi

Output: w = u · v
1. for j = 0 to m− 1 do
2. c← 0
3. w0 ← 0

���������	�
��������������
�����������
��
	��
�������������������	�
�������
������
����� ��!��
��"��
�#$%#�& '��!��
�� %��!��
�� ())*+,,-.())*+,,-/())*+,,-0"��
�#$%#�&"1234 �!��
��55����36271 �!��
��55����7�2�! �!��
��55�����"28�
�"7��
�

Fig. 6. An Instruction Memory and an Instruction Format for Multi-Double Data

�������� �	
���
������� ������������������������� �������� !���������!���������" ��������#$%&$' �()����� *$��������+ ,-

�.�/01� 2��3��456 ������������������������� �������� !���������!���������" ��������#$%&$' �()����� *7��������+#7%&$' 8
�9�/01� 2��32:�45;6 ������������������������� �������� !���������!���������" ��������#$%&7' �()�������������+ ��������8

�<�/01� 2��3��45�6 ������������������������� �������� !���������!���������" ��������#7%&7' �()�������������+ ��������88#$%&7'
#$%&$,-,=

#7%&$

,-,=
#7%&$

#7%&7
,-,=

Fig. 7. Example of Multi-Double Long Multiplication

4. for i = 0 to n− 1 do
5. {c, wi+j} ← wi+j + ui · vj + c
6. end for
7. wn+j ← c
8. end for
9. return

∑n+m−1
i=0 wi ·Bi

For the reader’s benefit, we will show a simple example of
the above algorithm as illustrated in Figure 7. In Figure 7 (a),
u0 of 17-bit block is multiplied by v0 and the result of 34 bits
is extended to 47 bits, because of the embedded multiplier
in our target device. Then, 47 bits result is partitioned into

higher 30 bits, c and lower 17 bits, w0 and finally result,
w0 is stored in data memory (BRAM). Similarly, in Figure 7
(b), u1 multiplied by v0 and the result of 34 bits is extended
to 47 bits, Then, 47 bits result is partitioned into higher 30
bits, c and lower 17 bits, w1 and result, w1 is stored in data
memory (BRAM) and 30 bits, c is added with the c in Figure 7
(a). For simplicity, we ignore the multiplication operation with
u2. In Figure 7 (c), u0 multiplied by v1 and the result of 34
bits is extended to 47 bits, Then, 47 bits result is partitioned
into higher 30 bits, c and lower 17 bits, w1 which is again
added with w1 as illustrated in Figure 7 (b) and then finally
result, w1 is stored in data memory (BRAM) and so on.

Program
Counter

(PC)

Instruction
Memory

load

inc load

Counter B

Counter A

Counter C

Data
Control

Unit

Main
Control

Unit

Data
Memory

incload

addr1

addr2

JMP
Control

Unit

Zero
Register

Carry
Register

ALU

d1

d2

q1

q2

incload

incload

we1

we2

Fig. 8. Our Proposed Processor Architecture

Finally, multiplication result, w of two multi-length numbers
is computed by the line 9 of an Algorithm 1.

III. OUR PROPOSED PROCESSOR ARCHITECTURE

Let us briefly describe our proposed processor architec-
ture for multiple-length-arithmetic operations. Our designed
processor consists of program counter, instruction memory,
address counters, data memory, ALU, registers, control units as
illustrated in Figure 8. For the reader’s benefit, these elements
are briefly described as follows:

• program counter (PC): PC is a counter which can
hold or point the addresses of the instruction memory.
Generally, it holds starting address of an instruction
memory in which instruction is stored and after that it
can be incremented to point the next address of the next
instruction.

• instruction memory: It is an array of memory in which
instructions of a program can be stored. In our case,
this memory is used to store multiple-length arithmetic
instructions, each of 54 bits which is shown in Figure 6.

• address counter: This is simply a counter which can
count number as an address. For example, a 16-bit
counter can count numbers from 0, 1, . . ., 216 − 1. In
our case, we use 16-bit address counter to handle the
addresses of the data memory.

• data memory: It is also an array of memory where
information can be stored. More specifically, a data
memory has b-bit data input, e-bit address input and
c-bit data output, it can store 2e words such as
M [0],M [1], . . . ,M [2e−1] with c bits each, where M [0],

. . ., M [2e − 1] represent memory contents at 0, . . .,
(2e−1) respectively. In our case, address is 16 bits, data
at every address is 17 bits together with 1-bit flag, that
is 18 bits. We use this memory to store multiple-length
data.

• ALU: It is an arithmetic and logical unit which can
perform arithmetic and logical operations for the given
inputs. We have shown an architecture of the ALU in
Figure 9. In this figure, two inputs A and B are given.
Then arithmetic operations such as addition, multiplica-
tion etc. can be performed by adder and DSP and finally
result is stored in temporary memory (BRAM) for further
operations as it is included in Figure 8. This figure also
have some control units to control ALU operations such
as addition, multiplication etc. Flags indicate the status
of the arithmetic operations.

• register: A register is a memory element which can be
used for storing data or holds a state by flip-flops. For
example, b-bit register which can store b-bit data. In our
architecture in Figure 8, we have shown flag registers
to hold state of operations. For example, Zero register
and carry register can hold states for conditional jump
instructions such as JNZ (jump if not zero), JC (jump if
carry). Since these are executed based on the result of
the previous instruction, they are known as conditional
instructions.

• control unit: A control unit is used to control the oper-
ations. We have three control units such as data control
unit, unconditional jump (JMP) control unit and main
control unit. Data control unit is used to store data into

the data memory through data port d1 and d2 which are
specified by the addresses generated by address counters
A, B and C through port addr1 and addr2 respectively.
This data stored operation is handled by write enable 1
(we1) and write enable 2 (we2) and these are controlled
by the data control unit as illustrated in Figure 8. Main
control unit mainly controls the operations of the PC, data
control unit, instruction memory and JMP control unit
such that operations run properly. A JMP control unit is
used to handle unconditional jump instruction. In fact, it
controls the program counter (PC), whether it increases
or not through load signal.

We will describe a multiplication of two multi-double long
data as it is seen in Section II using our processor architecture
as illustrated in Figure 8. We assume that two multi-double
long data are stored in data memory as shown in Figure 5.
Temporary memory in ALU is used to store the result of
operations temporarily. We also assume that the instructions of
54-bit each are stored in instruction memory. Let us recall the
assembly instruction for multiplication of two multi-double
long data as it is seen in Section II. Using our processor
architecture, multiplication of two multi-double long data can
be described is as follows:

• First, PC holds the address of this instruction (MUL A,
B, C), that is already in instruction memory. Note that A,
B and C, each of them indicates 16-bit data that is used
to specify the address of data memory through port addr1
and addr2. More specifically, A, B or C can handle 216

distinct addresses 0, 1, . . ., 216 − 1 of the data memory.
• After executing the above instruction, Counter A, Counter

B and Counter C hold the first address value 0 as inputs
initially that are controlled by load signal in each counter.
Next, address value 0 from address counter A and B is
used to specify first addresses for the first 17-bit blocks
of the two multi-double long data in data memory. After
that, ALU takes these data of 17-bit blocks as inputs
and performs multiplication operation on these. Then
lower 17-bit is stored in temporary memory in ALU
and higher 17-bit is extended to 30-bit by DSP48E1 as
illustrated in Figure 4 and then it is stored in register
in DSP48E1. Sometimes, lower 17-bit result which is
stored in temporary memory needs to write into data
memory for further arithmetic operation. However, for
the first multiplication, it is not needed. This data written
operation from temporary to data memory is done through
data port d1 or d2 which is controlled by write enable
1(we1) or write enable 2(we2) and address for it is
specified by address counter C through address port
addr1 or addr2. These operations are clearly illustrated
in Figure 7.

• similarly, multiplication executes until there is no more
17-bit block data for multiplication. Finally multiplication
result can be computed by the line 9 of an Algorithm 1
using different lower 17-bit blocks stored in temporary
memory.

Since each address counter generates 16-bit address, we
can also handle multiplication of numbers longer than 2048-
bit using our processor architecture. In others, 16-bit address
of the counter can be addressed up to 64 number of 1K x
18-bit data memory (BRAM). Note that, for storing 2048-
bit operand, 7-bit address is enough. Because, 2048-bit is
equal to the 120 multiplied by 17-bit block plus 8, that is,
it requires 121 number of 17-bit block. Hence, 1K x 18-bit
data memory (BRAM) can be even used for more than 2048-
bit multiplication.

In the following section, we implement RSA cryptography
using our proposed architecture and it is programmed by
assembly language. The assembly instructions of number, 117,
each of 54-bit are needed to implement modular exponen-
tiation algorithm. Due to page limitation, we only show an
assembly code for Montgomery Multiplication Algorithm (that
corresponds to the Algorithm 4 in Section IV) as illustrated
below which is used to implement the modular exponentiation
algorithm. We refer the readers to Section IV for details. In
below assembly code, the registers R1 and R2 are used to take
inputs X and Y , each of 64-bit. Also 64-bit M is given. The
registers R3, R4, R5 is used to hold the intermediate results
and final results of the Montgomery Multiplication is stored
either in R6 or C. Note that, 64-bit data in register R1 is
divided into several blocks of 17-bit each and these are stored
in several block registers such as R10, R11, R12, R13 (lower
block to higher block). For the case of other registers, we can
explain in similar way.

[Assembly Code for Montgomery Multiplication]

R1=X, R2=Y;
R3=0, R4=0, R5=0, R6=0;
C=0;
01: MUL, R10, R20, R30; X (R1)×Y(R2) store in R3
02: MOVI, R30, R40, R33; copy blocks of R3 into R4
03: MASK, R43, R43, 1FFF; make last 4-bit of R43 as 0’s
04: MUL, R40, −M−1

0 ,R50; R4×−M−1 store in R5
05: MOVI, R50, R40, R53; copy blocks of R5 into R4
06: MASK, R43, R43, 1FFF; make last 4-bit of R43 as 0’s
07: MUL, R40, M0, R50; R4×M store in R4
08: ADD, R30, R50, R60; store R3 + R5 in R6
09: SHR, R63, R60, 13; 64-bit shift right of R6
0A: CMP, R60, M0; R6 compare with M
0B: JC, 0D; if R6 > M , go to OD
0C: SUB, R60, M0, R60; R6-M is the results in R6
0D: MOV, R60, C0; results in R6 move to C

For the benefit of readers, we also show how much cycles
are required for each multiple-length-arithmetic operation of
different bit lengths of R as illustrated in Table I. Note that,
we use 117 number of assembly instructions with 16 different
OPCODEs such as ADD, SUB, MUL etc. as shown in Table I
to implement modular exponentiation algorithm.

TABLE I
NUMBER OF CYCLES FOR MULTIPLE-LENGTH-ARITHMETIC OPERATIONS

Bit length R 128 256 512 1024 2048
ADD(addition) 23 39 69 129 249
SUB(subtraction) 23 39 69 129 249
MUL(multiplication) 95 311 1061 3911 15011
MULV(vector multiplication) 23 39 69 129 249
INC(increment) 11 11 11 11 11
DEC(decrement) 11 11 11 11 11
CMP(compare) 19 27 42 72 132
JMP(jump) 5 5 5 5 5
JZ(jump if zero) 5 5 5 5 5
JNZ(jump if not zero) 5 5 5 5 5
JC(jump if carry) 5 5 5 5 5
JNC(jump if not carry) 5 5 5 5 5
MOV(Move all) 14 23 37 67 127
MOVI(Move specified block) 14 23 37 67 127
MASK(mask) 11 11 11 11 11
SHR(shift right) 19 27 42 72 132

IV. AN APPLICATION OF RSA CRYPTOGRAPHY USING
OUR PROCESSOR

This section briefly reviews the RSA Cryptography which
is described details in paper [15]. Using our processor, we
implement the same algorithm by software, instead of HDL
as illustrated in paper [15] to make it easy for modifications
or changes by a non-expert or by a beginner.

In RSA [18], the modular exponentiation C = PE mod M
or P = CD mod M are computed, where P and C are
plain and cypher text, and (E, M) and (D,M) are encryption
and decryption keys. Usually, the bit length in P , E, D,
and M is 512 or larger. Also, the modulo exponentiation is
repeatedly computed for fixed E, D, and M , and various P
and C. Since modulo operation is very costly in terms of the
computing time and hardware resources, Montgomery modular
multiplication [19], [20], [21], [22] is used, which does not
directly compute modulo operation.

Montgomery multiplication [19], [20], [21], [22] is an
optimal method to calculate modular exponentiation. Three
R-bit numbers X , Y , and M are given, and (X · Y + q ·
M) ·2−R mod M is computed, where an integer q is selected
such that the least significant R bits of X · Y + q · M
are zero. The value of q can be computed as follows. Let
(−M−1) denote the minimum non-negative number such that
(−M−1) · M ≡ −1(or 2R − 1) (mod 2R). Since M is
odd, then (−M−1) < 2R always holds. We can select q
such that q = ((X · Y) · (−M−1))[r − 1, 0]. For such q,
(X ·Y +q ·M)[r−1, 0] are zero. We refer readers to paper [23]
for an example.

Radix-2r Montgomery multiplication is shown in Algo-
rithm 2. In Algorithm 2, d = dR/re presents the number of
digits in radix-2r operands. The multiplier Y is partitioned by
each r-bit and Yi represents the i-th digit of Y . Therefore,
Y could be given by Y =

∑d−1
i=0 2ir · Yi. After d loops,

R-bit Montgomery multiplication can be computed. As far
as now, Montgomery multiplication could be computed by
multiplication, addition and shift operations without modulo
operations.

- Algorithm 2: radix-2r Montgomery Multiplication -
radix-2r, d = dR/re, X,Y,M ∈ {0, 1, ..., 2R − 1},
Y =

∑d−1
i=0 2ir · Yi, Yi ∈ {0, 1, ..., 2r − 1}

(−M−1) ·M ≡ −1 mod 2r, −M−1 ∈ {0, 1, ..., 2r − 1}
Input: X, Y, M,−M−1

Output: Sd = X · Y · 2−dr mod M
1. S0 ← 0
2. for i = 0 to d− 1 do
3. qi ← ((Si + X · Yi) · (−M−1)) mod 2r

4. Si+1 ← (X · Yi + qi ·M + Si) / 2r

5. end for
6. if (M ≤ Sd) then Sd ← Sd −M

Since X ·Y +q ·M ≡ X ·Y (mod M), we write (X ·Y +
q ·M) · 2−R mod M = X · Y · 2−R mod M . Let us see how
Montgomery modular multiplication is used to compute C =
PE mod M . Suppose we need to compute C = PE mod M .
For simplicity, we assume that E is a power of two. Since R
and M are fixed, we can assume that 22R mod M is computed
beforehand. We first compute P ·(22R mod M)·2R mod M =
P ·2R mod M using the Montgomery modular multiplication.
We then compute the square (P · 2R mod M) · (P · 2R mod
M) · 2−R mod M = P 2 · 2R mod M . It should be clear that,
by repeating the square computation using the Montgomery
modular multiplication, we have PE · 2R mod M . After that,
we multiply 1, that is (PE · 2R mod M) · 1 · 2−R mod M =
PE mod M is computed. In this way, cypher text C could be
obtained.

Algorithm 3 shows the modular exponentiation using Mont-
gomery multiplication of Algorithm 2. In Algorithm 3, Eb

represents the size of E. Inputs 22dr mod M and −M−1 are
given. To use Montgomery modular multiplication, C and P
are converted from 1 and P in the 1st line and the 2nd line,
respectively. The line 1, 2, 4, 5 and 7 in Algorithm 3 can be
computed using Montgomery multiplication of Algorithm 2.

- Algorithm 3: Modular Exponentiation -
0 ≤ E ≤ 2Eb − 1, E =

∑Eb−1
i=0 2i · Ei, Ei ∈ {0, 1}

Input: P, E, M,−M−1, 22dr mod M
Output: C = PE mod M
1. C ←(22dr mod M) · 1 · 2−dr mod M ;
2. P ← (22dr mod M) · P · 2−dr mod M ;
3. for i = Eb − 1 downto 0 do
4. C ← C · C · 2−dr mod M ;
5. if Ei = 1 then C ← C · P · 2−dr mod M ;
6 end for
7. C ← C · 1 · 2−dr mod M ;

Now we will describe our algorithm in Algorithm 4. Let
{A : B} denote a concatenation of A and B. For example,
if A = (FF)16 and B = (EC)16, {A : B} = (FFEC)16.
Algorithm 4 is an improved algorithm from Algorithm 2. Con-
sidering the features of our target Virtex 6 FPGA, radix-217

is selected. Let R denotes the size of Montgomery multiplier
operands X , Y , and M . Also, d = dR/17e is the number
of digits of the operands on radix-217. In the algorithm, we
introduce the condition 17d ≥ R+3 to ignore the subtraction

shown in the 6th line of Algorithm 2. If the condition is
satisfied, we can guarantee that at least 3-bit 0 is padded to
the most significant bits of the most significant digit as the
redundancy. Due to the stringent page limitation, the proof is
omitted. However, we can say that M ≥ C is always satisfied
in the modular exponentiation shown in Algorithm 3 . Further,
in practical RSA encryption, the size of operands is radix-2
numbers such as 512-bit, 1024-bit, 2048-bit, and 4096-bit. For
radix-217 system, the condition 17d ≥ R+3 is satisfied. If the
condition is not satisfied, we just need to append one redundant
digit at the most significant digit.

- Algorithm 4: Our Montgomery Algorithm -
radix-217, d = dR/17e, 17d ≥ R + 3,
X, Y,M, Si ∈ {0, 1, ..., 2R − 1},
−M−1, α, β, γ, Cα, Cβ ∈ {0, 1, ..., 217 − 1}, Cγ , CS ∈ {0, 1},
X =

∑d−1
i=0 217i ·Xi, Xi ∈ {0, 1, ..., 217 − 1}, Xd = 0

Y =
∑d−1

i=0 217i · Yi, Yi ∈ {0, 1, ..., 217 − 1}
M =

∑d−1
i=0 217i ·Mi,Mi ∈ {0, 1, ..., 217 − 1},Md = 0

Si =
∑d−1

j=0 217j · S(i,j), S(i,j) ∈ {0, 1, ..., 217 − 1}, Sd = 0
Input: X,Y, M,−M−1

Output: Sd = X · Y · 2−17d mod M
1. S0 ← 0
2. for i = 0 to d− 1 do
3. q ← ((X0 · Yi + S(i,0)) · (−M−1)) mod 217

4. Cα, Cβ , Cγ , CS ← 0
5. for j = 0 to d do
6. {Cα : α} ← Xj · Yi + Cα

7. {Cβ : β} ← q ·Mj + Cβ

8. {Cγ : γ} ← α + β + Cγ

9. {CS : S(i+1,j−1)} ← γ + S(i,j) + CS

10. end for
11.end for

Algorithm 4 is a radix-217 digit serial Montgomery algo-
rithm from Algorithm 2. In other words, each 17-bit, as 1 digit,
is processed every clock cycle. For this reason, the operands
X , Y , M , and Si are split into 17-bit digits Xj , Yj , Mj , and
S(i,j), respectively. The loop from the 2nd to 11th lines of Al-
gorithm 4 corresponds to the 2nd to 5th lines of Algorithm 2.
Comparing the two algorithms, Si+1 ← (X ·Yi + qi ·M +Si)
/ 2r of the 4th line of Algorithm 2 corresponds to the digit
serial processing by 4th to 10th lines of Algorithm 4 . In
Algorithm 4, Cα, Cβ , Cγ , and CS are carries and they are
added at the next loop. In the algorithm, Cα, Cβ are 17-
bit carries for 17-bit MACC, and Cγ , CS are 1-bit carries
for 17-bit addition. For example, at the 6th line Xj , Yi are
timed and added to 17-bit carry Cα, the result is 34-bit. a
product of Xj and Yi, and an addition of the product and Cα

are computed. The resulting upper 17-bit denotes a carry Cα

which can be added at next loop. The lower 17-bit of result
is α which is used at the 8th and 9th lines. These carries in
our algorithm appear in both the 17-bit MACC and the 17-bit
adder to prevent a long carry chain that causes circuit delay.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

The proposed flexible-length-arithmetic processor architec-
ture is used to implement modular exponentiation algorithm
and evaluate on Xilinx Vertex-6 XC6VLX240T-3FF1156, pro-
grammed by software and synthesis with Xilinx ISE Founda-
tion 13.4. Table II shows the synthesized result for our work.

TABLE II
EXPERIMENTAL RESULT OF OUR MODULAR EXPONENTIATION USING

VIRTEX-6 FPGA

Virtex-6
Number of occupied Slices 170/301440
Number of 18k-bit BRAMs 4/416
Number of DSP48E1s 1/768
Maximum Frequency[MHz] 299.89

An optimal implementation [15], which is evaluated on
Xilinx Virtex-6 FPGA XC6VLX240T-1, programmed by hard-
ware description language Verilog HDL and synthesized by
Xilinx ISE Foundation 11.4. Note that, the optimal one,
programmed by HDL is specialized design by an expert so that
it is difficult to debug or change by a non-expert or sometimes
even by an expert.

Table III shows the synthesized results of Virtex-6 for
comparing both implementations. We have used less number
of logic blocks. Four BRAMs are used instead of one in an
optimal implementation [15]. However one DSP (DSP48E1)
is used for the both implementations. Performance of our
implementation in terms of frequency and execution time is
slightly less than an optimal one [15]. We also compare the
execution time ratio of our implementation over optimal one
which shows that this ratio increases when the bit length,
R increases as shown in Table IV. It means that proposed
architecture will be more efficient for implementing higher
than 2048-bit modular exponentiator algorithm.

Based on results in Table III and Table IV, our implemen-
tation is near to the optimal one. Hence, we say that our
implementation is an almost scalable. However, the optimal
one [15] is designed to be implemented by hardware language,
HDL which is difficult for modifications or changes by non-
expert, because this is specially designed by an expert.

On the other hand, our implementation of RSA encryp-
tion/decryption using proposed processor architecture is de-
signed to be implemented by software, hence it is easy for
modifications or changes by a non-expert or by a beginner
which makes it flexible. Even though, it has ability to support
higher bit (more than 2048-bit) of RSA encryption/decryption.

VI. CONCLUSIONS

In this paper, we have presented an intermediate approach
of software and hardware using DSP Slices and Block RAMs
in FPGAs. More specifically, a flexible-length-arithmetic pro-
cessor based on FDFM approach is presented that supports
arithmetic operations for numbers with flexibly many bits,
even longer than 2048 bits. The potentiality of our processor is
shown through the implementation of modular exponentiator
algorithm by software and compare it with the results of an

TABLE III
COMPARISON WITH PREVIOUS 2048-BIT MODULAR EXPONENTIATOR ALGORITHM

Optimal Implementation [15] This Work
device Xilinx XC6VLX240T-1 Xilinx XC6VLX240T-3FF1156
logic block 180 Slices 170 Slices
memory block 1 BRAM 4 BRAMs
DSP block 1 DSP48E1 1 DSP48E1
frequency[MHz] 447.02 299.89
execution time[ms] 277.26 (worst case) 635.65 (worst case)
scalable yes yes (almost)

TABLE IV
WORST-CASE EXECUTION TIME COMPARISON OF MODULAR EXPONENTIATOR USING VIRTEX-6 FPGA

bit length R 64 128 256 512 1024 2048
(A) Our work: execution time[ms] 0.11 0.42 2.12 12.48 85.69 635.65
(B) Optimal work: execution time[ms] 0.02 0.12 0.74 4.99 36.37 277.26
Ratio A/B: 5.5 3.5 2.9 2.5 2.4 2.3

optimal implementation [15] by hardware language. Results in
Table III and Table IV show that our work is an almost near
to the optimal one. Hence, it is an almost scalable. However,
optimal one is designed to be implemented by an expert with
hardware language. Hence, this is difficult for debugging and
further development by the non-experts or by the beginners.
On the contrary, our work using proposed processor architec-
ture is designed to be implemented by software which is easy
for debugging and development even by the non-experts or by
the beginners. Hence, our work is more flexible. Undoubtedly,
our designed processor can be used for those applications such
as AES which requires integer arithmetic operations with many
bits. In future, we have a plan to improve our instruction set
for flexible-length-arithmetic operations.

REFERENCES

[1] VIRTEX-6 FPGA Memory Resources(V1.5), Xilinx Inc., 2010.
[2] VIRTEX 6 ML605 Hardware USER GUIDE (V1.2.1), Xilinx Inc., 2010.
[3] VIRTEX-6 FPGA DSP48E1 SLICE USER GUIDE (V1.3), Xilinx Inc.,

2011.
[4] J. Bordim, Y. Ito, and K. Nakano, “Accelerating the CKY parsing using

FPGAs,” IEICE Transactions on Information and Systems, vol. E86-D,
no. 5, pp. 803–810, 2003.

[5] J. L. Bordim, Y. Ito, and K. Nakano, “Instance-specific solutions to
accelerate the CKY parsing for large context-free grammars,” Interna-
tional Journal on Foundations of Computer Science, vol. 15, no. 2, pp.
403–416, 2004.

[6] Y. Ito and K. Nakano, “A hardware-software cooperative approach
for the exhaustive verification of the Collatz conjecture,” in Proc. of
International Symposium on Parallel and Distributed Processing with
Applications, 2009, pp. 63–70.

[7] K. Nakano and Y. Yamagishi, “Hardware n choose k counters with
applications to the partial exhaustive search,” IEICE Transactions on
Information and Systems, vol. E88-D, no. 7, 2005.

[8] Y. Ito and K. Nakano, “Efficient exhaustive verification of the Collatz
conjecture using DSP blocks of Xilinx FPGAs,” International Journal
of Networking and Computing, vol. 1, no. 1, pp. 19–62, 2011.

[9] K. Nakano and E. Takamichi, “An image retrieval system using FPGAs,”
IEICE Transactions on Information and Systems, vol. E86-D, no. 5, pp.
811–818, May 2003.

[10] Y. Ago, Y. Ito, and K. Nakano, “An FPGA implementation for neural
networks with the FDFM processor core approach,” International Jour-
nal of Parallel, Emergent and Distributed Systems, vol. 28, no. 4, pp.
308–320, 2013.

[11] Y. Ito and K. Nakano, “Low-latency connected component labeling using
an FPGA,” International Journal of Foundations of Computer Science,
vol. 21, no. 03, pp. 405–425, 2010.

[12] X. Zhou, N. Tomagou, Y. Ito, and K. Nakano, “Efficient Hough
transform on the FPGA using DSP slices and block RAMs,” in Proc.
of International Parallel and Distributed Processing Symposium Work-
shops, May 2013, pp. 771–778.

[13] VIRTEX-6 FPGA DSP48E1 SLICE USER GUIDE (V1.2), Xilinx Inc.,
2009.

[14] Y. Ago, A. Inoue, K. Nakano, and Y. Ito, “The parallel FDFM processor
core approach for neural networks,” in Proc. of International Conference
on Networking and Computing, December 2011, pp. 113–119.

[15] S. Bo, K. Kawakami, K. Nakano, and Y. Ito, “An RSA encryption
hardware algorithm using a single DSP Block and single Block RAM on
the FPGA,” International Journal of Networking and Computing, vol. 1,
no. 2, pp. 277–289, July 2011.

[16] Y. Ito, K. Nakano, and S. Bo, “The parallel FDFM processor core
approach for CRT-based RSA decryption,” International Journal of
Networking and Computing, vol. 2, pp. 56–78, 2012.

[17] K. Nakano, K. Kawakami, and K. Shigemoto, “RSA encryption and
decryption using the redundant number system on the FPGA,” in In Proc.
IEEE International Symposium on Parallel and Distributed Processing,
May 2009, pp. 1–8.

[18] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2,
pp. 120–126, 1978.

[19] T. Blum and C. Paar, “Montgomery modular exponentiation on recon-
figurable hardware,” in Proc. of the 14th IEEE Symposium on Computer
Arithmetic, 1999, pp. 70–77.

[20] ——, “High-radix montgomery modular exponentiation on reconfig-
urable hardware,” IEEE Trans. on Computers, vol. 50, no. 7, pp. 759–
764, 2001.

[21] P. L. Montgomery, “Modular multiplication without trial division,” Math.
of Comput., vol. 44, pp. 519–521, 1985.

[22] A. F. Tenca and C. K. Koç, “A scalable architecture for Montgomery
multiplication,” in Proc. of the First International Workshop on Crypto-
graphic Hardware and Embedded Systems, 1999, pp. 94–108.

[23] M. Niimura and Y. Fuwa, “Improvement of radix-2k signed-digit
number for high speed circuit,” Formalized Mathematics, vol. 11, no. 2,
pp. 133–137, January 2003.

