
A Flexible-length-arithmetic Processor based on FDFM Approach in FPGAs

Tatsuya Kawamoto, Yasuaki Ito, Koji Nakano
Department of Information Engineering,

Hiroshima University
Kagamiyama 1-4-1, Higashi-Hiroshima, 739-8527 Japan

Email: {kawamoto, yasuaki, nakano}@cs.hiroshima-u.ac.jp

Abstract—The main contribution of this paper is to present
an intermediate approach of software and hardware using
FPGAs. More specifically, we present a processor based on
FDFM (Few DSP slices and Few Memory blocks) approach
that supports arithmetic operations with flexibly many bits,
and implement it in the Xilinx Virtex-6 FPGA. Arithmetic
instructions of our processor architecture include addition,
subtraction, and multiplication for numbers with variable size
longer than 64 bits. To show the potentiality of our processor,
we have implemented 2048-bit RSA encryption/decryption by
software written by assembly program. The resulting processor
uses only one DSP48E1 slice and two block RAMs, and RSA en-
cryption software on it runs in 613.71ms. It has been shown that
the direct hardware implementation of RSA encryption runs
in 277.26ms. Although our intermediate approach is slower,
it has several advantages. Since programs for the proposed
processor can be written by software, the development and the
debugging are easy. We have also succeeded in implementing
306 processor cores in one Xilinx Virtex-6 FPGA which work
in parallel to improve the throughput greatly.

Keywords-Multiple-length-arithmetic, FPGA, DSP slices,
Block RAMs, RSA, Montgomery modular multiplication

I. INTRODUCTION

An FPGA (Field Programmable Gate Array) is a pro-
grammable logic device designed to be configured by
the customer or designer by HDL (Hardware Description
Language) after manufacturing. An FPGA chip maintains
relative lower price and programmable features [1], hence,
it is widely used recently. In particular, since FPGAs can
implement hundreds of circuits that work in parallel, they are
used to accelerate useful computations. The most common
FPGA architecture consists of an array of logic blocks,
I/O pads, block RAMs and routing channels. Furthermore,
embedded DSP slices which are integrated into an FPGA
makes a higher performance and a broader application [2].
Figure 1(a) roughly illustrates the internal configuration.
The CLB (Configurable Logic Blocks) in Virtex-6 consists
of 2 sub-logic blocks called slice. Using LUTs (Look Up
Tables) and flip-flops in the slices, various combinatorial
circuits and sequential circuits can be implemented. The
Virtex-6 FPGAs also has DSP48E1 slices equipped with
a multiplier, adders, and logic operators, etc. More specif-
ically, as illustrated in Figure 1(b), the DSP48E1 slice
has a two input multiplier followed by multiplexers and
a three-input adder/subtractor/accumulator. The DSP48E1

��� ������������

��� ������������

��� ������������

��� ������������

��� ������������

��	��	��	��	��	

��	��	��	��	��	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(a) Internal configuration of FPGA

x

y

z

+

-

+

×

P

17bit Shifters

P

A:B

D

A

B

C

PCIN

ALL 0s

ALL 1s

(b) Architecture of DSP48E1
Figure 1. FPGA (Field Programmable Gate Array)

multiplier can perform multiplication of the 18-bit and
the 25-bit 2’s complement numbers and produces one 48-
bit 2’s complement production. Programmable pipelining
of input operands, intermediate products, and accumulator
outputs enhances throughput and improves the frequency.
The DSP48E1 also has pipeline registers between operators
to reduce the delay. The block RAM in the Virtex-6 FPGA
is an embedded memory supporting synchronized read and
write operations [3]. The block RAM can be configured as a
36k-bit dual-port block RAMs, FIFOs, or two 18k-bit dual-
port RAMs. In our architecture, it is used as a 2k×18-bit
dual-port RAM.

Applications require arithmetic operations on integer
numbers which exceed the range of processing by a CPU
directly is called multiple-length numbers and hence, compu-



tation of these numbers is called multiple-length arithmetic.
More specifically, application involving integer arithmetic
operations for multiple-length numbers with size longer than
64 bits cannot be performed directly by conventional 64-
bit CPUs, because their instruction supports integers with
fixed 64 bits. To execute such application, CPUs need to
repeat arithmetic operations for those numbers with fixed
64 bits which increase the execution overhead. Alterna-
tively, hardware algorithms for such applications can be
implemented in FPGAs to speed up computations. However,
the implementation of hardware algorithm is usually very
complicated and debugging of hardware is too hard.

Since low level of instructions, represented by 0’s and 1’s,
is almost impossible to understand even by an expert, the de-
bugging of an algorithm at this level is very hard. Moreover,
to implement hardware algorithm, written by HDL such as
Verilog HDL, users should have sufficient knowledge of
hardware such as registers which makes it complicated to the
non-expert or to the beginners. The instructions in assembly
language are written by alphanumeric symbols instead of 0’s
and 1’s in low level that is almost similar to the high level
language, written in English which makes the instructions
as well as algorithms easy to read, modify and debug by the
non-expert or beginners.

The main contribution of this paper is to present an inter-
mediate approach of software and hardware using FPGAs
to support arithmetic operations for numbers with flexibly
many bits such that the development and debugging of it
become easier. More specifically, we propose a flexible-
length-arithmetic processor based on FDFM (Few DSP
slices and Few Memory blocks) approach that supports
applications involving arithmetic operations for numbers
with variable size longer than 64 bits and these applications,
written by software become easier for debugging and further
development. For the reader’s benefit, this paper precisely
describes our main contributions as follows:

(i) We propose a flexible-length arithmetic processor
based on FDFM approach for computing of integer
numbers with flexibly many bits, even longer than
2048-bit by a single machine instruction.

(ii) We present an intermediate approach of software
and hardware to write the algorithm which makes
the debugging and further development easy.

(iii) Our designed processor provides flexibility so that
it can be used for computing of integer numbers
with flexibly many bits such as 64-bit, 128-bit,
even longer than 2048-bit without further modi-
fication.

Let us explain briefly the FDFM approach using a sim-
ple example. Figure 2(1) illustrates a hardware algorithm
to compute the output of FIR (Finite Impulse Response)
yi = a0 ·xi+a1 ·xi−1+a2 ·xi−2+a3 ·xi−3. A conventional
approach implementing the FIR is to use four DSP slices as

× × × ×

+ + +

(1) FIR

DSP DSP DSP DSP

DSP

(2) Conventional approach

(3) FDFM approach

RAM

xi

xi

yi

xi

yi

yi

Figure 2. FDFM approach over conventional one for FIR

DSP

RAM

DSP

RAM

DSP

RAM

DSP

RAM

DSP

RAM

DSP

RAM

Main Circuit

(1) Minimum implementation

(2) Parallel implementation

Figure 3. Advantages of FDFM approach

illustrated in Figure 2(2) [2]. In this conventional approach,
the number of DSP slices must be the same as that of
multipliers in the hardware algorithm. However, FDFM
approach uses one or few DSP slices and one or few block
RAMs to implement the FIR. The Figure 2(3) shows the
FDFM approach using one DSP slice and one block RAM
to implement the same mentioned above. The coefficients
a0, a1, . . . are stored in the block RAM.

For readers, we also refer to the papers [4], [5], [6], [7]
in which they can find details about FDFM approach and
conventional approach. Let us describe the two important ad-



vantages of the FDFM approach, as follows. Even if the large
main circuit occupies the most of hardware resources in the
FPGA, we can implement a necessary hardware algorithm
in the FPGA using remaining few hardware resources as
illustrated in Figure 3(1). Also, if enough hardware resources
are available, we can implement multiple FDFM processor
cores that work in parallel (Figure 3(2)). The resulting hard-
ware implementation has maximum throughput by parallel
computation.

Because of the above mentioned advantages of the FDFM
approach, we design a flexible-length-arithmetic processor
based on FDFM approach. Note that, our designed flexible-
length-arithmetic processor using FPGA based on FDFM
approach can perform arithmetic operations for numbers
with variable size longer than 64 bits by a single command
or instruction whereas today’s PCs of 64 bits must require
complicated arithmetic algorithm with many commands to
compute them. We are mainly thinking the following sce-
narios for designing a flexible-length-arithmetic processor:

1) Our aim is mainly to emphasize the beginners or non-
expert users. Since our processor is designed to be
implemented for computing numbers even longer than
2048-bit by a single machine instruction, not by HDL,
they can understand or change or modify it easily.
More specifically, since the application algorithm is
written by software, the development and debugging
are easy to them.

2) Our designed processor can be used for integer arith-
metic operations on numbers with variable size longer
than 64 bits without further modifications.

3) We exploit the feature of embedded DSP (DSP48E1)
slice in FPGA for processing flexible-length numbers.
Because of this feature, we process each 17-bit block
of these numbers rather than single bit to speed up
computations.

In our previous work, we proposed a preliminary version
of a processor of this work [7]. This processor is also based
on the FDFM approach. The processor consists of one DSP
slice and four block RAMs. The main differences from the
previous one are as follows. By improving the processor
architecture, all the arithmetic operations are performed
by only one DSP slices without additional circuits and
memories. As a result, although the number of the supported
instructions is increased from 17 to 38, the number of block
RAMs is reduced to two while the size of the circuit is
almost the same.

We have also implemented the multicore-processor system
which contains 306 processor cores on the Virtex-6 FPGA.
The implementation uses 51735 CLBs, 383 block RAMs,
and 306 DSP slices. The timing analysis shows that our
implementation runs in 240.20MHz. The clock frequency
is 1.29 times lower than that of single processor since the
circuit delay is increased. However, since the implemen-

tation consists 308 processor cores, considering the total
performance of the multicore-processor, the effect of the
performance derived from the decrease of clock frequency
is not large.

The rest of this paper is organized as follows: Section II
briefly describes the Multiple-length-arithmetic operation.
In Section III, we describe our proposed architecture. The
RSA cryptography as an application is described briefly
in Section IV. Section V describes experimental results
and discussions. Section VI presents multicore-processor
system with 306 processor cores and its performance. Finally
Section VII concludes this work.

II. MULTIPLE-LENGTH-ARITHMETIC OPERATION

The main purpose of this section is to describe multiple-
length-arithmetic operations. In the following, we will rep-
resent multiple-length numbers as arrays of r-bit blocks. In
general, r = 32 or 64 for conventional CPUs. On the other
hand, in our case, r = 17 since the bit-length manipulated
in the DSP slice is 17 bits. Let R denote the bit-length of
numbers and d be the number of r-bit blocks. Therefore,
d = dRr e. For example, a 1024-bit integer consists of 61
blocks.

Now, let us give an example of a multiplication of two
multiple-length data. Due to the page limitation, other arith-
metic operations supported in our processor such as addition,
subtraction, comparison, etc. are omitted, but the readers can
understand how they are computed easily. Suppose A and
B represent two multi-length numbers. We are multiplying
A by B and the result is stored in C, that is C = A ·B.
To compute this multiplication, School method is often used.
The algorithm of School method is shown in Algorithm 1.
For simplicity, in the algorithm, the sizes of the multipli-
cand and the multiplier are the same and {x, y} denotes
a concatenation of x and y. School method multiplies the
multiplicand by each block of the multiplier and then adds
up all the properly shifted results illustrated in Figure 4.
In School method, it is necessary to store temporary data
that are partial products during the computation. Therefore,
our preliminary processor which adopts School method, uses
additional storage consisting of block RAMs [7].

Algorithm 1: School method
Input: A = (ad−1, . . . , a0), B = (bd−1, . . . , b0)
Output: Product C = A ·B = (c2d−1, . . . , c0)
t: r-bit integer
1. for j = 0 to d− 1 do
2. t← 0, c0 ← 0
3. for i = 0 to d− 1 do
4. {t, ci+j} ← ci+j + ai · bj + t
5. end for
6. cd+j ← t
7. end for



�
�

�
�

�
�

�
�

�
��

�
�

· �
�

�
�

· �
�

�
�

· �
�

�
�

· �
�

�
�

· �
�

�
�

· �
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

· �
�

�
�

· �
�

�
�

· �
�

Figure 4. School method for multiple-length numbers C = A ·B

�
�

�
�

�
�

�
�

�
��

�
�

· �
�

�
�

· �
�

�
�

· �
�

�
�

· �
�

�
�

· �
�

�
�

· �
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

· �
�

�
�

· �
�

�
�

· �
�

Figure 5. Comba method for multiple-length numbers C = A ·B

To avoid storing the temporary data, in the proposed
processor, we use Comba method [8] for the multiple-length
multiplication. The algorithm of Comba method is shown
in Algorithm 2. According to the algorithm, the readers
may think that it is more complicated than School method.
However, the difference is only the order of multiplications
of blocks and the number of multiplication of blocks is the
same as illustrated in Figure 5. In Comba method, each
block of results of the multiplication is computed from
lower blocks to upper blocks one by one. The multiplication
using Comba method can be computed by the function
multiplication and accumulation of DSP slice [2] without
any additional adders or memories.

Algorithm 2: Comba method
Input: A = (ad−1, . . . , a0), B = (bd−1, . . . , b0)
Output: Product C = A ·B = (c2d−1, . . . , c0)
s, t, u: r-bit integers
1. s← 0, t← 0, u← 0,
2. for i = 0 to d− 1 do
3. for j = 0 to i do
4. {s, t, u} ← {s, t, u}+ aj × bi−j

5. end for
6. ci ← u
7. u← t, t← s, s← 0

8. end for
9. for i = d to 2d− 2 do
10. for j = i− d+ 1 to d− 1 do
11. {s, t, u} ← {s, t, u}+ aj × bi−j

12. end for
13. ci ← u
14. u← t, t← s, s← 0
15. end for
16. p2d−1 ← u

III. OUR PROPOSED PROCESSOR ARCHITECTURE

Let us briefly describe our proposed processor architec-
ture for multiple-length-arithmetic operations. Our designed
processor consists of Program counter, Instruction memory,
Data memory, DSP, flag registers, and control units as
illustrated in Figure 6. Our processor is based on the Harvard
architecture of which instruction and data memories are
separated [9]. The proposed processor performs instructions
one by one and each instruction is basically executed in
pipeline fashion. Especially, all the arithmetic operations
are computed only by one using DSP slice. Our processor
supports 38 instructions, not only multiple-length arithmetic
operations, but also single-block arithmetic operations. Ta-
ble I shows the list of main instructions of the processor and
clock cycles to perform them. For the reader’s benefit, main
elements of the processor, such as instruction memory, data
memory, and DSP are briefly described, as follows.

Data Memory

(Block RAM)

addr1

addr2

DSP

(DSP slice)

d1

q1

q2

Data Control Unit

Program 

Counter

Instruction 

Memory

(Block RAM)

Main Control 

Unit

Flag registers

d2

Figure 6. Our proposed processor architecture

Control units: We have two control units, Main control unit
and Data control unit. Main control unit mainly controls the
behavior of the whole processor such as Program counter,
Data control unit, and Instruction memory. On the other
hand, Data control unit is used to perform each operation.
Instruction memory: Instruction memory is an array of
memory in which instructions of a program can be stored
and it is composed of block RAMs. In our architecture,
this memory is used to store multiple-length arithmetic
instructions, each of 54 bits, and the format is shown in
Figure 7.



Table I
THE LIST OF MAIN INSTRUCTIONS OF THE PROPOSED PROCESSOR AND THEIR CLOCK CYCLES

Mnemonic Operation The size of operands [bits]
64 128 256 512 1024 2048

ADD A,B,C A← B + C 17 25 41 70 130 250
SUB A,B,C A← B − C 14 21 38 69 129 249
MUL A,B,C A← B · C 32 88 296 1031 3851 14891
MULV A, B, C A0 ← B0 · C0, A1 ← B1 · C1, ..., Bd−1 · Cd−1 22 38 70 130 250 490
INC A A← A+ 1 15 19 27 42 72 132
DEC A A← A− 1 14 18 26 41 71 131
CMP A,B A−B 14 18 26 41 71 131
SHL A,B, x A← B << x 15 19 27 42 72 132
SHR A,B, x A← B >> x 15 19 27 42 72 132
MOV A,B A← B 10 14 22 37 67 127
MOVP A,Bx, By A← Bx, . . . , By y − x+ 7
JMP A PC ← A 3
JC A PC ← A if carry 3
JNC A PC ← A if not carry 3
JZ A PC ← A if zero 3
JNZ A PC ← A if not zero 3

Opcode Operand A Operand B Operand C

6 bits 16 bits 16 bits 16 bits

Figure 7. Data format of instructions

Data memory: Data memory is also an array of memory
where various data including multiple-length numbers can
be stored and it is composed of block RAMs. Figure 8
shows how to store a 1024-bit data to the memory. Every
17-bit block data together with a 1-bit flag represents a bit-
block of 18 bits. The flag bit stored in the most significant
bit of each block is used to find the second last 17-bit
block data. If a 17-bit block is the second last block of
a multiple-length number, the flag bit is set to 1, otherwise
0. The reason that the flag bit is used not for the last block
but for the penultimate block is to know the end of data
block in advance before the last data block is read since
the multiple-length-arithmetic operations are performed in
pipelined fashion. In this figure, multiple-length data A of
1024 bits is divided into d 102417 e = 61 numbers of 17 bits
block such as a0, a1, . . ., a60. The flag bit of a59, in this
case, is set to 1. Using the above architecture, our designed
processor provides flexibility so that it can be used for
computing of integer numbers with flexibly many bit such
as 64-bit, 128-bit, even longer than 2048-bit without further
modification.
DSP and flag registers: DSP is an arithmetic and logical
unit which can perform arithmetic and logical operations
for given inputs. Given two inputs from Data memory,
arithmetic operations such as addition, multiplication etc.
can be performed and the result of the operation is stored
to Data memory. DSP corresponds to one DSP slice in the
FPGA and it is controlled by Data control unit. According to
the operation, by selecting the function of the DSP slice, the

0
�
�

0
�
�

1
�
��

0
�
��

⋮⋮

Flag

(1-bit)

�
��

(4-bit) �
��

(17-bit) ⋯ �
�

(17-bit) �
�

(17-bit)

1024-bit

Data

(17-bit)

Figure 8. Multiple-length numbers stored in data memory

operation is performed. The operation by DSP is performed
in pipelined fashion. Also, we have two flag registers, zero
flag and carry flag to hold the state of operations. These flag
registers are 1-bit registers and usually used for conditional
jump instructions such as JNZ (jump if not zero) and JC
(jump if carry). The value of them is determined by the
result of the previous instruction. Zero flag holds 1 if the
result of the previous instruction is zero. Otherwise it holds
0. On the other hand, carry flag holds 1 if the result of the
previous instruction is in the range of numbers, that is the
result becomes overflowed or negative. Otherwise it holds
0.

IV. AN APPLICATION OF RSA CRYPTOGRAPHY

In this section, we introduce an application of RSA
cryptography [10] using the proposed processor. In RSA,
the modular exponentiation C = PE mod M or P =
CD mod M are computed, where P and C are plain and
cypher text, and (E,M) and (D,M) are encryption and
decryption keys. Usually, the bit length in P , E, D, and
M is 512 or larger. Also, the modular exponentiation is
repeatedly computed for fixed E, D, and M , and various



Code 1: Assembly code for R-bit Montgomery modular
multiplication C = A ·B · 2−R mod M

01: MUL R1, A,B ; A · B is stored to R1
02: MOVP R2, R10, Rd−1 ; R10, . . . , R1d−1 is copied to R2

03: MUL R3, R2,−M−1 ; R2 · (−M−1) is stored to R3
04: MOVP R2, R3,0, R3d−1 ; R30, . . . , R3d−1 is copied to R2
05: MUL R3, R2,M ; R2 · M is stored to R3
06: ADD R3, R1, R3 ; R1 + R3 is stored to R3
07: MOVP R2, R3d, R32d−1 ; R3d, . . . , R32d−1 is copied to R2
08: CMP R2,M ; R2 is compared with M
09: JC 0B ; if carry (R2 < M ), jump to address 0B
0A: SUB R2, R2,M ; R2 − M is stored to R2
0B: MOV C,R2 ; R2 is copied to C

P and C. Since modulo operation is very costly in terms of
the computing time and hardware resources, Montgomery
modular multiplication [11] is used, which does not directly
compute modulo operation.

We implement the RSA cryptography using our proposed
architecture and it is programmed by the assembly language.
The assembly code consists of 74 instructions. Due to the
page limitation, we only show an assembly code for R-bit
Montgomery modular multiplication C = A·B·2−R modM
in Code 1. In the assembly code, the multiple-length num-
bers A and B, and modulus M are input and the result is
stored to C. Although the code includes multiple-length-
arithmetic operations, it consists of only 11 instructions.
Also, each size of bits can be flexibly many bits such as
64 bits, 128 bits, even longer than 2048 bits without any
modification of the codes except the constant value of the
size of bits. Note that, data in register R1 is divided into
several blocks of 17 bits each and these are stored in several
block registers such as R10, R11, . . . (lower block to higher
block). For the case of other registers, we can explain in
similar way.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

The proposed flexible-length-arithmetic processor archi-
tecture is used to implement modular exponentiation al-
gorithm and evaluate on Xilinx Vertex-6 XC6VLX240T-
3 [1], programmed by software and synthesis with Xilinx
ISE Foundation 14.7. To evaluate the proposed processor,
we compare two FPGA implementations. One is a direct
hardware implementation [5], which is evaluated on Xil-
inx Virtex-6 FPGA XC6VLX240T-1, programmed by Ver-
ilog HDL. The other is a preliminary version of processor of
this work [7]. The circuit of direct hardware implementation
can compute RSA encryption and it is based on FDFM
approach. The implementation shows high-performance, but
it is a specialized design by an expert so that it is difficult
to develop, debug, and change circuits by a non-expert or
sometimes even by an expert.

Table II shows comparisons about synthesized results and
2048-bit RSA computation between the direct hardware
implementation, the processor of the previous work, and
this work. As regards CLBs, the proposed processor uses

the least of them since the proposed one uses only one DSP
slice and does not use additional circuits consisting of CLBs
such as an adder and barrel shifter that are used in the others.
Additionally, the proposed processor supports 38 instruc-
tions, the circuit of the processor can be more compact than
previous one that supports 17 instructions. Also, the number
of block RAMs in the proposed processor is reduced from
four to two. Therefore, the advantages of FDFM approach
shown in Figure 3 can be obtained further more. On the other
hand, the computing time of 2048-bit RSA encryption for the
proposed processor is 2.2 times longer than that for the direct
implementation. Considering that the RSA encryption in the
proposed processor is programmed by software, however, the
proposed processor can be utilized for various applications.

VI. MULTICORE-PROCESSOR SYSTEM

According to the above, we have designed a multicore-
processor system that contains many processor cores of
the FDFM approach that work in parallel as shown in
Figure 3 (2). Figure 9 illustrates the architecture of the
multicore-processor system. The data I/O controller in the
figure is a controller that the data memory in each proces-
sor is accessed and the status whether the computation is
finished or not is known from outside of the multicore-
processor. We have implemented the multicore-processor
system which contains 306 processor cores on a Virtex-
6 family FPGA XC6VLX240T. The implementation uses
51735 CLBs, 383 block RAMs, and 306 DSP slices. The
timing analysis reported that our implementation runs in
240.20MHz. The clock frequency is 1.29 times lower than
that of single processor shown in Table II since the cir-
cuit delay is increased. However, since the implementa-
tion consists of 306 processor cores, considering the total
performance of the multicore-processor, the effect of the
performance derived from the decrease of clock frequency is
not large. Calculated simply, this multicore-processor system
can compute 2048-bit RSA encryption 388 times in one
second, though the single core processor can compute it 1.6
times in one second.

VII. CONCLUSIONS

In this paper, we have presented an intermediate ap-
proach of software and hardware using one DSP slices and
two block RAMs in FPGAs. More specifically, a flexible-
length-arithmetic processor based on FDFM approach is
presented that supports arithmetic operations for numbers
with flexibly many bits, even longer than 2048 bits. We have
also succeeded in implementing 308 processor cores in one
Xilinx Virtex-6 FPGA which work in parallel to improve
the throughput greatly.

ACKNOWLEDGMENT

The authors would like to thank to Dr. Md. Nazrul
Islam Mondal and Mr. Kohan Sai who have developed a
preliminary version of a processor of this work [7].



Table II
SYNTHESIZED RESULTS AND PERFORMANCE EVALUATION OF THE DIRECT-HARDWARE PROCESSOR, OUR PREVIOUS PROCESSOR, AND OUR PROPOSED

PROCESSOR FOR 2048-BIT RSA ENCRYPTION

Direct implementation [5] Previous work [7] This work
Device XC6VLX240T-1 XC6VLX240T-3 XC6VLX240T-3

CLBs(Slices) 180 170 167
Block RAMs 1 4 2

DSP48E1 slices 1 1 1
Clock frequency[MHz] 447.02 299.89 310.07

Multiplication School method School method Comba method
Supported instructions 1 (RSA only) 17 38

RSA implementation Hardware Software Software
(Verilog HDL) (Assembly language) (Assembly language)

Computing time[ms] 277.26 635.65 613.71

Processor

Processor

Processor

�
�

�

18 d

we

out
18q

�

�

�

d

d

d

we

out

we

out

we

out

q

q

q

1

1

1

1

1

1

n

n

finish

finish

finish

1

1

1

n

d_addr
d_addr

d_addr

d_addr

p_addr

vd

Register

n

16

10

wes

outs

Data I/O 

Controller

Figure 9. Multicore processor system using proposed flexible-length-arithmetic processors

REFERENCES

[1] Xilinx Inc., Virtex-6 FPGA Configuration User Guide (v3.8),
2014.

[2] Xilinx Inc., Virtex-6 FPGA DSP48E1 Slice User Guide (v1.3),
2011.

[3] Xilinx Inc., Virtex-6 FPGA Memory Resources (v1.8), 2014.

[4] Y. Ago, A. Inoue, K. Nakano, and Y. Ito, “The parallel
FDFM processor core approach for neural networks,” in Proc.
of International Conference on Networking and Computing,
pp. 113–119, 2011.

[5] S. Bo, K. Kawakami, K. Nakano, and Y. Ito, “An RSA
encryption hardware algorithm using a single DSP Block and
single Block RAM on the FPGA,” International Journal of
Networking and Computing, vol. 1, no. 2, pp. 277–289, 2011.

[6] Y. Ito, K. Nakano, and S. Bo, “The parallel FDFM processor
core approach for CRT-based RSA decryption,” International
Journal of Networking and Computing, vol. 2, pp. 56–78,
2012.

[7] M. N. I. Mondal, K. Sai, K. Nakano, and Y. Ito, “A flexible-
length-arithmetic processor using embedded DSP slices and
block RAMs in FPGAs,” in Proc. of International Symposium
on Computing and Networking, pp. 75–84, 2013.

[8] P. G. Comba, “Exponentiation cryptosystems on the IBM
PC,” IBM Systems Journal, vol. 29, no. 4, pp. 526–538, 1990.

[9] J. L. Hennessy and D. A. Patterson, Computer Architecture,
Fourth Edition: A Quantitative Approach. Morgan Kaufmann
Publishers Inc., 2006.

[10] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,”
Commun. ACM, vol. 21, no. 2, pp. 120–126, 1978.

[11] P. L. Montgomery, “Modular multiplication without trial
division,” Math. of Comput., vol. 44, pp. 519–521, 1985.


