
Accelerating Ant Colony Optimization for the Vertex Coloring Problem on the GPU

Ryouhei Murooka, Yasuaki Ito, and Koji Nakano
Department of Information Engineering, Hiroshima University

Kagamiyama 1-4-1, Higashi-Hiroshima, 739-8527 Japan
Email: {murooka, yasuaki, nakano}@cs.hiroshima-u.ac.jp

Abstract—Vertex coloring is an assignment of colors to vertex
of an undirected graph such that no two vertices sharing the
same edge have the same color. The vertex coloring problem
is to find the minimum number of colors necessary to color a
graph given, which is an NP-hard problem in combinatorial
optimization. Ant Colony Optimization (ACO) is a well-known
meta-heuristic in which a colony of artificial ants cooperates
in exploring good solutions to a combinatorial optimization
problem. Several methods applying ACO to the vertex coloring
problem have been proposed. The main contribution of this
paper is to propose a GPU implementation to accelerate the
computation of the ACO algorithm for the vertex coloring
problem. In our implementation, we have considered program-
ming issues of the GPU architecture, such as coalescing access
of the global memory, bank conflict of the shared memory,
etc. The experimental results show that on NVIDIA GeForce
GTX 1080, our implementation for 1000 vertices runs in 2.740s,
while the CPU implementation on Intel Core i7-4790 runs in
100.866s. Thus, our GPU implementation attains a speed-up
factor of 36.81.

Keywords-GPU; CUDA; Vertex coloring problem; Ant colony
optimization

I. INTRODUCTION

Vertex coloring is an assignment of labels called colors
to vertex of a graph. Given an undirected graph without
self-loops, colors are assigned to vertices such that no two
vertices sharing the same edge have the same color as illus-
trated in Figure 1. The vertex coloring problem is to find the
minimum number of colors needed to color a given graph.
This problem is well-known as an NP-hard problem in
combinatorial optimization. Therefore, approximation algo-
rithms for this problem have been proposed, such as greedy
algorithms [1]–[4], tabu search [5], genetic algorithm [6],
ant colony optimization [7]–[9], among others. Also, parallel
algorithms have been introduced [10]–[12].

Ant colony optimization (ACO) was introduced as a
nature-inspired meta-heuristic for the solution of combina-
torial optimization problems [13], [14]. The idea of ACO is
based on the behavior of real ants exploring a path between
their colony and a source of food. More specifically, when
searching for food, ants initially explore the area surrounding
their nest at random. Once an ant finds a food source, it
evaluates the quantity of the nest. During the return trip,
the ant deposits a chemical pheromone trail on the ground.
The quantity of the pheromone will guide other ants to
the food source. Indirect communication between the ants

Figure 1: An example of vertex coloring

via pheromone trails makes them possible to find shortest
paths between their nest and food sources. In ACO, the
characteristic of real ant colonies is exploited in simulated
ant colonies to solve problems. The genetic ACO algorithm
consists of the following two steps:
Step 1: Initialization

• Initialize the pheromone trail
Step 2: Iteration

• For each ant repeat until stopping criteria
– Construct a solution using the pheromone trail
– Update the pheromone trail

The first step mainly consists in the initialization of the
pheromone trail. In the iteration step, each ant constructs
a complete solution for the problem according to a proba-
bilistic state transition rule. The rule depends chiefly on the
quantity of the pheromone. Once all ants construct solutions,
the quantity of the pheromone is updated in two phases:
an evaporation phase in which a fraction of the pheromone
evaporates, and a deposit phase in which each ant deposits
an amount of pheromone that is proportional to the fitness of
its solution. This process is repeated until stopping criteria.

GPUs (Graphics Processing Units) are specialized micro-
processors that accelerate graphics operations. Many pro-
cessing units in recent GPUs can be used for general purpose
parallel computation. CUDA (Compute Unified Device Ar-
chitecture) [15], [16] is an architecture for general purpose
parallel computation on NVIDIA’s GPUs. Using CUDA,
we can develop parallel algorithms to be implemented in
GPUs. Therefore, many researches have been devoted using
CUDA [17], [18].

The main contribution of this paper is to accelerate the
ACO for the vertex coloring problem using the GPU. Espe-



cially, we have implement the ACO based on the Recursive
Largest First method (RLF) proposed by Costa et al. in [7]
on the GPU. In our GPU implementation, we have consid-
ered many programming issues of the GPU architecture such
as coalescing access of the global memory, bank conflict of
the shared memory, etc. We note that our goal in this paper
is to accelerate the computation of the ACO on the GPU,
not to improve the accuracy of the solution. The solution
obtained by our implementation is basically the same as
that by the original ACO for the vertex coloring problem.
We have implemented our parallel algorithm in NVIDIA
GeForce GTX 1080. The experimental results show that our
proposed GPU implementation can run 19.68 to 36.81 times
faster than the sequential CPU implementation, where the
solutions of the both implementation are almost the same.

This paper is organized as follows; Section II introduces
the ACO algorithm for the vertex coloring problem. Sec-
tion III briefly describes about GPUs and CUDA archi-
tecture. In Section IV, our GPU implementation of the
ACO algorithm for the vertex coloring problem is proposed.
Experimental results are shown in Section V. Finally, Sec-
tion VI concludes the paper.

II. ANT COLONY OPTIMIZATION FOR THE VERTEX
COLORING PROBLEM

In this section, we describe a solution for the vertex col-
oring problem using the ACO. There are several approaches
for the vertex coloring problem using the ACO [7]–[9].
Especially, in this work, we use ACO based on the Recursive
Largest First method (RLF) [19] which is one of the greedy
algorithms [7]. We show the RLF method first, then the
algorithm of the ACO based on the RLF method.

A. The Recursive Largest First method

The Recursive Largest First (RLF) method is a heuristic
algorithm for the vertex coloring problem [1]. Given a graph
G = (V,E) with V the vertices set, and E the edge set,
this algorithm sequentially finds a sequence of stable sets
Ck (k = 0, 1, . . .) each of which is assigned color k.
The number of stable sets corresponds to the number of
colors necessary to be assigned. The algorithm of the RLF
method is shown in Algorithm 1, where U denotes the set
of uncolored vertices.

To explain the algorithm, in the following, we describe
how a stable set Ck is built when C0, . . . , Ck−1 have been
found and have assigned color 0, . . . , k−1, respectively. Let
N and W denote the set of uncolored vertices neighboring
Ck and a candidate set of vertices that can be colored in
U , respectively. Note that Ck and N are initially empty
and W is initialized to U . In the algorithm, vertices are
selected from W one by one. Whenever a vertex is selected,
the vertex and its neighbors are removed from W , and the
neighbors are added to N . The algorithm first selects a vertex
v ∈ W which has the largest number of neighbors in W .

Algorithm 1 The RLF method

Input: A graph G = (V,E)
Output: A coloring of V

1: U ← V
2: k ← 0
3: while U 6= φ do
4: Ck ← FindStableSet(U )
5: U ← U \ Ck

6: Assign Ck color k
7: k ← k + 1
8: end while

The vertex v is added to Ck, and W and N are updated.
After that, the rest of vertices in W is found by the following
selection is repeated until W is empty: the next vertex in W
is selected such that it has the largest number of neighbors
in N . The vertex is added to Ck, and W and N are updated.
When W becomes empty, the next stable set Ck+1 is built
from U . Algorithm codes of the above operation is shown in
Algorithm 2, where dU (w) and dN (w) denote the number
of neighbors of w in U and N , respectively. Figure 2 shows
an example of finding a stable set by Algorithm 2. Due to
the page limitation, the explanation of the figure is omitted,
but the reader can easily understand it.

Algorithm 2 Procedure: FindStableSet

Input: A set of uncolored vertices U
Output: A stable set Ck

1: N ← φ
2: Ck ← φ
3: W ← U
4: v ← argmaxw∈W dU (w)
5: Add v to Ck

6: Add all neighbors in W of v to N
7: Remove v and its neighbors from W
8: while W 6= φ do
9: v ← argmaxw∈W dN (w)

10: Add v to Ck

11: Add all neighbors in W of v to N
12: Remove v and its neighbors from W
13: end while
14: Return Ck

B. ACO algorithm based on the RLF method

We review the ACO algorithm based on the RLF method
proposed in [7]. Recall that in the vertex coloring problem,
given a graph G = (V,E) with V the set of n vertices
v0, v1, . . . , vn−1, colors are assigned to vertices. In this
method, pheromone values are defined between every pair
of two vertices. Let τi,j be a pheromone value between vi
and vj . Note that τi,j and τj,i take the same variable. In the



��

��

��

��

�� ��

��

��

��

��

�� ��

��

��

��

��

�� ��

��

��

��

��

�� ��

�� �� ���� �� �� �� ��
���

� � ���, ��� ��� ��� ��� ��� ��, �� �

�	 � ∅
	 � ∅

� � �������, �� �

�	 � ����
	 � ���, ��, ��, ���

� � ����

�	 � ���, ���
	 � ���, ��, ��, ��, �� �

� � ∅

�	 � ���, ��, ���
	 � ���, ��, ��, ��, �� �

Figure 2: An example of finding a stable set in the RLF method

algorithm, when the value of pheromone τi,j is larger, two
vertices vi and vj are assigned the same color with higher
probability. Based on the pheromone, ants work as agents
performing the distributed search. Recommended in [7],
first, a number of ants are placed at vertices independently
at random. Each ant builds a stable set by visiting vertices
and its vertices are assigned a same color. The ant repeatedly
selects a next visiting vertex at random among the candidate
vertices that can be colored currently. In the selection of a
next visiting vertex, the next vertex is stochastically selected
by following the pheromone values. Since the pheromone
values of adjacent two vertices are zero, neighboring vertices
are not selected in the selection. The ant assigns the color to
the selected vertex and repeats this selection until no vertices
are selected. After that, the ant restart visiting vertices to
build a stable set with a new color for uncolored vertices.
When all the vertices are colored, the number of colors is
a solution of this problem. Thus, after all m ants color
all vertices, we have m solutions of this problem. This
procedure is repeated until some termination condition is
satisfied.

In the following, we explain the details of the algorithm
consisting of three steps the initialization, the tour construc-
tion, and the pheromone update.

Initialization: As shown in the above, every pair of
two vertices has a pheromone value. To avoid assigning the
same color to adjacent vertices, every value of neighboring
two vertices is set to zero. Thus, the pheromone values are
initialized as follows;

τi,j = 1 if ei,j /∈ E

= 0 otherwise.

Tour construction: Each ant basically performs the
RLF method in Algorithm 1 independently. The difference
is the selection of vertices in Algorithm 2. More specifically,
to find a stable set, in Algorithm 2, a first vertex and next
visiting vertices are selected in lines 4 and 9, respectively.

On the other hand, in the ACO algorithm, a first vertex
is selected from uncolored vertices at random. Also, a
next vertex is selected by a well-known method called
roulette-wheel selection [20]. Algorithm codes of procedure
of finding a stable set in the ACO algorithm is shown in
Algorithm 3.

Algorithm 3 Procedure: FindStableSet in the ACO

Input: A set of uncolored vertices U
Output: A stable set Ck

1: N ← φ
2: Ck ← φ
3: W ← U
4: v is selected from W at random
5: Add v to Ck

6: Add all neighbors in W of v to N
7: Remove v and its neighbors from W
8: while W 6= φ do
9: v is selected from W by the roulette-wheel selection

10: Add v to Ck

11: Add all neighbors of v to N
12: Remove v and its neighbors from W
13: end while
14: Return Ck

We focus on a particular ant and explain how it traverses
vertices using the roulette-wheel selection. More specifically,
we show how the ant selects a next visiting vertex from W
when the ant in vi assigns vertices color k. We select a next
visiting vertex in W with the fitness fi,j between vi and vj
with respect to the ant by the following formula:

fi,j = (dN (vj))
α · (τi,j)β (1)

where dN (vj) denote the number of neighbors of vj in N .
Also, α > 0 and β > 0 are fixed values to control the
influence of the pheromone.

We select a next visiting vertex in W with probability
proportional to fi,j . In other words, the probability pi,j to



select vertex vj as a next visiting vertex is

pi,j =
fi,j
F

if vj ∈W

= 0 otherwise
(2)

where F =
∑

vj∈W fi,j . Clearly,
∑

vj∈W pi,j = 1 and vj is
selected as a next visiting vertex with higher probability if
the fitness value fi,j is larger. In this paper, the parameters
α and β are set to 2 and 4, respectively, that are the most
accurate shown in [7].

This tour construction is performed until no vertices
are selected, that is, W becomes empty. After that tour
construction is performed for uncolored vertices by visiting
them and assigning the next color k + 1. When all the
vertices are colored by repeating the tour construction, the
assignment of colors obtained by the ant is an approximation
solution of the vertex coloring problem.

Pheromone update: After all m ants complete the tour
construction, every pheromone value τi,j is updated. The
pheromone update is performed by two steps: the pheromone
evaporation and the pheromone deposit. Intuitively, the
pheromone evaporation is performed to avoid falling into
local optima of the vertex coloring. Every pheromone value
is decreased by multiplying a fixed constant factor ρ (0 <
ρ < 1). More specifically, τi,j (0 ≤ i, j ≤ n− 1) is updated
as follows:

τi,j ← ρ · τi,j , (3)

where ρ is a fixed evaporation rate of the pheromone
determined by the experiments. In this work, we set ρ = 0.5
that is the optimal parameter shown in [7].

After the pheromone evaporation, the pheromone deposit
is performed using the tours obtained by the m ants. Let
qa and Ta denote the number of colors and a set of tours
obtained by the a-th ant (0 ≤ a ≤ n−1), respectively. Each
Ta consists qa tours since the ant makes one tour for each
color. The pheromone value τi,j is updated as follows:

τi,j ← τi,j +
∑

0≤a≤n−1

(
1

qa
+

∑
(vi,vj)∈Ta

L

qa

)
if ei,j /∈ E, (4)

where L is a fixed value to control the quantity of deposit
of the pheromone determined by the experiments.

III. GPU AND CUDA ARCHITECTURE

GPUs consist of many processing cores, called Streaming
Multiprocessor (SM), and hierarchical memories. In the
GPU computation, it is necessary to consider the character-
istics of the memories to accelerate it. Figure 3 illustrates the
hardware architecture of the GPU. The GPU has two types
of memories, the global memory and the shared memory.

The global memory has a large capacity, 1.5-12 Gbytes,
implemented by off-chip DRAMs. All the processing cores
in the SMs can access the global memory, but its access
latency is very long. In particular, we need consider the

core core

core core

core core

SM

・
・・

Shared
Memory

core core

core core

core core

SM

・
・・

Shared
Memory

core core

core core

core core

SM

・
・・

Shared
Memory

・ ・ ・

Global Memory

GPU

Figure 3: GPU hardware architecture

coalesced access of the global memory access. The con-
tinuous location in address space of the global memory are
accessed at the same time by a group of threads, called
warp. However, if threads does not access to continuous
location, called stride access, the memory access need to be
repeated several times. Therefore, from such the structure
of the global memory, the coalesced access maximizes the
bandwidth of memory access.

The shared memory can be used as a cache to hide
the access latency of the global memory. To access to
the shared memory, the structure needs be considered. The
shared memory is divided into 32 equally-sized banks of
32 (or 64)-bit width. In the shared memory, the successive
32 (or 64)-bit words are assigned to successive banks. To
achieve maximum throughput, threads in a warp should
access different banks, otherwise, bank conflicts will be
occurred.

IV. GPU IMPLEMENTATION

The main purpose of this section is to show a GPU im-
plementation of ACO algorithm based on the RLF method.
In the GPU implementation, as described in Section II, n
ants independently color vertices by visiting vertices using
pheromone. Our implementation consists of three CUDA
parts, initialization, tour construction, and pheromone up-
date. We use CURAND [21], a standard pseudorandom
number generator of CUDA, when we need to generate a
random number. The details of our GPU implementation
are spelled out as follows.

A. Initialization

Given an input graph G = (V,E), we use an adjacency
matrix of size n×n to represent the graph, where n denotes
the number of vertices in Figure 4. The matrix is stored
in the global memory as a 2-dimensional array. In the
initialization, the pheromone values are initialized using the
adjacent matrix.

B. Tour construction

Recall that in the tour construction, m ants are initially
positioned on m vertices randomly. We assign each ant to



��

��
��

��

��

(a) Input graph
0 0 0 1 0
0 0 1 1 1
0 1 0 1 0
1 1 1 0 0
0 1 0 0 0


(b) Adjacent matrix of a graph


0 1 1 0 1
1 0 0 0 0
1 0 0 0 1
0 0 0 0 1
1 0 1 1 0


(c) Initial pheromone values

Figure 4: An example of data representation of the graph
and pheromone values

one block with multiple threads, that is, m blocks are used
in total. Each ant builds a sequence stable sets by visiting
vertices independently. Each ant has an candidate list W =
{w0, w1, . . . , wn−1} such that

wj = 1 if vertex vj can be colored
= 0 otherwise.

(5)

The values of the list denote availability of vertices to be
colored, that is, if wj = 0, when an ant assigns vertices
color k, vertex vj has been colored or neighbors vertices
assigned color k. When the ant visits a vertex, the vertex
is colored. Therefore, whenever the ant visits a vertex, this
list is updated. Additionally, sets of vertices N and Ck in
Algorithm 3 are also updated for each visit.

Whenever each ant visits a vertex, it determines a next
visiting vertex with the roulette-wheel selection. To perform
the tour construction on the GPU, we use two selection
methods; the selection with prefix-sums, the selection with
stochastic trial and the hybrid method. In these methods, we
use the basic idea proposed in [22].

Selection with prefix-sums: To perform the roulette-
wheel selection, in the selection with prefix-sums, when ant
a is in vertex vi, we execute the following three steps:

Step 1: Compute the prefix-sums qj (0 ≤ j ≤ n − 1)
such that

qj = τi,0 · w0 + τi,1 · w1 + · · ·+ τi,j · wj (6)

Step 2: Generate a random number r in [0, qn−1).
Step 3: For simplicity, let q−1 = 0. Find j such that

qj−1 ≤ r < qj (0 ≤ j ≤ n − 1). Vertex vj is
selected as the next visiting vertex.

Clearly, r is in [qj−1, qj) with probability qj−qj−1

qn−1
=

τi,j ·wj

qn−1
.

Thus, if vj is a candidate to be colored, that is, wj = 1, then
the next visiting vertex is vj with probability τi,j

qn−1
. Hence

the next visiting vertex is selected with probability Eq. 2
correctly.

We show a parallel computation of the selection with
prefix-sums, as follows. In Step 1, to compute the values
fi,j computed by Eq. 1, the n values τi,0, τi,1, . . . , τi,n−1

are read from the global memory by threads with coalescing
access and stored to the shared memory. After that, the
prefix-sums in Eq. 6 are computed, where the fitness values
of vertices that cannot be selected are 0. To avoid the branch
instructions, we multiply fi,j and wj with the candidate
list W in Eq. 5. In our implementation, the prefix-sums
computation is performed using the parallel prefix-sums
algorithm proposed Harris et al. [23], Chapter 39. It is an in-
place parallel prefix-sums algorithm with the shared memory
on the GPU. Also, it can avoid most bank conflicts by adding
a variable amount of padding to each shared memory array
index.

After that, a number r in [0, qn−1) is generated uniformly
at random using CURAND. Using the random number, an
index j such that qj−1 ≤ r < qj is selected and vertex
vj is the next visiting vertex. In this search operation, we
use a parallel search method based on the parallel K-ary
search using multiple threads in a block [24]. This idea
of the parallel K-ary search is that a search space in each
repetition is divided into K partitions and the search space
is reduced to one of the partitions. In general, binary search
is a special case (K = 2) of K-ary search. In our parallel
search method, we divide the search space into 32 partitions.
Sampling the first element of each partition, a partition that
includes the objective element is searched is found by 32
threads. After that, the objective element is searched from
the partition by threads of which the number is the number
of elements in the partition.

The feature of this method is that the fitness values can
be read from the global memory with the coalescing access.
On the other hand, in every selection to determine the next
vertex, the roulette-wheel selection has to be computed for
all vertices regardless of whether they can be selected or
not. Namely, although the number of candidate vertices is
smaller, the computing time cannot be reduced. In other
words, it does not depend on the number of candidate
vertices.

Selection with stochastic trial: This selection is based
on the roulette-wheel selection with stochastic trial proposed
in [22]. In the above selection, whenever every ant visits a
city, the prefix-sums computation needs to be performed.
The prefix-sums computation occupies the most of the
computing time of the tour construction. The idea of this
method is to avoid the prefix-sums computation as much as
possible using stochastic trial. The details of this method
are shown as follows.

Before ants start visiting vertices, the prefix-sums
q′i,0, q

′
i,1, . . . , q

′
i,n−1 for every vertex vi (0 ≤ i ≤ n − 1)

are computed such that

q′i,j = f ′
i,0 + f ′

i,1 + · · ·+ f ′
i,j



For simplicity, let q′i,−1 = 0. Note that once all q′i,j are
computed, we do not have to update them during the tour
construction. We assume that the values of q′i,j are stored
into a 2-dimensional array in the global memory such that
q′i,−1, . . . , q

′
i,n−1 are stored in the i-th row. When an ant

is visiting vertex vi, the next visiting vertex is selected as
follows:

Step 1: Generate a random number r in [0, q′i,n−1).
Step 2: Find j such that q′i,j−1 ≤ r < q′i,j (0 ≤ j ≤

n − 1). If vertex vj is a candidate in W , it is
selected as the next vertex. Otherwise, these steps
are performed until the next vertex is selected.

In Step 2, the candidate list (Eq. 5) is used to find whether
the vertex has been selected or not by the parallel search
shown in the above methods. Using this idea, the number of
prefix-sums computation can be reduced.

Hybrid method: In the selection with stochastic trial,
when the number of candidates in W is small, Step 2
succeeds in selecting an candidate vertex with small prob-
ability. If this is the case, the number of iteration of the
above steps can be large. Hence, if the next vertex is not
determined in the t-time iteration for some constant value
t determined the experiments, we select the next visiting
vertex by the selection with prefix-sums. When the number
of candidates in W is smaller of some of the fitness values
of non-candidate vertices are larger, almost the trial cannot
select the next vertex. However, the computing time is much
shorter than that of the prefix-sums computation. Therefore,
if the next vertex can be determined in the above steps within
t times, the total computing time can be reduced by this
method. In our implementation, we set t to 4 that is the
optimal times by our experiments.

C. Pheromone update

We show a GPU implementation of the pheromone update
as follows. The idea of the implementation is efficient
memory access by coalescing access of the global memory.
Recall that the pheromone update consists of the pheromone
evaporation and the pheromone deposit. In the GPU imple-
mentation, the pheromone values τi,j (0 ≤ i, j ≤ n − 1)
are stored in a 2-dimensional array, which is a symmetric
array, that is, τi,j = τj,i, in the global memory. The values
are updated by the results of the tour construction by ants.
Arranging the array symmetric, the elements related to
vertex vi, i.e., τi,0, . . . , τi,n−1 are stored in the same row
so that the access to the elements can be performed using
the coalescing access.

A kernel that performs the pheromone update assigns m
blocks that consists of n threads to each row of the array,
where m and n denote the number of ants and vertices,
respectively. Each block performs the following operations
independently. Threads in a block i (0 ≤ i ≤ n − 1) read
τi,0, . . . , τi,n−1 in the i-th row with coalescing access, and
then store them to the shared memory. Each pheromone

value is updated from Eqs. 3 and 4 as follows. First, all
pheromone values are updated such that

τi,j ← ρ · τi,j +
∑

0≤a≤n−1

1

qa

After that, pheromone values of vertices along all the tours
obtained by all ants in the tour construction is updated such
that

τi,j ← τi,j +
∑

(vi,vj)∈Ta

L

qa

In the above updating, making every block of threads
accesses coalesced, the memory access can be performed
efficiently.

V. PERFORMANCE EVALUATION

This section shows the performance evaluation of our
proposed GPU implementation of the AS for the vertex
coloring problem using CUDA C. We have implemented
it on NVIDIA GeForce GTX 1080 with 2560 cores running
in 1.733GHz and CUDA version 7.5. For the purpose of
estimating the speed-up of our GPU implementation, we
have also implementation a sequential CPU implementation
of the AS for the vertex coloring problem using GNU C on
Intel Core i7-4790 running in 3.66GHz. In the sequential
CPU implementation, we can apply the same idea of the
tour construction in the GPU implementation such as the
selection with stochastic trial. We have evaluated our im-
plementations using a set of benchmark instances from the
bench mark set [25]. We have used 6 instances from the
set consisting of 500 and 1000 vertices each of which has
distinct densities, 10%, 50%, and 90%. In this paper. we set
the number of ants to 20% of the number of the vertices
n, that is, 100 and 200 ants have been used for instances
with 500 and 1000 vertices, respectively. Every execution
repeated the process consisting of the tour construction and
the pheromone 50 times.

Table I shows the computing time and solutions of
the CPU and GPU implementations. Regarding solutions,
i.e., the number of colors assigned, the solutions of both
implementations are almost the same because the GPU
implementation is accelerating the computation of the ACO
algorithm. On the other hand, for the computing time, when
the number of vertices is larger, the computing time is longer.
Also, when the density of graph is higher, the computing
time is shorter. Our proposed GPU implementation can
run 19.68 to 36.81 times faster than the sequential CPU
implementation.

VI. CONCLUSIONS

In this paper, we have proposed an implementation of
accelerating the ant colony optimization for the vertex col-
oring problem using a GPU. In our implementation, we have
considered programming issues of the GPU architecture such



Table I: The computing time in seconds and solutions of the ACO for the vertex color problem

CPU GPU
instance in [25] # vertices # edges time # colors time # colors speed-up
DSJC500.1.col 500 12458 12.452 18 0.464 18 26.84
DSJC500.5.col 500 62624 10.454 68 0.448 68 23.32
DSJC500.9.col 500 112437 10.232 167 0.426 167 24.03
DSJC1000.1.col 1000 49629 100.866 28 2.740 28 36.81
DSJC1000.5.col 1000 249826 84.922 121 2.642 121 32.14
DSJC1000.9.col 1000 449449 49.551 309 2.517 308 19.68

as the coalescing access of the global memory and the bank
conflict of the shared memory, etc. We have implemented it
on NVIDIA GeForce GTX 1080. The experimental results
show that our GPU implementation attains a speed-up factor
of at most 36.81 over the sequential CPU implementation
on Intel Core i7-4790.

REFERENCES

[1] F. T. Leighton, “A graph coloring algorithm for large schedul-
ing problems,” Journal of Research of the National Bureau
of Standards, vol. 84, no. 6, pp. 489–506, 1979.

[2] D. Brélaz, “New methods to color the vertices of a graph,”
Communications of the ACM, vol. 22, no. 4, pp. 251–256,
1979.

[3] H. Al-Omari and K. E. Sabri, “New graph coloring algo-
rithms,” American Journal of Mathematics and Statistics,
vol. 2, no. 4, pp. 439–441, 2006.

[4] M. Chiarandini, G. Galbiati, and S. Gualandi, “Efficiency
issues in the RLF heuristic for graph coloring,” in Proc. of
Metaheuristics International Conference, 2011, pp. 461–469.

[5] A. Hertz and D. de Werra, “Using tabu search techniques for
graph coloring,” Computing, vol. 39, pp. 345–351, 1987.

[6] C. Fleurent and J. A. Ferland, “Genetic and hybrid algorithms
for graph coloring,” Annals of Operations Research, vol. 63,
pp. 437–461, 1996.

[7] D. Costa and A. Hertz, “Ants can colour graphs,” Journal of
the Operational Research Society, vol. 48, no. 3, pp. 295–305,
May 1997.

[8] T. N. Bui, T. H. Nguyen, C. M. Patel, and K.-A. T. Phan, “An
ant-based algorithm for coloring graphs,” ”Discrete Applied
Mathematics, vol. 156, no. 2, pp. 190–200, 2008.

[9] P. Consoli, A. Collerà, and M. Pavone, “Swarm intelli-
gence heuristics for graph coloring problem,” in Proc. of
IEEE Congress on Evolutionary Computation, 2013, pp.
1909–1916.

[10] E. G. Boman, D. Bozdağ, U. Catalyurek, A. H. Gebremedhin,
and F. Manne, “A scalable parallel graph coloring algorithm
for distributed memory computers,” in Proc. of 11th Interna-
tional Euro-Par Conference, 2005, pp. 241–251.

[11] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson,
“Ordering heuristics for parallel graph coloring,” in Proc. of
the 26th ACM Symposium on Parallelism in Algorithms and
Architectures, 2014, pp. 167–177.

[12] G. Rokos, G. Gorman, and P. H. Kelly, “A fast and scalable
graph coloring algorithm for multi-core and many-core ar-
chitectures,” in European Conference on Parallel Processing,
2015, pp. 414–425.

[13] M. Dorigo, “Optimization, learning and natural algorithms,”
Ph.D. dissertation, Dipartimento di Elettronica, Politecnico di
Milano, 1992.

[14] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system:
Optimization by a colony of cooperating agents,” IEEE Trans-
actions on Systems, Man, and Cybernetics–Part B, vol. 26,
no. 1, pp. 29–41, 1996.

[15] CUDA C Programming Guide Version 7.0, NVIDIA Corpo-
ration, 2015.

[16] CUDA C Best Practice Guide Version 7.0, NVIDIA Corpo-
ration, 2015.

[17] Y. Ito and K. Nakano, “A GPU implementation of dynamic
programming for the optimal polygon triangulation,” IEICE
Transactions on Information and Systems, vol. E96-D, no. 12,
pp. 2596–2603, 2013.

[18] W. W. Hwu, GPU Computing Gems Emerald Edition. Mor-
gan Kaufmann, 2011.

[19] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and
C. Schevon, “Optimization by simulated annealing: An exper-
imental evaluation; part II, graph coloring and number parti-
tioning,” Operations Research, vol. 39, no. 3, pp. 378–406,
1991.

[20] A. Lipowski and D. Lipowska, “Roulette-wheel selection via
stochastic acceptance,” Physica A: Statistical Mechanics and
its Applications, vol. 391, no. 6, pp. 2193–2196, March 2011.

[21] NVIDIA Corp., cuRAND Library PG-05328-050 v7.5, 2015.

[22] A. Uchida, Y. Ito, and K. Nakano, “Accelerating ant colony
optimisation for the travelling salesman problem on the GPU,”
International Journal of Parallel, Emergent and Distributed
Systems, vol. 29, no. 4, pp. 401–420, 2014.

[23] H. Nguyen, GPU Gems 3. Addison-Wesley Professional,
2007.

[24] B. Schlegel, R. Gemulla, and W. Lehner, “k-ary search
on modern processors,” in Proc. of the Fifth International
Workshop on Data Management on New Hardware, 2009,
pp. 52–60.

[25] T. H. Nguyen and T. Bui, “Graph coloring bench-
mark instances,” https://turing.cs.hbg.psu.edu/txn131/graph-
coloring.html.


