
GPU-Accelerated Bulk Computation of the Eigenvalue Problem
for Many Small Real Non-symmetric Matrices

Hiroki Tokura, Takumi Honda, Yasuaki Ito, and Koji Nakano
Department of Information Engineering,

Hiroshima University
Kagamiyama 1-4-1, Higashi-Hiroshima, 739-8527 JAPAN

Mitsuya Nishino, Yushiro Hirota, and Masami Saeki
Department of Mechanical System Engineering,

Hiroshima University
Kagamiyama 1-4-1, Higashi-Hiroshima, 739-8527 JAPAN

Abstract—The main contribution of this paper is to present
a very efficient GPU implementation of bulk computation of
eigenvalues for a large number of small non-symmetric real
matrices. This work is motivated by the necessity of such
bulk computation in design of control systems, which requires
to compute the eigenvalues of hundreds of thousands non-
symmetric real matrices of size up to 30 × 30. In our GPU
implementation, we considered programming issues of the GPU
architecture including warp divergence, coalesced access of
the global memory, bank conflict of the shared memory, etc.
In particular, we present three types of assignments of GPU
threads to matrices and introduce three memory arrangements
in the global memory. The experimental results on NVIDIA
GeForce GTX TITAN X show that our GPU implementation
for 500000 matrices of size 5×5 to 30×30 attains a speed-up
factor of approximately 15 over the CPU implementation on
Intel Core i7-4790.

Keywords-GPGPU; CUDA; The eigenvalue problem; Bulk
computation; The implicit QR algorithm

I. INTRODUCTION

Given an n×n matrix A, the eigenvalue problem is to find
all eigenvalues λ satisfying Ax = λx, where x is a nonzero
vector of size n. The computation of eigenvalues has many
applications in the field of science and engineering such as
image processing, control engineering, quantum mechanics,
economics, among the others.

In control system design, the computation of the eigen-
value problem is widely used, e.g. stability analysis and
Riccati equation. The numerical algorithm is well-developed
and the eigenvalue problem of a single matrix can be
solved efficiently. However, it requires much computation
time to calculate the eigenvalues of real matrices for more
than the-thousands times. For example, this issue occurs in
the parameter space design method with volume rendering
proposed in [1]. In this novel method, a scalar index for
a design specification is calculated for each grid point in
3D space to get volume data, and the permissible set is
visualized as iso-surfaces in 3D space by volume rendering
(Figure 1). The designer can visually select an appropriate
parameter. This numerical method is expected to treat more
practical specifications than the previous analytical method
in [2].

Control design problems are reduced to problems of
finding a controller that satisfies design specifications of
pole assignment, transient response, and frequency response.
In [1], the method with rendering is studied for the specifi-
cation of transient response. It is also very useful to develop
the method for the specification of pole assignment. This
requires calculation of the eigenvalues of non-symmetric
real matrices for all the grid points. The matrix size is
small, e.g. 15 × 15, and the number of grid points is
more than ten-thousands, e.g. 503 = 125000. Therefore, the
eigenvalue problem for a large number of matrices needs
to be computed, and the computing time of the eigenvalue
problems dominates the processing time in the parameter
space design with volume rendering. Thus, accelerating the
computation of the eigenvalue problem for many small non-
symmetric real matrices is needed.

Figure 1. Volume rendering of the parameter space design in the pole
assignment problems using eigenvalues obtained by the proposed method

In classical numerical linear algebra, to compute eigen-
values of a non-symmetric matrix, the QR algorithm [3],
[4] is used. This algorithm is based on the factorization,
called the QR decomposition, of a matrix A by division as
a product of an orthogonal matrix Q and an upper triangular
matrix R, that is, A = QR. To reduce the computing time of
the QR algorithm, its variants have been proposed [4], [5].
Especially, in this work, we use the implicit double-shift QR
algorithm [5] used in modern computational practice. The
implicit double-shift QR algorithm is based on the implicit

Q theorem. Instead of the iterative QR decomposition, in
this algorithm, the double-shift QR sweep is repeatedly
performed.

A GPU (Graphics Processing Unit) is a specialized circuit
designed to accelerate computation for building and manipu-
lating images [6], [7]. Latest GPUs are designed for general
purpose computing and can perform computation in applica-
tions traditionally handled by the CPU. Hence, GPUs have
recently attracted the attention of many application develop-
ers [6]. NVIDIA provides a parallel computing architecture
called CUDA (Compute Unified Device Architecture) [8],
[9], the computing engine for NVIDIA GPUs. CUDA gives
developers access to the virtual instruction set and memory
of the parallel computational elements in NVIDIA GPUs.
In many cases, GPUs are more efficient than multicore
processors [10], since they have thousands of processor cores
and very high memory bandwidth.

Many researchers have been devoted to accelerate the
computation for matrix calculations for many small ma-
trices using GPUs [11]–[14]. On the other hand, we can
utilize software libraries and softwares for numerical linear
algebra. LAPACK [15] and GSL [16] are software libraries
for the CPU implementations. These libraries support the
computation of matrix factorizations, multiplications, eigen-
values, etc. For GPU implementations, cuBLAS [17], cu-
SOLVER [18] and MAGMA [19] are available. We can also
utilize MATLAB [20] to compute the eigenvalue problem as
a linear algebra software. As far as we know, there are not
any GPU implementations and software libraries for the bulk
computation of eigenvalues for many small non-symmetric
matrices.

The main contribution of this work is to propose a GPU
implementation of bulk computation of eigenvalues of small
real non-symmetric matrices. We focus on matrices of sizes
no more than 32 × 32. However, as mentioned in the
above, there are not any GPU implementations and soft-
ware libraries for the computation of eigenvalues for many
small non-symmetric matrices. To compute eigenvalues of
matrices, we compute eigenvalues using the implicit double-
shift QR algorithm that iterates matrix transformation. In
this work, we propose three assignments of GPU threads
to matrices. Also, to make the memory access efficient,
we introduce memory arrangements in the device memory
on the GPU for each of the thread assignments. We have
implemented them on the GPU and evaluated the perfor-
mance. The experimental results on NVIDIA GeForce GTX
TITAN X show that our GPU implementation for 500000
matrices of size 5× 5 and 30× 30 attains a speed-up factor
of 15.20 and 14.73 over the CPU implementation on Intel
Core i7-4790, respectively.

II. EIGENVALUES COMPUTATION OF A NON-SYMMETRIC
REAL MATRIX

This section reviews the QR algorithm to compute the
eigenvalues of a matrix [4]. Especially, we focus on the
eigenvalues computation for a square non-symmetric real
matrix. There are several algorithms of computing eigenval-
ues for non-symmetric matrices. In this work, we use the
implicit double-shift QR algorithm [5]. This algorithm uses
the double-shift QR sweep instead of the QR decomposition
to reduce the computation cost. For further details on this
algorithm, the interested reader may refer to [5], [21] and the
references within. The implicit double-shift QR algorithm
consists of three steps:

Step 1: Perform the Hessenberg reduction
Step 2: Repeat the following operations until the size of

the matrices becomes 1× 1 or 2× 2
– Iterate the double-shift QR sweep until a subdiag-

onal element is sufficiently small
– Split into two smaller matrices by deflation and

apply Step 2 recursively
Step 3: Compute eigenvalues
In Step 1, the Hessenberg reduction makes a square

matrix to an upper Hessenberg form matrix. An upper
Hessenberg form matrix has zero entries below the first
subdiagonal as shown in Figure 2. Algorithm 1 shows the
Hessenberg reduction by Householder transformation and
similarity transformation, where v is a Householder vector
for k-th column. Let Aa:b,c:d denote the sub-matrix of A
of which the left-top element is aa,c and the right-bottom
element is ab,d. In the following, for simplicity, if the range
that denotes a sub-matrix is out of the size of the matrix,
the range is reduced to the size of the matrix.

Algorithm 1 The Hessenberg reduction
Input: n× n non-symmetric matrix A
Output: n× n Hessenberg form matrix H
1: for k = 1 to n− 2 do
2: // Householder vector creation
3: v ← Ak+1:n,k

4: v ← v + sign(v1)||v||e1

5: v ← v
||v||

6: // Householder transformation
7: Ak+1:n,k:n ← Ak+1:n,k:n − 2v(vTAk+1:n,k:n)
8: // similarity transformation
9: A1:n,k+1:n ← A1:n,k+1:n − 2(A1:n,k+1:nv)v

T

10: end for
11: return H ← A

In Step 2, we repeatedly execute the iterative double-
shift QR sweep and deflation. The double-shift QR sweep
consists of two steps: bulge-generating and bulge-chasing.
Figure 3 shows the outline of the double-shift QR sweep.
Bulge-generating transforms a Hessenberg form matrix to a
matrix such that a bulge is added to the top left corner of
a Hessenberg form matrix shown in Figure 3(a). After that,
bulge-chasing moves the bulge down and to the right until it
disappears (Figure 3(b)-(e)). By repeatedly performing the

� � � � � �

� � � � � �

0 � � � � �

0 � � � � �

0 � � � � �

0 � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

0 � � � � �

0 0 � � � �

0 0 � � � �

0 0 � � � �

� � � � � �

� � � � � �

0 � � � � �

0 0 � � � �

0 0 0 � � �

0 0 0 � � �

Hessenberg formInput matrix

�
�

��
�

�� �
�

�
�

��
�

���
�

���

� � � � � �

� � � � � �

0 � � � � �

0 0 � � � �

0 0 0 � � �

0 0 0 0 � �

�
�

�
�

�
�

��
�

���
�

���
�

�� �
�

�
�

�
�

�
�

��
�

���
�

���
�

���
�

��

Figure 2. The Hessenberg reduction for a square matrix of size 6× 6

double-shift QR sweep, a value of a subdiagonal element
converges to zero. After converging, we split the matrix
into the two smaller matrices by deflation. Deflation is
decomposing an upper Hessenberg form matrix into the two
smaller upper Hessenberg form matrices when a subdiag-
onal element converges to zero as illustrated in Figure 4.
However, due to a computational error, the value may not
become zero exactly. Therefore, in general, we consider a
subdiagonal element converges to zero when the value is
sufficiently small by comparing with the two neighboring di-
agonal elements. Algorithms 2 and 3 show bulge-generating
and bulge-chasing, respectively.

Algorithm 2 Bulge-generating
Input: n× n Hessenberg form matrix H
Output: n× n Hessenberg form matrix with a bulge B
1: x1 ← (h1,1 − hn,n)(h1,1 − hn−1,n−1)

−hn−1,nhn,n−1 + h1,2h2,1

2: x2 ← h2,1(h1,1 + h2,2 − hn−1,n−1 − hn,n)
3: x3 ← h2,1h3,2

4: // Householder vector creation
5: v ← x + sign(x1)||x||e1

6: v ← v
||v||

7: // Householder transformation
8: H1:3,1:n ← H1:3,1:n − 2v(vTH1:3,1:n)
9: // similarity transformation

10: H1:4,1:3 ← H1:4,1:3 − 2(H1:4,1:3v)v
T

11: return B ← H

Algorithm 3 Bulge-chasing
Input: n× n Hessenberg form matrix with a bulge B
Output: n× n Hessenberg form matrix H
1: for k = 1 to n− 2 do
2: // Householder vector creation
3: v ← Bk+1:k+3,k

4: v ← v + sign(v1)||v||e1

5: v ← v
||v||

6: // Householder transformation
7: Bk+1:k+3,k:n ← Bk+1:k+3,k:n − 2v(vTBk+1:k+3,k:n)
8: // similarity transformation
9: B1:k+4,k+1:k+3 ← B1:k+4,k+1:k+3 − 2(B1:k+4,k+1:k+3v)v

T

10: end for
11: return H ← B

In Step 3, eigenvalues of the deflated matrices are com-
puted one by one. Since the size of the matrices is 1 × 1
and 2× 2, the eigenvalues can be computed easily.

III. CUDA ARCHITECTURE

NVIDIA provides a parallel computing architecture,
called CUDA, on NVIDIA GPUs. CUDA uses two types

of memories: the global memory and the shared memory.
The global memory is implemented as an off-chip DRAM
of the GPU, and has large capacity, say, 1.5-12 Gbytes, but
its access latency is very long. The shared memory is an
extremely fast on chip memory with lower capacity, say,
16-112 Kbytes. The efficiency usage of the global memory
and the shared memory is a key for CUDA developers to
accelerate applications using GPUs. In particular, we need
to consider the coalescing of the global memory access and
the bank conflict of the shared memory access [8], [9]. To
maximize the bandwidth between the GPU and the DRAM
chips, the consecutive addresses of the global memory must
be accessed in the same time. Thus threads should perform
coalescing access when they access to the global memory.

CUDA parallel programming model has a hierarchy of
thread groups, called grid, block, and thread. A single grid
is organized by multiple blocks, each of which has equal
number of threads. The blocks are allocated to SMs such
that all threads in a block are executed by the same SM
in parallel. All threads can access to the global memory.
Threads in a block can access to the shared memory of
the SM to which the block is allocated. Since blocks are
arranged to multiple SMs, threads in different blocks cannot
share data in the shared memories.

In the execution, threads in a block are split into groups of
thread, called warps. A warp is an implicitly synchronized
group of threads. Each of these warps contains the same
number of threads and is executed independently. When a
warp is selected for execution, all threads execute the same
instruction. Any flow control instruction (e.g. if-statements
in C language) can significantly impact the effective in-
struction throughput by causing threads if the same warp
to diverge, that is, to follow different execution paths, called
warp divergence. If this happens, the different execution
paths have completed, the threads back to the same execution
path. For example, for an if-else statement, if some threads in
a warp take the if-clause and the others take the else-clause,
both clauses are executed in serial. On the other hand, when
all threads in a warp branch in the same direction, all threads
in a warp take the if-clause, or all take the else-clause.
Therefore, to improve the performance, it is important to
make branch behavior of all threads in a warp uniform.
When one warp is paused or stalled, other warps can be
executed to hide latencies and keep the hardware busy.

� � � � � �

� � � � � �

0 � � � � �

0 � � � � �

0 � � � � �

0 0 0 0 � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

0 0 0 � � �

0 0 0 0 � �

� � � � � �

� � � � � �

0 � � � � �

0 0 � � � �

0 0 � � � �

0 0 � � � �

� � � � � �

� � � � � �

0 � � � � �

0 0 � � � �

0 0 0 � � �

0 0 0 � � �

� � � � � �

� � � � � �

0 � � � � �

0 0 � � � �

0 0 0 � � �

0 0 0 0 � �

�: bulge

(a) (b) (c) (d) (e)

Figure 3. Bulge-generating and bulge-chasing in the double-shift QR sweep

� � � � � �

� � � � � �

0 � � � � �

0 0 � � � �

0 0 0 � � �

0 0 0 0 � �

� � � �

� � � �

0 � � �

0 0 � �

� �

� �

Figure 4. Matrix division by deflation

IV. GPU IMPLEMENTATION

This section presents the main contribution of this work,
a GPU implementation of the implicit double-shift QR
algorithm for many small matrices of size n× n. Also, we
use a 64-bit floating point number as a real number and two
64-bit floating point numbers as a complex number. In our
implementation, we use only real numbers in Steps 1 and 2
during the computation. From Step 3, we use complex
numbers.

Before the explanation about parallel execution on the
GPU, we introduce three data arrangements for many matri-
ces in the memory, matrix-wise (MW), element-wise (EW),
and row-wise (RW). These three data arrangements show
how to store multiple two-dimensional arrays in the memory
that is a one-dimensional memory. In the MW arrangement,
each matrix is stored one by one and elements of each matrix
are stored in column-major order as shown in Figure 5(a). In
this paper, the input data of matrices are stored to the main
memory in the MW arrangement. In the EW arrangement,
each element picked from the matrices in row-major order
is stored element by element as illustrated in Figure 5(b).
On the other hand, in the RW arrangement, each row taken
from the matrices is stored row by row as illustrated in
Figure 5(c). Two arrangements EW and RW are used in
the global memory to make the memory access efficient. In
this work, we propose three methods that compute them
in parallel, single-thread-based (STB), single-warp-based
(SWB), and multiple-warp-based (MWB). We explain the
three methods using the above three data arrangements as
follows.

In the STB method, one thread is used to sequentially
perform the computation for one matrix (Figure 6). In this
method, to make the global memory access coalesced, the
data in the global memory are stored in the EW arrangement.
Therefore, it is necessary to change the arrangement of
the global memory from the MW arrangement to the EW

��� ��� ���

���������

���������

��� ��� ���

��� ��� ���

��� ��� ���

��� ��� ���

��� ��� ���

��� ��� ���

������ ���

���������

���������

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ⋯

�������� �������	 �������
 ��������

(b) Element-wise arrangement (EW)

(c) Row-wise arrangement (RW)

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ⋯

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ⋯

(a) Matrix-wise arrangement (MW)

Figure 5. Data arrangement for multiple matrices in the memory

arrangement before the launch of kernels of this method.
In Step 1, that is the Hessenberg reduction, the algorithm
is a sequential oblivious algorithm [22] since all addresses
accessed at each step is independent of the input. Namely,
in computation of the Hessenberg reduction, all threads in
a warp always can execute identical instructions. Therefore,
the idea of GPU bulk execution technique [22]–[24] can be
applied to the STB method for the Hessenberg reduction.
On the other hand, in Step 2, since the size of matrix is
changed after deflation, the sizes of matrices computed by
threads in a warp may differ during the computation. In such
case, warp divergence occurs and the global memory access
is not coalesced. However, until deflation, threads in a warp
can work without warp divergence.

��,� ⋯ ��,�

⋮ ⋱ ⋮

��,� ⋯ ��,�

・・・

Thread Thread ThreadWarp ・・・

32 matrices

��,� ⋯ ��,�

⋮ ⋱ ⋮

��,� ⋯ ��,�

��,� ⋯ ��,�

⋮ ⋱ ⋮

��,� ⋯ ��,�

Figure 6. Single-thread-based method (STB)

In the SWB method, one warp is used to compute for
one or more matrices as shown in Figure 7. In this method,
when 32

n is indivisible, 32 − nb 32
n c threads in every warp

are not employed. For example, when the size of matrices is
7×7, b 32

7 c = 4 matrices are computed by one warp. In each
warp, 7 threads are allocated to one matrix and 4 matrices are
transformed in parallel. In this case, the remaining 4 threads
are not used. In this method, the access to the global memory
is made coalesced using the RW arrangement. Since the total
size of matrices is smaller than other two methods, only in
this method, all data of matrices can be located on the shared
memory. Therefore, first of all the processes in this method,
the data of matrices is loaded to the shared memory. Also,
to avoid the bank conflict of the shared memory as much as
possible, we use the padding technique [9]. The following
operations are performed on the shared memory until the
result is stored to the global memory. In Householder vector
creation in Step 1, this method performs the computation
on the shared memory as follows. To compute ||v||, the
sum of squared values of v needs to be computed. We
use the parallel sum reduction method [25] with the shared
memory. After that, the Householder vector is computed
by one thread and stored to the shared memory. On the
other hand, in Householder vector creation in Step 2, the
sum of only three squared values is computed. Therefore, in
Step 2, the sum is directly computed instead of the parallel
sum reduction method. In Householder transformation, we
assign one thread to each column. Each thread computes the
multiplication of the elements in the assigned column from
top to bottom. In similarity transformation, we assign one
thread to each row using n threads. Each thread computes
the multiplication of the elements in the row from left to
right. However, it is not always to employ n threads in these
two transformations.

Warp ・・・ Thread

	�,� ⋯ 	�,�

⋮ ⋱ ⋮

	�,� ⋯ 	�,�

	�,� ⋯ 	�,�

⋮ ⋱ ⋮

	�,� ⋯ 	�,�

��

�
matrices

・・・

32 � �
��

�

threads

・・・

・・・

� threads � threads

Thread Thread ・・・Thread Thread Thread

Figure 7. Single-warp-based method (SWB)

In the MWB method, n warps are used to compute for 32
matrices as shown in Figure 8. More specifically, we allocate
n threads in n different warps to one matrix computation.
Each matrix is computed in parallel using n threads. Since
only the number of warps is depended on n, all threads in
a warp are employed for any n unlike the SWB method.
The parallel execution by n threads in the MWB method is
same as that in the SWB method except that the execution

is basically performed on the global memory. Also, since
multiple warps are used, it is necessary to synchronize
the execution with syncthreads() function. However,
the synchronization is not performed frequently since it
is done only at the end of Householder vector creation,
Householder transformation, and similarity transformation.
In this method, to access the global memory with coalescing
access, we arrange data in the global memory using the EW
arrangement. The arrangement is identical to that of the STB
method.

Thread Thread Thread

n warps

・・・

Thread Thread Thread・・・

Thread Thread Thread・・・

�
�
�

32 matrices

・・・

��,� ⋯ ��,�

⋮ ⋱ ⋮

��,� ⋯ ��,�

��,� ⋯ ��,�

⋮ ⋱ ⋮

��,� ⋯ ��,�

��,� ⋯ ��,�

⋮ ⋱ ⋮

��,� ⋯ ��,�

Figure 8. Multiple-warp-based method (MWB)

In this work, first, the input data of matrices are stored to
the main memory on the host PC in the MW arrangement.
The data are transferred to the global memory on the GPU
as it is. In the above three methods, the data arrangement in
the global memory needs to be rearranged for each utilized
method. Therefore, we implemented kernels that mutually
rearrange between the MW, EW, and RW arrangements on
the global memory. In these kernels, we use the idea of the
matrix transpose technique proposed in [26]. The idea is to
efficiently transpose a two-dimensional array on the global
memory with coalesced access using the shared memory.
The rearrangements are not transposing, but this technique
can be applied with small modification.

V. PERFORMANCE EVALUATION

The main purpose of this section is to show the per-
formance evaluation of the proposed GPU implementation
for the eigenvalues computation. We have used NVIDIA
GeForce GTX TITAN X, which has 3072 cores in running
on 1.075GHz. Also, we have used Intel Core i7-4790
running on 3.6GHz on the host PC. In the following, the
computing time is average of 10 times execution.

First, we evaluate the performance of Step 1, that is, the
Hessenberg reduction, using the proposed three methods,
STB SWB and MWB. Table I shows the computing time
of the Hessenberg reduction for 500000 matrices of size
from 5 × 5 to 30 × 30 that are dense matrices randomly
generated. The computing time does not include data transfer
time between the main memory in the CPU and the device
memory in the GPU. Also, input matrices in the global

memory are stored by the appropriate arrangement as shown
in Figure 5. According to the table, the MWB method is
faster for no more than 20 × 20 matrices, while the SWB
method is faster for 25× 25 or larger matrices.

Table I
THE COMPUTING TIME (IN MILLISECONDS) OF STEP 1 FOR 500000

MATRICES OF SIZE n× n

n 5 10 15 20 25 30
STB 4.29 39.44 164.50 455.41 1006.50 1751.48
SWB 4.88 28.20 86.17 274.71 407.92 583.71
MWB 2.87 19.59 75.30 218.57 455.81 864.43

Table II shows the computing time of Steps 2 and 3 for
500000 matrices of size from 5×5 to 30×30. Similarly, the
computing time does not include data transfer time. Also,
input data in the global memory are stored by the appropriate
arrangement in Figure 5 for each method. According to the
table, the STB method is faster than the SWB and MWB
methods.

Table II
THE COMPUTING TIME (IN MILLISECONDS) OF STEPS 2 AND 3 FOR

500000 MATRICES OF SIZE n× n

n 5 10 15 20 25 30
STB 25.35 182.14 519.39 1125.50 2167.39 3624.97
SWB 57.37 394.02 1506.90 4095.07 6690.20 10228.14
MWB 60.03 451.41 1461.45 3557.14 8816.74 14278.44

Table III shows the computing time of our GPU imple-
mentation for 500000 matrices of size n×n. We assume that
all input data are stored in the main memory on the host PC
using the data arrangement in the MW arrangement. The
input data are transferred from the main memory on the
CPU to the global memory on the GPU as it is. In Step 1
and Steps 2 and 3, according to the result in the above,
we select the fastest method for each size of the matrix.
Therefore, we rearrange the data in the global memory to
the appropriate arrangement before launching the kernels if
necessary. We note that we select the methods by consider-
ing the computing time including the rearranging time. After
executing Step 3, the output data are rearranged to the MW
arrangement on the global memory and transferred to the
main memory on the CPU.

Table IV shows the comparison of our GPU imple-
mentation with two software libraries, LAPACK version
3.6.0 [15] and MAGMA version 2.0.2 [19], MATLAB
version R2015b [20], and the sequential CPU implemen-
tation, that corresponds to CPU in the table, for 500000
matrices of size 5 × 5 to 30 × 30. In the sequential CPU
implementation, we made a C program that performs the
serial computation in Section II from scratch. LAPACK,
MAGMA and MATLAB support parallel computation of the
eigenvalue problem with multithreads on the CPU. MAGMA
also supports parallel computation on the GPU. However,
since the size of matrices is small in this experiment,
MAGMA performed the computation only by CPU with

multithreads. Additionally, since LAPACK, MAGMA and
MATLAB do not support bulk computation of the eigenvalue
problem, each implementation with them calls a procedure
of computing the eigenvalue problem for each matrix. Due
to such execution, multiple threads are launched and stopped
before and after each procedure call, respectively. Therefore,
there is overhead between each procedure call and it is
not negligible. On the other hand, in our sequential CPU
implementation and GPU implementation, since the compu-
tation is executed continuously, such overhead is extremely
small. Our method can compute the bulk computation of the
eigenvalue problem approximately 15 times faster than the
CPU implementation.

VI. CONCLUSIONS

In this paper, we have presented a GPU implementation
of bulk eigenvalue computations for a large number of
small non-symmetric real matrices. The idea of our GPU
implementation is to consider programming issues of the
GPU architecture including warp divergence, coalesced ac-
cess of the global memory, and bank conflict of the shared
memory. We proposed three assignments of the GPU threads
to compute in parallel and data assignment in the global
memory for them. The experimental results show that our
GPU implementation on NVIDIA GeForce GTX TITAN X
attains a speed up factor of approximately 15 over the CPU
implementation on Intel Core i7-4790.

REFERENCES

[1] M. Saeki, Y. Kurosaka, N. Wada, and S. Satoh, “Parameter
space design of a nonlinear filter by volume rendering (in
Japanese),” Transactions of the Institute of Systems, Control
and Information Engineers, vol. 28, no. 10, pp. 419–425,
2015.

[2] J. Ackermann, Robust Control: The Parameter Space Ap-
proach, 2nd ed., ser. Communications and Control Engineer-
ing. Springer-Verlag London, 2002.

[3] J. G. Francis, “The QR transformation a unitary analogue to
the LR transformation–part 1,” The Computer Journal, vol. 4,
no. 3, pp. 265–271, 1961.

[4] G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed.
The Johns Hopkins University Press, 1996.

[5] J. G. Francis, “The QR transformation–part 2,” The Computer
Journal, vol. 4, no. 4, pp. 332–345, 1962.

[6] W. W. Hwu, GPU Computing Gems Emerald Edition. Mor-
gan Kaufmann, 2011.

[7] A. Uchida, Y. Ito, and K. Nakano, “Fast and accurate template
matching using pixel rearrangement on the GPU,” in Proc.
of International Conference on Networking and Computing,
Dec. 2011, pp. 153–159.

[8] CUDA C Programming Guide Version 7.0, NVIDIA Corpo-
ration, 2015.

Table III
THE COMPUTING TIME (IN MILLISECONDS) OF OUR GPU IMPLEMENTATIONS OF THE EIGENVALUE PROBLEM FOR 500000 MATRICES OF SIZE n× n

n 5 10 15 20 25 30
data transfer 18.20 71.09 158.42 285.92 439.84 637.01(host to device)

data rearrangement time 0.82 3.69 8.65 14.03 19.97 27.81
arrange MW→EW MW→EW MW→EW MW→EW MW→RW MW→RW

Step 1 time 2.87 19.59 75.30 218.57 407.92 583.71
method MWB MWB MWB MWB SWB SWB

data rearrangement time — — — — 21.45 30.76
arrange — — — — RW→EW RW→EW

Steps 2 and 3 time 25.35 182.14 519.39 1125.50 2167.39 3624.97
method STB STB STB STB STB STB

data rearrangement time 0.32 0.64 0.95 1.26 1.58 1.90
arrange EW→MW EW→MW EW→MW EW→MW EW→MW EW→MW

data transfer 7.94 15.12 22.68 30.39 38.25 45.13(device to host)
total 55.51 292.26 785.38 1675.66 3096.40 4951.29

Table IV
THE COMPUTING TIME (IN MILLISECONDS) OF EIGENVALUES FOR 500000 MATRICES OF SIZE n× n

n 5 10 15 20 25 30
LAPACK [15] 9556.42 51099.73 112859.84 194458.98 299943.68 432478.17
MAGMA [19] 75061.60 80263.20 89930.79 104234.16 143672.27 202531.19
MATLAB [20] 3397.26 10198.21 22875.17 39356.65 63514.07 89707.41

CPU 843.86 4362.26 12542.57 26172.12 46031.23 72951.33
GPU 55.51 292.26 785.38 1675.66 3096.40 4951.29

speed-up (CPU / GPU) 15.20 14.93 15.97 15.62 14.87 14.73

[9] CUDA C Best Practice Guide Version 7.0, NVIDIA Corpo-
ration, 2015.

[10] D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano, “Imple-
mentations of a parallel algorithm for computing Euclidean
distance map in multicore processors and GPUs,” Interna-
tional Journal of Networking and Computing, vol. 1, no. 2,
pp. 260–276, July 2011.

[11] M. J. Anderson, D. Sheffield, and K. Keutzer, “A predictive
model for solving small linear algebra problems in GPU
registers,” in Proc. of IEEE 26th International Parallel and
Distributed Processing Symposium, 2012, pp. 2–13.

[12] A. Haidar, T. T. Dong, S. Tomov, P. Luszczek, and J. Don-
garra, “A framework for batched and GPU-resident factor-
ization algorithms applied to block Householder transforma-
tions,” in Proc.of 30th International Conference on ISC High
Performance, 2015, pp. 31–47.

[13] T. Dong, A. Haidar, P. Luszczek, J. A. Harris, S. Tomov,
and J. Dongarra, “LU factorization of small matrices: Ac-
celerating batched DGETRF on the GPU,” in Proc. of IEEE
International Conference on High Performance Computing
and Communications, 2014, pp. 157–160.

[14] A. Cosnuau, “Computation on GPU of eigenvalues and eigen-
vectors of a large number of small Hermitian matrices,” in
Proc. of 14th International Conference on Computational
Science, vol. 29, 2014, pp. 800–810.

[15] LAPACK–Linear Algebra PACKage, http://www.netlib.org/la-
pack/.

[16] GSL - GNU Scientific Library, http://www.gnu.org/software/
gsl/.

[17] NVIDIA Corp., cuBLAS, https://developer.nvidia.com/cublas.

[18] ——, cuSOLVER, https://developer.nvidia.com/cusolver.

[19] Innovative Computing Laboratory, MAGMA:Matrix Algebra
on GPU and Multicore Architectures, http://icl.cs.utk.edu/
magma/.

[20] The MathWorks, Inc., “MATLAB,” http://math-
works.com/products/matlab.

[21] D. C. Sorensen, “Implicit application of polynomial filters in
a k-step Arnoldi method,” SIAM Journal on Matrix Analysis
and Applications, vol. 13, no. 1, pp. 357–385, 1992.

[22] K. Tani, D. Takafuji, K. Nakano, and Y. Ito, “Bulk execution
of oblivious algorithms on the unified memory machine, with
GPU implementation,” in Proc. of International Parallel and
Distributed Processing Symposium Workshops, May 2014, pp.
586–595.

[23] D. Takafuji, K. Nakano, and Y. Ito, “A CUDA C program gen-
erator for bulk execution of a sequential algorithm,” in Proc.
of International Conference on Algorithms and Architectures
for Parallel Processing, Aug. 2014, pp. 178–191.

[24] T. Fujita, K. Nakano, and Y. Ito, “Bulk execution of Euclidean
algorithms on the CUDA-enabled GPU,” International Jour-
nal of Networking and Computing, vol. 6, no. 1, pp. 42–63,
2016.

[25] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable
parallel programming with CUDA,” Queue, vol. 6, no. 2, pp.
40–53, 2008.

[26] G. Ruetsch and P. Micikevicius, “Optimizing matrix transpose
in CUDA,” 2010.

